CHEMISTRY 2020

Statistical Mechanics

Professor Richard M. Stratt GeoChem 233

Lecture:

Mon Wed Fri 9:00-9:50 am

GeoChem 351

Required Textbook:

D. A. McQuarrie, *Statistical Mechanics* (University Science Books, New York, 2000)

Homework:

Roughly one problem set every week. Problem sets count significantly towards the grade.

Examinations:

Two one-hour examinations in class.

No final exam.

Syllabus:

Chemistry 2020 - Statistical Mechanics

I. Introduction

Macroscopic vs. microscopic phenomena Basic overview of statistical mechanics Brief reviews of probability, classical and quantum mechanics, and thermodynamics

II. The Concept of Ensembles and the Microcanonical Ensemble

Ensemble averaging vs. time averaging State counting and entropy Application to the ideal gas Application to unimolecular chemical reaction rates

III. The Canonical Ensemble - Finite Temperature

Derivation of probability distribution and thermodynamics The relationship between ensembles General features of the canonical ensemble Application to the ideal gas Application to unimolecular chemical reaction rates

IV. The Grand Canonical Ensemble - Open Systems

Derivation of probability distribution and thermodynamics The relationship between ensembles Application to the ideal gas Multicomponent systems and chemical equilibrium

V. Quantum Statistics and Exchange

Boson and Fermion probability distribution and thermodynamics Blackbody radiation The free-electron gas and metals Bose condensation and superfluid He The classical limit

VI. Interacting Systems - Introduction to Condensed Phases

Nature of the problem - simple models Structure vs. thermodynamics Many-body techniques in statistical mechanics