Chemistry 1150 - Spring 2014

Physical Chemistry: Thermodynamics and Statistical Mechanics

Textbook: D. A. McQuarrie and J. D. Simon, *Physical Chemistry: A Molecular Approach*

- *Lectures*: MWF, 10:00 10:50 am, Geo-Chem 351
- *Office hours*: Mon: 11am -12 noon; Tue: 4-5 pm. If the scheduled hours do not work for you, please email me for an appointment.
- TA:
 Zachary Piazza (zachary piazza@brown.edu) (Geo-Chem 249)

 Office hours:
 Wed: 1:30-3:30 pm

 Office hour location:
 Science Library, Floor A, the Collaborative Work room
- Home works: There will be a weekly home-work set and reading assignments

MathChapters: Although I will not assign them as homework, I strongly urge you to review the MathChapters in the text to refresh your basic math skills.

- *Exams*: Two one-hour in class exams plus a final exam
- *Grading*: 25% home work, 30% mid-terms, 35% final, 10% class participation

Stand-in lectures: Due to prearranged conference travels, Zach Piazza will give the lectures on March 3, 5, 17 & 19.

Course Outline

	o. of lectures
Chapter 16: The Properties of Gases Ideal and non-ideal gases, compressibility factor, van der Waals and virial equations of state, the law of corresponding states, the second virial coeffici intermolecular interactions	3 ent and
Chapter 17: The Boltzmann Factor and Partition Functions The concepts of systems and ensembles, the partition function and properties macroscopic systems, partition functions of systems consisting of distinguish and indistinguishable particles, molecular partition functions	
Chapter 18: Partition Functions of Ideal Gases Translational partition function, vibrational and rotational partition functions of diatomic molecules, energies and heat capacities of ideal gases	2
Chapter 19: The First Law of Thermodynamics Work, heat, energy, and enthalpy, state and non-state functions, reversible a irreversible processes, isothermal and adiabatic processes, heat capacities, and heats of phase transitions and chemical reactions	4 and
Mid-term 1	
Chapter 20: The Second Law of Thermodynamics Entropy and spontaneous processes, second law of thermodynamics, maxin efficiency of a heat engine, entropy and disorder	3 num
Chapter 21: Entropy and the Third Law of Thermodynamics The third law of thermodynamics and the absolute entropy of a substance, standard molar entropies of molecules, entropy changes of chemical reaction	2 ns
Chapter 22: Helmholtz and Gibbs Energies Directions of spontaneous processes and the Helmholtz and Gibbs energies Maxwell relations, natural independent variables of thermodynamic functions the Gibbs-Helmholtz equation, fugacity and nonideality of a gas	
Chapter 23: Phase Equilibria Phase diagrams and Gibbs energies, chemical potentials, the Clapeyron equation and melting temperatures, the Clausius-Clapeyron equation and vapor pressures of substances	3
Mid-term 2	
Chapter 24: Liquid-Liquid Solutions The chemical potential and partial molar quantities, the Gibbs-Duhem equat ideal solutions, Raoult's law and Henry's law, pressure-composition diagram nonideal solutions and activities	

Chapter 25: Solid-Liquid Solutions	3
Solute-solvent systems, activities of nonvolatile solutes, colligative properties	
of diluted solutions: depression of melting points and osmotic pressures,	
electrolyte solutions and the Debye-Huckel theory	
Chapter 26: Chemical Equilibrium	4
Extent of reactions, equilibrium constants and standard Gibbs energies of	
formation, reaction quotient and directions of chemical reactions, the Van't	
Hoff equation, equilibrium constants and partition functions, activities and	
chemical equilibrium of condensed phase reactions	
chemical equilibrium of condensed phase reactions	
Chapter 27: The Kinetic Theory of Gases	3
Average translational energies of gas molecules, distribution of molecular	Ŭ
speeds, collision frequencies, mean free path, and supersonic molecular beams	
speeds, comsion requercies, mean ree pain, and supersonic molecular beams	
Because Lastures Solution chemistry in the gas phase	4
Research Lecture: Solution chemistry in the gas phase	1

Final