Department of Biostatistics Brown University

Linear and Generalized Linear Models

PHP 2601

FALL 2013

Instructor: Email: Office: Telephone: Office hours:	Xi Luo xluo@stat.brown.edu 121 S Main St, Rm 746 3-6321 TTh 2:30-4:00 or by appointment	
Classes meet:	121 S Main St, Rm 636	
Teaching Assistant:	TBD 121 S Main St Regular office hours: TBD	

Course Overview

Linear and generalized linear models are essential for the practice of statistics in many different fields. They are the backbones for models and methods with a wide range of applications, from health insurance premium to disease diagnosis.

This graduate-level course introduces the rigorous theory and practice of linear and generalized linear models. Models for continuous, binary, and count data will be introduced. The emphasis is on building skills for performing independent data analysis, from understanding the mathematics and assumptions, to graphical and numerical tools for model diagnosis, and to advanced techniques for model-fitting and decision-making. This class uses Canvas.

The prerequisites for this class are linear algebra, probability, statistical inference, and applied regression, all at the college level or above.

Textbooks

Lecture notes and assignments.

Seber and Lee, *Linear Regression Analysis*, 2nd Edition (2003, Wiley).

McCullagh and Nelder, *Generalized Linear Models*, 2nd Edition (1989, Chapman & Hall/CRC).

Agresti, Categorical Data Analysis, 2nd Edition (2002, Wiley).

Computing

Most of the analysis in class will be carried out in *R*. You are welcome to use other software packages (*SAS*, *STATA*, *S-plus* and etc) for homework assignments and exams, however there will be limited resources to help you on these software packages.

Grading

Your overall grades will be determined as follows:

background survey (5%), homeworks (20%), midterm project (25%), and final project and presentation (50%).

You are encouraged to discuss with the instructor as soon as possible (by Nov 1) about your final project. It usually involves analyzing an interesting dataset, producing a written report, and delivering an oral presentation. Biostat PhDs are also expected to rigorously analyze a method not discussed in lectures.

Module	Day	Торіс	Text
Review	R, 9/5	Introduction	SL 1-2
	T, 9/10	Matrix, MVN	JL 1-2
LM Basics	R, 9/12	Estimation & assumptions	
	T, 9/17		SL 3, 9
	R, 9/19		JE 3, 5
	T, 9/24		
	R, 9/26	Hypothesis testing	SL 4
	T, 10/1	Confidence intervals	SL 5, 6
LM Advanced	R, 10/3	Departures & remedies	SL 10
	T, 10/8		01 10
	R, 10/10	Model selection & prediction	SL 12
	T, 10/15		56 12
ANOVA	R, 10/17	ANOVA	SL 8
	T, 10/22		
	F, 11/1	Midterm project due	
GLM Basics	R, 10/24	Model	MN 1-3
	T, 10/29		
	R, 10/31	Binary data	MN 4
	T, 11/5		
	R, 11/7	Contingency table	A 2, 3, 8
GLM Advanced	T, 11/12		
	R, 11/14 T, 11/19	Polytomous data	MN 5
	R, 11/19		
	T, 11/21	Log-linear models	MN 6
	R, 11/28	Thanksgiving: no class	
GLM assumptions	T, 12/3		
	R, 12/5	Model checking and diagnosis	MN 12
Final	12/8 12/12	Presentations	