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Figure 2. Hierarchical feedforward models of the visual cortex.
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Figure 23. The ice-cube model of the cortex. It illustrates how the cortex is divided, at the same time, .
into two kinds of slabs, one set of ocular dominance (left and right) and one set for orientation. v _» Complex units
The model should not be taken literally: Neither set is as regular as this, and the orientation O Simple units

slabs especially are far from parallel or straight.

Gabor filters at multiple phases (one phase shown), orientations and spatial
frequencies/scales (parameters derived from available experimental data)
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Structure in natural images

A. Indoor scenes
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The oblique effect
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Rearing experiments
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Natural image statistics cont’d
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Fig. 2. Co-occurrence statistics of contour elements in natural images. a. Definition of parameters describing the
geometrical and contrast relationship between a pair of contour elements. b. Plot of the likelihood ratio for a given
relationship between pairs of contour elements. c. Ratio of the prior probabilities that pair of contour elements belong
to different versus the same physical source, as a function of distance between the pair of elements. A likelihood ratio
greater then 1.0 means (given equal priors) it is more likely that the elements belong to the same physical contour; a
ratio less than 1.0 means it is more likely that the elements belong to different physical contours. [For each distance,
direction and polarity, the orientation difference bins (line segments) are drawn in rank order starting from the lowest
likelihood; thus, the highest likelihoods are the most visible in the plot.]

Geisler 2008



Natural image statistics cont’d

THE ASSOCIATION FIELD

Contour inlegration only occurs when:-
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Natural image statistics cont’d

embedded contour background elements

Hess & Field 03



Lateral connections in the primary visual cortex

Long range connections to compatible cells
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Frequency channels
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Computing with V1
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Computing with V1
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Fourier decompositions
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source: http://physicsformom.blogspot.com/2010/04/fourier-analysis-sines-and-integrals.htmi



http://physicsformom.blogspot.com/2010/04/fourier-analysis-sines-and-integrals.html
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Computing with V1

Gist descriptor
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Contrast sensitivity function
Blackmore & Campbell (1969)

Maximum sensitivity

~ 6 cycles / degree of visual angle
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source: Aude Oliva
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Hybrid Images

Aude Oliva (MIT)



Hylrid Images

Aude Oliva (MIT)



Hylrid Images

Aude Oliva (MIT)




On the perception of spatial frequencies




N the perception of spatial frequencies
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Dali’'s Slave Market with the Disappearing Bust of Voltaire



On the perception of spatial frequencies
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“ALL IS VANITY "

O\ "ALL IS VANITY "
"All Is Vanity", by C. Allan Gilbert 1873-1929.




Frequency channels

Low spatial frequency

peripheral vision High spatial frequency

foveal vision




Frequency channels




Spatial resolution and acuity
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Spatial resolution and acuity




Subtle expression
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Hylrid Images

Aude Oliva (MIT)
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Hylrid Images

Aude Oliva (MIT)



Theories of object recognition

high SF (slow) low SF (fast)
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Coarse-to-fine processing

Duration: 30 ms
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fime Same or different ?

Schyns & Oliva ‘94
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Data compression

Based on principles of human vision that we just discussed, how would you
use image pyramids/spatial frequency channels for data compression
applications?



Contrast sensitivity function
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L—-cone map

M-cone map
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Luminance vs. color
selectivity in simple cells
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Parameters fitted to

Color prOCGSSiﬂg psychophysics data on color
perception
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Color processing

Wh— Bl

Zhang Barhomi & Serre 12



Color processing

» SO/DO approach improves on
all recognition and
segmentation datasets tested
as compared to existing color
representations

« Color datasets = = E

A. Gradient used in SIFT

Soccer team Flower B. Gabor filters used in HMAX
Method Color  Shape Both Color  Shape Both
Hue/SIFT 69 (67) 43 (43) 73 (73) 58 (40) 65 (65) 77 (79)
Opp/SIFT 69 (65) 43 (43) 74 (72) 57 (39) 65 (65) 74 (79)
SOSIFT/DOSIFT 82 66 83 68 69 79
SOHMAX/DOHMAX 87 76 89 77 73 83

C. Gaussian derivatives used in segmentation

» Pascal challenge
Method SIFT HuesiFT OpponentSIFT CSIFT SODOSIFT SODOHMAX
AP 40 (38.4) 41 43 (42.5) 43 (44.0)| 46.5 (33.3/39.8) 46.8 (30.1/36.4)

* Zhang Barhomi & Serre ’12
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On the need for
normalization circuits
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On the need for
normalization circuits
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(Gain-control circuits

A Linear model
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Gain-control circuits in the (turtle) retina
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Gain-control circuits in V1
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Figure 3 | Normalization in the primary visual cortex. a | Contrast saturation. Responses as a function of grating
contrast for gratings having optimal orientation (shown in red) and suboptimal orientation (shown in yellow).

b | Cross-orientation suppression. Responses to the sum of a test grating and an orthogonal mask grating (colours indicate
mask contrast, from 0% (shown in yellow) to 50% (shown in dark red)). c | Transition from drive to suppression. Grating 1
had optimal orientation and grating 2 had suboptimal orientation. Grating 2 could provide some drive to the neuron when
presented alone (shown in yellow) but became suppressive when grating 1 had moderate contrasts (shown in red).

d | Surround suppression. A grating contained in a central disk was surrounded by a grating in an annulus. The annulus
elicited minimal responses when presented alone, but suppressed responses to the central disk.e | Effects of
normalization on population responses. Each dot indicates the response of a population of neurons selective for a given
orientation, and each panelindicates the population responses to a stimulus. Stimuli are gratings of increasing contrast,
presented alone (top) or together with an orthogonal grating (bottom). Data in parta from REF. 43; data in partb from

REF 56; datain part ¢ from REF. 43; data in partd from REF. 142; data in part e from REF. 48.




Gain-control circuits in V1
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Figure 3 | Normalization in the primary visual cortex. a | Contrast saturation. Responses as a function of grating
contrast for gratings having optimal orientation (shown in red) and suboptimal orientation (shown in yellow).

b | Cross-orientation suppression. Responses to the sum of a test grating and an orthogonal mask grating (colours indicate
mask contrast, from 0% (shown in yellow) to 50% (shown in dark red)). c | Transition from drive to suppression. Grating 1
had optimal orientation and grating 2 had suboptimal orientation. Grating 2 could provide some drive to the neuron when
presented alone (shown in yellow) but became suppressive when grating 1 had moderate contrasts (shown in red).

d | Surround suppression. A grating contained in a central disk was surrounded by a grating in an annulus. The annulus
elicited minimal responses when presented alone, but suppressed responses to the central disk.e | Effects of
normalization on population responses. Each dot indicates the response of a population of neurons selective for a given
orientation, and each panelindicates the population responses to a stimulus. Stimuli are gratings of increasing contrast,
presented alone (top) or together with an orthogonal grating (bottom). Data in parta from REF. 43; data in partb from

REF 56; datain part ¢ from REF. 43; data in partd from REF. 142; data in part e from REF. 48.



Gain control circuits in computer vision!

What is the Best Multi-Stage Architecture for Object Recognition?

Kevin Jarrett, Koray Kavukcuoglu, Marc’ Aurelio Ranzato and Yann LeCun

The Courant Institute of Mathematical Sciences
New York University, 715 Broadway, New York, NY 10003, USA
koray(dcs.nyu.edu

- Normalization appears to be the most important component of a good
computer vision system (over learning algorithms, architecture, etc)



