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terial http://serre-lab.clps.brown.edu/
resources/ACM2010 for details). 

Supervised learning in higher ar-
eas. After this initial developmental 
stage, learning a new object category 
requires training only of task-specif-
ic circuits at the top of the ventral-
stream hierarchy, thus providing a 
position and scale-invariant represen-
tation to task-specific circuits beyond 
IT to learn to generalize over trans-
formations other than image-plane 
transformations (such as 3D rotation) 
that must be learned anew for each 
object or category. For instance, pose-
invariant face categorization circuits 
may be built, possibly in PFC, by com-
bining several units tuned to different 
face examples, including different 
people, views, and lighting conditions 
(possibly in IT). 

A default routine may be running in 
a default state (no specific visual task), 
perhaps the routine What is there? 
As an example of a simple routine con-
sider a classifier that receives the activ-
ity of a few hundred IT-like units, tuned 
to examples of the target object and 
distractors. While learning in the mod-
el from the layers below is stimulus-
driven, the PFC-like classification units 
are trained in a supervised way follow-
ing a perceptron-like learning rule. 

Immediate Recognition 
The role of the anatomical back-projec-
tions present (in abundance) among 
almost all areas in the visual cortex is 
a matter of debate. A commonly ac-
cepted hypothesis is that the basic pro-
cessing of information is feedforward,30 
supported most directly by the short 
times required for a selective response 
to appear in cells at all stages of the hi-
erarchy. Neural recordings from IT in 
a monkey12 show the activity of small 
neuronal populations over very short 
time intervals (as short as 12.5ms and 
about 100ms after stimulus onset) con-
tains surprisingly accurate and robust 
information supporting a variety of 
recognition tasks. While this data does 
not rule out local feedback loops within 
an area, it does suggest that a core hi-
erarchical feedforward architecture 
(like the one described here) may be a 
reasonable starting point for a theory of 
the visual cortex, aiming to explain im-
mediate recognition, the initial phase 
of recognition before eye movement 

and high-level processes take place. 
Agreement with experimental data. 

Since its original development in the 
late 1990s,24,29 the model in Figure 2 
has been able to explain a number of 
new experimental results, including 
data not used to derive or fit model pa-
rameters. The model seems to be qual-
itatively and quantitatively consistent 
with (and in some cases predicts29) 
several properties of subpopulations 
of cells in V1, V4, IT, and PFC, as well 
as fMRI and psychophysical data (see 
the sidebar “Quantitative Data Com-
patible with the Model” for a complete 
list of findings). 

We compared the performance of 
the model against the performance 
of human observers in a rapid animal 
vs. non-animal recognition task28 for 
which recognition is quick and cortical 
back-projections may be less relevant. 
Results indicate the model predicts 
human performance quite well during 
such a task, suggesting the model may 

indeed provide a satisfactory descrip-
tion of the feedforward path. In par-
ticular, for this experiment, we broke 
down the performance of the model 
and human observers into four image 
categories with varying amounts of 
clutter. Interestingly, the performance 
of both the model and the human ob-
servers was most accurate (r90% cor-
rect for both human participants and 
the model) on images for which the 
amount of information is maximal and 
clutter minimal and decreases monoti-
cally as the clutter in the image increas-
es. This decrease in performance with 
increasing clutter likely reflects a key 
limitation of this type of feedforward 
architecture. This result is in agree-
ment with the reduced selectivity of 
neurons in V4 and IT when presented 
with multiple stimuli within their re-
ceptive fields for which the model pro-
vides a good quantitative fit29 with neu-
rophysiology data (see the sidebar). 

Application to computer vision. 

Figure 2. Hierarchical feedforward models of the visual cortex. 
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Structure in natural images

A potential limitation of this sample of natural scenes is its
provenance from a particular geographic region (the North
Carolina piedmont; we assume that the indoor and outdoor
scenes would be generally similar in other locations). Accord-
ingly, an additional set of scenes was analyzed from a coastal
region of North Carolina that featured marshes, dunes,
beachscapes, and the maritime flora typical of the Outer
Banks. The results were consistent with our original sample of
natural scenes, showing a significant prevalence of vertical and
horizontal contours relative to oblique angles.

The reason for a bias toward the cardinal axes in such
different natural settings is presumably an omnipresent hori-
zon dictated by the earth’s surface (which guarantees horizon-
tal components in most scenes) and an abundance of plants
that use vertical supports to counter the force of gravity and
horizontal extension to capture sunlight with maximum effi-
ciency.

DISCUSSION
Taken together, these results indicate that the oblique effect,
i.e., the greater sensitivity of the visual system in humans and
other animals to information oriented near the cardinal axes,

accords with the biased distribution of contours projected onto
the retinas from objects in the real world. What then is the link,
if indeed there is one, between this aspect of visual behavior
and the structure of the world with respect to oriented
contours?

Several studies have addressed the anatomical and physio-
logical basis of the oblique effect. Psychophysical tests of
orientation processing using interference fringes, a technique
for presenting an oriented stimulus to human subjects that
essentially nullifies the optics of the eye, have shown that the
cause of the oblique effect does not lie in the eye itself (12, 13).
It has therefore been proposed that this asymmetrical visual
behavior has its origin more centrally in the distribution and
tuning properties of orientation-selective cells in primary
visual cortex (14). Indeed, surveys of single-unit responses in
the primary visual cortex of cat (14–17) and monkey (18, 19)
have established that more neurons respond to orientations
near the cardinal axes than to obliquely oriented stimuli.
Moreover, vertical and horizontal stimuli evoke larger cortical
potentials measured with surface electrodes than do obliquely
oriented stimuli (20–23). In accord with these electrophysio-
logical results, we recently have found that more primary visual
cortex in ferrets responds to stimuli in the cardinal axes than
to obliquely oriented stimuli (24). In the light of these several
lines of evidence, it seems likely that the oblique effect is based
on a greater amount of neural machinery devoted to the
analysis of orientations near the cardinal axes.

A disproportionate allocation of cortical circuitry devoted to
analyzing contours near the cardinal axes could be instantiated
during phylogeny, ontogeny, or both. Although the prevalence
of vertical and horizontal contours in real world scenes is
consistent with either of these possibilities, the results we
report here provide some encouragement to consider anew the
role of normal experience in the establishment of the mature
visual system. That orientation selectivity can be influenced by
early experience is indicated by the phenomenon of meridional
amblyopia in individuals who suffered from uncorrected astig-
matism in early life (25). In such patients, some orientations
are much better seen during development than others. As a
result, these subjects develop a permanent inability to ade-
quately resolve specific orientations, even when the astigma-
tism is fully corrected. If the quality of experience with
oriented contours can affect the neural circuitry dedicated to
analyzing specific orientations under these pathological cir-
cumstances, it is reasonable to imagine that a real world bias
in the prevalence of oriented contours also influences the
structure of the maturing brain. Further support for this view
comes from recent work showing that, in the somatic sensory
system at least, regions of cortex that are most active during
development grow to a greater extent than less active cortical
regions (26–29).

FIG. 4. Distribution of oriented contours in indoor (A), outdoor
(B), and entirely natural (piedmont forest) (C) environments. Each
graph represents the average of the analyses of 50 representative
scenes in the indicated setting. As in Fig. 1, vertical contours (V) are
90!270°, and horizontal contours (H) are 0!180°. The cardinal axes
predominate, particularly in the indoor and outdoor scenes.

Table 1. Summed magnitude values of horizontal and vertical
contour projections compared with oblique angles in the four
different settings analyzed

Type of scene Orientation Mean ! SEM, "1000 P value

Indoor Cardinal 33.6 ! 1.70
#0.0001Oblique 15.5 ! 7.59

Total 49.16 ! 1.23
Outdoor Cardinal 46.2 ! 1.95

#0.0001Oblique 31.2 ! 1.55
Total 77.49 ! 1.75

Natural Cardinal 60.7 ! 1.21
#0.0001Oblique 53.6 ! 1.03

Total 114.41 ! 1.1

The statistical significance of the differences between the represen-
tations of contours in the cardinal axes vs. oblique angles is based on
paired t tests.

Neurobiology: Coppola et al. Proc. Natl. Acad. Sci. USA 95 (1998) 4005

of all spatial frequencies in the analysis, and the arbitrary
selection of a kernel size (3 ! 3 pixels). The latter two
problems are mitigated by the random inclusion of pictures
with focal distances ranging from "1 m to infinity. Because the
results also could have been influenced by the scale of analysis,
we repeated the image processing for a selected subset of the
library at 5122, 1282, and 642 pixels. Although the orientation
histograms were less smooth at the larger scales and comprised
smaller numbers of pixels, the anisotropies we report were
equally evident.

RESULTS

Fig. 3 shows examples of typical scenes from each setting. The
distribution of orientations projected from objects in indoor
scenes was strongly biased toward the cardinal axes (Fig. 3A).
Indeed, simply looking at the original projections makes plain
that the contours of corners, the edges of walls, windows, and
doors dominate many of these images, thus biasing the distri-
bution toward vertical and horizontal orientations. The near
vertical and horizontal (#22.5°) orientation magnitudes were
more than twice as strongly represented as the near oblique
orientations (Fig. 4A; Table 1).

A similar result was obtained for outdoor environments on
the Duke campus (Fig. 3B). The projections from such scenes
also were biased toward the cardinal axes, the magnitude of
vertical and horizontal orientations being nearly 50% greater
than the values determined for near oblique contours (Fig. 4B;
Table 1). As expected, entirely natural scenes acquired in the
various terrains encountered in the Duke Forest (Fig. 3C)
showed a more uniform distribution of orientations. Even in
this circumstance, however, near vertical and horizontal con-
tours predominated (Fig. 4C; Table 1). Thus, the summed
magnitudes of contour projections near the cardinal axes in
natural scenes were $10% greater than the magnitudes of the
projections near the right and left obliques. Because of the
relatively greater complexity of natural scenes, the overall
values of oriented contours weighted by their magnitude were
substantially greater than in the indoor or outdoor settings.
The greater summed magnitudes in outdoor and natural scenes
compared with indoor scenes presumably derive from the
prevalence of uniform surfaces (walls, ceilings, f loors) in the
latter setting. Because indoor scenes have more expanses such
as walls or floors that have relatively few oriented contours
(i.e., regions of the scene in which each pixel is surrounded by
neighbors of similar or identical gray-scale value), there is a
relative paucity of contours in this setting compared with
outdoor and natural scenes.

FIG. 3. Representative examples from a digitized library of 150 scenes obtained from indoor (A), outdoor (B), and entirely natural (C)
environments at Duke University. The complete library of 150 digitized scenes is available on request.

4004 Neurobiology: Coppola et al. Proc. Natl. Acad. Sci. USA 95 (1998)
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Natural image statistics cont’d
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and a peak spatial frequency of 0.1 c/pixel (the frequency was picked to provide a dense sampling of contours), (c) 
identify the locations of zero crossings in the filtered image, (d) at each zero crossing point in the (unfiltered) gray scale 
image apply a bank of odd and even log Gabor filters with a spatial-frequency bandwidth of 1.5 octaves and an 
orientation bandwidth of 40 deg, (e) normalize the filter responses by dividing by the sum of the responses across all 
orientations, (f) combine the odd and even responses to obtain an energy response, (g) find the peak of the energy 
response across orientation to determine the local contour orientation, (h) eliminate edge elements with peak normalized 
energy responses that do not exceed a low threshold, (i) interpolate the even and odd responses to better localize the 
edge position, (j) reapply an odd log Gabor filter at the estimated edge-element orientation and position in the gray scale 
image to determine the contrast polarity (the sign of the contrast) of the edge element. The last two steps were not 
applied in the original study [7].  The above edge extraction procedure was applied to synthetic test images with known 
contour positions, orientations and contrast polarities, and was found to be accurate for the test images.  We note that 
the extraction of contrast polarity information is new to the current study.  We chose not to examine contrast magnitude 
because the images were neither luminance nor color calibrated, and thus for these images we can only be confident 
about measurements of edge geometry and contrast polarity. 
 

 
 

Fig. 2. Co-occurrence statistics of contour elements in natural images.  a. Definition of parameters describing the 
geometrical and contrast relationship between a pair of contour elements.  b. Plot of the likelihood ratio for a given 
relationship between pairs of contour elements.  c. Ratio of the prior probabilities that pair of contour elements belong 
to different versus the same physical source, as a function of distance between the pair of elements.  A likelihood ratio 
greater then 1.0 means (given equal priors) it is more likely that the elements belong to the same physical contour; a 
ratio less than 1.0 means it is more likely that the elements belong to different physical contours.  [For each distance, 
direction and polarity, the orientation difference bins (line segments) are drawn in rank order starting from the lowest 
likelihood; thus, the highest likelihoods are the most visible in the plot.] 

 
We measured pair-wise statistics.  Specifically, for each pairing of extracted edge elements we considered one of them 
as the reference and described the geometrical and contrast relationship of the other element relative to the reference 
element (every edge element served as a reference element).  The relationship between the elements is described by four 
parameters (see Fig. 2a): the distance between the centers of the edge elements ( d ), the direction of the second element 
from the reference element (G ), the orientation difference between the edge elements ( R ), and difference between the 
edge elements in contrast polarity ( S ).  (Note that S  takes on only two possible values:  1 = same polarity and 0 = 
opposite polarity.)  Thus, the pair-wise statistics can be described by a four dimensional probability density function, 
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on the measured natural scene statistics.  Finally, we measure human performance in the natural task for stimuli based 
on the natural scene statistics and compare human performance to that of the ideal observer. 

2. Example 1:  Contour occlusion task 
It is common in natural scenes for an object to be partially occluded by one or more other objects (Fig. 1).  Such 
occlusions can provide useful depth and segmentation (figure-ground) information; for example, if the bounding 
contour of an object can be identified, then other contours intersecting that bounding contour are likely to be occluded, 
and hence likely to be at a greater distance and to derive from a different physical source than the bounding contour 
(e.g., a different object).  However, the existence of occlusions can also greatly increase the difficulty of correctly 
interpreting natural images; for example, an occluding object necessarily obscures image features from the occluded 
objects, making identification of the occluded objects difficult. 
 
The human visual system contains powerful contour grouping mechanisms that are thought to play an important role in 
helping the visual system both exploit occlusions and overcome the loss of features produced by occlusions.  For 
example, contour grouping mechanisms allow us decide (correctly) that the two contours passing under the red leaf in 
Fig. 1 arise the same physical source (surface boundary).  These contour grouping mechanisms undoubtedly evolved 
and/or develop in response to the properties of natural environments, and thus there have been recent efforts to directly 
measure the statistical properties of contours in natural images, with the aim of gaining a deeper understanding of the 
image information available to support contour grouping and of developing more refined models of contour grouping 
[7-9]. 
 

 
 

Fig. 1. Contour occlusion in natural images. 

2.1. Contour statistics 
Much of the procedure for measuring contour statistics is described elsewhere [7].  Briefly, we analyzed a set of natural 
images that were picked to be as diverse as possible, without containing human-made objects or structures.  The images 
included close-up and distant views of different environments (i.e., forests, mountains, deserts, plains, seashore) and 
image constituents (e.g., water, sky, snow, plants, trees and rocks).  Edge elements were extracted from each image 
using an automatic algorithm containing the following steps: (a) convert the image to gray scale, (b) filter the gray scale 
image with a non-oriented log Gabor filter (in the Fourier domain) having a spatial-frequency bandwidth of 1.5 octaves 
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Lateral connections in the primary visual cortex
454 O. Ben-Shahar and S. Zucker

nection structure. As we discuss in the rest of this article, the relationship
between these two types of connections, the mathematical and the physio-
logical, is more than linguistic.

2.1 The Geometry of Orientation in the Retinal Plane. Orientation in
the 2D (retinal) plane is best represented as a unit length tangent vector
Ê(q⃗) attached to point of interest q⃗ = (x, y) ∈ R2. Having such a tangent
vector attached to every point of an object of interest (e.g., a smooth curve or
oriented texture) results in a unit length vector field (O’Neill, 1966). Assum-
ing good continuation (Wertheimer, 1955), a small translation V⃗ from the
point q⃗ results in a small change (i.e., rotation) in the vector Ê(q⃗). To apply

Ben-Shahar & Zucker ’04
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RESULTS
Simulating V1 population responses
To simulate the expected retinotopic extent of V1 population 
responses, we created a large population of model V1 neurons repre-
senting a 2° × 2° patch of the visual field (centered 3° from the fovea) 
and having realistic distributions of orientation, spatial frequency and 
size tuning (Supplementary Fig. 1). The model predicts that, for most 
visual stimuli, the retinotopic extent of V1 population activity, pooled 
locally at the retinotopic scale, provides a reliable signal for shape 
judgment. However, we found that, for a small subset of stimuli, the 
retinotopic extent of V1 activity could be dissociated from the physical 
shape of the stimulus. Specifically, the model predicts that small sine-
wave stimuli (Gabors) with a circular contrast envelope and spatial 
frequency and size similar to that of the average V1 neuron’s receptive 
field should produce a retinotopic pattern of population activity that is 
systematically extended in the direction of grating (the carrier) orien-
tation. This effect results from the tendency of V1 receptive fields to be 
elongated along the direction of their preferred orientation23–25.

A consequence of this elongation is that neurons will tend to 
respond at greater distances to stimuli collinearly aligned with their 
receptive fields than to stimuli aligned orthogonally, yielding a  

population response that is retinotopically elongated along the 
orientation of the carrier (Fig. 2a–d). This orientation-dependent 
distortion disappears if the spatial frequency or spatial frequency 
bandwidth of the Gabor stimulus is sufficiently different from the 
optimal value (Fig. 2c,e) or if the stimulus contains multiple orienta-
tion components. Thus, if the predictions of our model are correct, 
and if the extent of the spread of activity in the retinotopic map of V1 
influences perceptual estimates of visual shape, the perceived stimulus 
aspect ratio should be systematically distorted by carrier orientation 
for stimuli that approximately match the average V1 receptive field.

Imaging orientation-dependent V1 response spread
To confirm that V1 population responses exhibit this orientation-
dependent elongation, we measured V1 population responses in 
awake, fixating macaques using VSDI, which is uniquely well-suited 
to the investigation of large-scale population activity and cortical 
topography26. Using VSDI responses from 17 recording sessions 
in three monkeys, we found that the carrier orientation systemati-
cally altered the retinotopic extent of population responses in V1,  
as predicted by our model. Note that, as the retinotopic map in V1  
is locally contiguous, we can express the retinotopy of a small patch  
of the cortical surface as an isomorphic transformation of a small 
patch of the visual field. We measured the coarse retinotopy of the 

Visual stimulus

V1 response
(retinotopic)

V1 response
(orientation column)

Figure 1 Schematic illustration of two scales of functional organization 
in primary visual cortex. The top row shows texture-defined visual shapes 
that differ either in terms of the textures that define them (left and center 
columns) or their shape (center and right columns). The middle row 
schematically illustrates retinotopic-scale V1 population responses to the 
visual stimuli. The spatial spread or retinotopic extent of activation at this 
scale can be used to discriminate between the sizes and coarse shapes of 
visual stimuli, but not to discriminate between their component textures. 
The bottom row shows schematic responses in orientation columns. 
Signals at this scale can be used to distinguish between the orientation 
content of component textures, but not to determine the global shapes  
of the visual stimuli.
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de Figure 2 Predicted effects of elongated receptive fields on the spatial 
distribution of V1 population responses. (a) Receptive fields (overlaid 
contours) well-tuned to a stimulus (grayscale image) and displaced by 
equal distances in collinear and orthogonal directions. The stimulus 
overlaps more with collinearly than orthogonally displaced receptive fields, 
eliciting cortical population responses elongated along the direction of 
the Gabor orientation. (b) Population responses predicted for the 2-cpd 
Gabors depicted in a using a retinotopic V1 model, shown in visual field 
coordinates. The dashed white ellipses indicate the 3  contour of a 
Gaussian fitted to the population response. For a simulated population 
of neurons with receptive field parameters based on physiological 
measurements, the population response is elongated along the direction 
of carrier orientation. (c) Effect of carrier spatial frequency on cortical 
response elongation. Because receptive field size is inversely correlated 
with peak spatial frequency43, increasing spatial frequency leads to 
activation of neurons with smaller receptive fields, reducing the effect of 
receptive field elongation on the cortical response. (d) Response aspect 
ratios predicted by the V1 model for 2-cpd (left) and 4-cpd (right) Gabor 
stimuli with vertical (V) and horizontal (H) carriers. (e) Predicted response 
distortion as a function of carrier spatial frequency for a Gabor with a fixed 
envelope size (  = 0.167°). The abscissa at the top of the panel indicates 
the spatial frequency (SF) bandwidths of the Gabor stimuli, and the 
dashed lines represent stimuli used in the physiological experiments.
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the spatial frequency (SF) bandwidths of the Gabor stimuli, and the 
dashed lines represent stimuli used in the physiological experiments.



Computing with V1

Michel et al 2013

NATURE NEUROSCIENCE VOLUME 16 | NUMBER 10 | OCTOBER 2013 1481

A R T I C L E S

subjects had two advantages: it allowed us to avoid methodological 
confounds that can arise when training monkeys to make subjective 
judgments in visual illusions and it allowed us to minimize possible 
learning effects by omitting performance feedback. Observers briefly 
viewed a display containing two stimulus patches on opposite sides of 
the screen. One of the patches, the standard, was a composite Gabor 
stimulus (a plaid) composed of both horizontally and vertically ori-
ented gratings. This plaid patch acted as a neutral stimulus. The other 
patch, the comparison, was a simple Gabor containing either a verti-
cal or a horizontal grating. In each trial, the vertical-to-horizontal 
aspect ratio of the Gaussian contrast envelope defining each of the 
two patches was chosen randomly and observers were asked to judge 
which of the patches appeared more circular (Online Methods).

Thus, each trial requires the observer to compare the aspect ratios 
of a (neutral) plaid stimulus and an oriented Gabor stimulus. If, as 
hypothesized, the oriented Gabors are perceived as being more elon-
gated along their carrier orientation than the neutral plaids, then, for 
a Gabor’s aspect ratio to appear equal to that of a plaid stimulus, the 
Gabor has to be stretched in the direction orthogonal to its carrier 
orientation. For example, to match the perceived shape of a plaid with 
a vertical-to-horizontal aspect ratio of 1, a vertical Gabor would need 
to have an aspect ratio smaller than 1, whereas a horizontal Gabor 
would need to have an aspect ratio larger than 1.

The results of our psychophysical experiments confirmed these 
predictions and suggest a previously unknown shape illusion. 
Psychometric functions (Fig. 6b) were estimated for each of five 
different standard aspect ratios (ARs = {0.67, 0.82, 1.0, 1.22, 1.5}).  
As predicted, across all values of the standard, human observers per-
ceived the horizontal Gabor to be horizontally stretched (ARH = 0.81, 
one-sample t9 = 68.76, P = 1.47 × 10−13) and the vertical Gabor to be 
vertically stretched (ARV = 1.33, one-sample t9 = 81.18, P = 3.31 × 10−14)  

relative to the plaid stimulus. These perceived shape distortions 
are consistent with, but somewhat smaller than, predictions based 
on the physiological data (Fig. 5c). This difference was not unex-
pected. Although we expected qualitative agreement between the 
monkey physiology and the human psychophysics, multiple factors 
make it difficult to make precise quantitative predictions about per-
ceptual judgments on the basis of our physiological measurements  
(Online Methods).

As in the physiological portion of the study, we expected the per-
ceptual distortion to decrease for stimuli that poorly matched V1 
receptive fields. To test this prediction, we ran additional psychophys-
ical conditions using Gabor stimuli with identical Gaussian envelope 
sizes, but double the spatial frequency. As predicted, the perceived 
difference in the aspect ratios of vertical and horizontal Gabors  
was significantly smaller for the higher spatial frequency Gabors  
(ARV – ARH = 0.12) than for the lower spatial frequency Gabors  
(ARV – ARH = 0.49; paired t9 = 29.42, P = 2.96 × 10−10; Fig. 6b–d). 
Overall, our psychophysical results indicate that, for small stimuli 
with oriented texture, human observers exhibit shape judgment 
biases consistent with those predicted by the topographical distor-
tions observed in V1 population responses.

DISCUSSION
Visual stimuli elicit widespread activation in V1 as a result of their 
overlap with the receptive fields of many V1 neurons9,27–29. Generally, 
the retinotopic extent of this activation is dominated by the spatial 
extent of the stimulus and should therefore serve as a reliable sig-
nal for size and shape judgments. However, we found that, for small 
visual stimuli dominated by a single texture orientation, this acti-
vation extended farther in the direction collinear with the texture 
orientation than in the orthogonal direction, leading to a distorted 

Figure 6 Psychophysical results averaged  
across ten subjects. (a) Schematic of the  
visual stimulus. Human observers briefly  
(200 ms) viewed a display consisting of a  
plaid standard and an oriented comparison 
stimulus whose vertical-to-horizontal aspect 
ratios were selected randomly, and were asked 
to decide which stimulus had a more circular 
envelope. (b) Psychophysically determined 
perceptual aspect ratios and 95% confidence 
intervals for 2-cpd and 4-cpd Gabor stimuli 
(n = 10 human subjects). (c) Psychometric 
functions obtained for horizontal and vertical 
2-cpd and 4-cpd comparison Gabors. The 
abscissae represent the relative aspect ratio of 
the comparison stimuli (ARcomparison/ARstandard) 
and the ordinates represent the probability  
of selecting the standard as more circular.  
Each of the solid curves represents the 
psychometric function for a particular standard 
aspect ratio. The colored markers represent  
the corresponding observed response 
probabilities and 95% confidence intervals 
averaged across each of ten aspect ratio bins. 
In each plot, the horizontal gray line represents 
, the estimated guess rate, and the vertical 

gray line and shaded region represent the 
estimated point of subjective equality (PSE), 
which corresponds to the reciprocal of the 
perceived aspect ratio, and its 95% confidence 
interval, respectively. The comparison stimulus 
is indicated by the inset images. (d) The Gabor comparison stimuli at an aspect ratio of 1.0. The dashed red ellipses illustrate the perceived shapes of 
these stimuli as estimated by the PSEs. Error bars represent 95% confidence intervals.
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A key prediction of our model was that the orientation-dependent 
distortions should diminish as the stimulus’ spatial frequency or spa-
tial frequency bandwidth deviate from the optimal values (Fig. 2c,e).  
To test this prediction, we ran additional conditions with suboptimal 
Gabor stimuli with identical envelopes, but double the spatial fre-
quency. For all stimuli, the VSDI response was still elongated in the 
direction corresponding to the Gabor’s carrier orientation (Fig. 3g). 
However, as predicted, the difference between the aspect ratios of the 
responses to horizontal and vertical Gabors was significantly smaller 
for the higher spatial frequency stimuli (( )/AR AR ARV H  = 0.09) 
than for the lower spatial frequency stimuli (( )/AR AR ARV H  = 0.15;  
paired t4 = 5.34, P = 0.006).

To further test the predictions of our model, we created several 
additional stimulus conditions by doubling or halving the size  
of the Gaussian contrast envelope while keeping the carrier spatial 
frequencies at 2 and 4 cpd. The model predicted that, for Gabor 
stimuli with envelope sizes ( ) of 1/3° and 1/6°, increasing the car-
rier spatial frequency from 2 to 4 cpd would attenuate the elonga-
tion effect, whereas, for Gabor stimuli with an envelope size of 1/12°, 
increasing the carrier spatial frequency would enhance the elonga-
tion effect. Across these stimulus conditions, the patterns of elicited 
VSDI response aspect ratios were qualitatively consistent with the 
predictions of our V1 population response model (Fig. 4c). Overall, 
our physiological results confirm the hypothesis that, as a result of 
receptive field elongation, the retinotopic-scale topography of V1 
population responses can be distorted systematically by the orienta-
tion of local visual features.

Perceptual consequences: a shape illusion
Our primary goal was to test the hypothesis that the retinotopic 
extent of V1 activation influences shape perception. If this hypoth-
esis is correct, then the circuits that estimate shape on the basis of the 
V1 activation pattern must take into account the mapping between 
the retinotopic extent of V1 activation and the shape of the visual  
stimulus. Thus, our next step was to characterize this mapping.  
To do this, we first focused on stimuli that do not produce the  
orientation-dependent distortion.

The cortical spread of the response elicited by a visual stimulus 
depends on both its direct retinotopic mapping (Fig. 3a,b), which 
can be described in terms of the local cortical magnification factor 
(CMF)27, and on the cortical point image (CPI), which describes the 
shape and size of the cortical surface in V1 that processes information 
from a single point in visual space28,29. To determine the expected 
cortical spread as a function of visual spatial extent, we used our 
model, together with our VSDI-based estimates of the CMF and CPI, 
to predict the cortical response spread to Gaussian stimuli with aspect 
ratios ranging from 0.5 to 2.0 (Fig. 5a). The Gaussian stimuli had 
an average space constant equal to that of our Gabor stimuli (1/6°). 
As a result of the large size of the CPI relative to the direct retin-
otopic projection of the stimuli, the aspect ratios of the predicted 
cortical responses were considerably smaller than the aspect ratios 
of the visual stimuli (Fig. 5a). In other words, for these small stimuli, 
large deviations from spatial isotropy in the visual field are associated 
with considerably smaller deviations from retinotopic isotropy in the 
cortical response. This systematic cortical aspect ratio compression is 
further illustrated in Figure 5b, which shows the relationship between 
the retinotopic aspect ratio of the cortical response and the aspect 
ratio of the Gaussian visual stimulus.

To accurately estimate the stimulus’ aspect ratio form the cortical 
response aspect ratio, shape decoding mechanisms must take this 
relationship into account. Consider decoding the cortical responses 
to circular Gabor patches with horizontal and vertical carriers  
(Fig. 3c–g). If the decoding mechanisms are exploiting the relation-
ship between spatial and retinotopic aspect ratios (Fig. 5b), then 
the estimated visual aspect ratios (Fig. 5c) should be much larger 
than the retinotopic aspect ratios that we observed physiologically. 
Specifically, a circular Gabor with a vertical carrier should have a 
perceived aspect ratio of 1.6, whereas a circular Gabor with horizontal 
carrier should have a perceived aspect ratio of 0.57. We hypothesized 
that such Gabor stimuli might produce a visual illusion, with small 
circular Gabors appearing stretched in the direction corresponding 
to the orientation of their carrier gratings.

We tested this hypothesis in human observers by designing a suit-
able psychophysical task (Fig. 6a). Testing this hypothesis in human 

Figure 5 Modeling the relationship between 
the spatial extent of a visual stimulus and 
the retinotopic extent of its elicited cortical 
response. (a) A schematic representation of the 
cortical responses to vertical (top), isotropic 
(middle) and horizontal (bottom) Gaussian stimuli.  
The first column shows the visual stimulus,  
the second column illustrates the mapping 
resulting from the fixed retinotopic projection  
to V1 (Fig. 3b), which can be expressed in 
terms of the local CMF, and the third column 
illustrates the added effect of the CPI, whose 
size is indicated by the thin red ellipse in the 
central row. The dashed blue ellipses represent 
the 2  Gaussian envelope contours of the 
predicted VSDI responses. Retinotopic aspect 
ratios (ARs) are indicated at the top of each 
image. (b) Predicted aspect ratio of a Gaussian 
stimulus as a function of the retinotopic  
aspect ratio of its elicited response. As a  
result of the large size of the CPI relative  
to the retinotopic extent of the visual stimuli,  
the aspect ratio of the elicited cortical response  
is retinotopically compressed, with an envelope that tends to be more isotropic than that of the eliciting stimulus. (c) Perceptual orientation–dependent 
elongation predicted by the V1 model for the 2-cpd vertical (top) and horizontal (bottom) circular Gabor stimuli if observers compensate for the effects 
of the aspect ratio compression shown in b. The dashed blue ellipses represent the predicted 2  Gaussian envelope contour of the perceived stimulus. 
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Computing with V1
Gist descriptor

the organization of low and high spatial frequencies
in the image.

Building a scene representation from global image
features

High-level properties of a scene such as the degree
of perspective or the mean depth of the space that
the scene subtends have been found to be corre-
lated with the configuration of low-level image
features (Torralba and Oliva, 2002, 2003). Evi-
dence from the psychophysics literature suggest
that our visual system analyzes global statistical
summary of the image in a preselective stage of
visual processing, or at least with minimal attent-
ional resources (mean orientation, Parkes et al.,
2001; mean of set of objects, Ariely, 2001; Chong
and Treisman, 2003). By pooling together the ac-
tivity of local low-level feature detectors across
large regions of the visual field, we can build a
holistic and low-dimensional representation of the
structure of a scene that does not require explicit
segmentation of image regions and objects (as in
Oliva and Torralba, 2001) and therefore require
very low computational (or attentional) resources.
This suggests that a reliable scene representation
can be built, in a feed-forward manner, from the
same low-level features used for local neural rep-
resentations of an image (receptive fields of early
visual areas, Hubel and Wiesel, 1968).

For instance, in a forest-scene picture, the shape
of a leaf can be estimated by a set of local recep-
tive fields (encoding oriented edges). The shape of
the whole forest picture can be summarized by the
configuration of many small-oriented contours,
distributed everywhere in the image. In the case of
the forest scene, a global features encoding ‘‘fine-
grained texture everywhere in the image’’ will pro-
vide a good summary of the texture qualities found
in the image. In the case of a street scene, we will
need a variety of global features encoding the per-
spective, the level of clutter, etc. Fig. 3 illustrates a
global receptive field that would respond maxi-
mally to scenes with vertical structures at the top
part and horizontal components at the bottom
part (as in the case of a street scene).

Given the variability of layout and feature dis-
tribution in the visual world, and given the vari-
ability of viewpoints that an observer can have on
any given scene, most real-world scene structures
will need to be estimated not only by one, but by a
collection of global features. The number of global
features that can be computed is quite high. The
most effective global features will be those that
reflect the global structures of the visual world.
Several methods of image analysis can be used to
learn a suitable basis of global features (Vailaya
et al., 1998; Oliva and Torralba, 2001; Vogel and
Schiele, 2004; Fei-Fei and Perona, 2005) that cap-
ture the statistical regularities of natural-scene
images. In the modeling presented here, we only
consider global features of receptive fields meas-
uring orientations and spatial frequencies of image
components that have a spatial resolution between
1 and 8 cycles/image (see Fig. 5). We employed a
basis derived by principal component analysis to

Fig. 3. Illustration of a local receptive field and a global recep-
tive field (RF). A local RF is tuned to a specific orientation and
spatial scale, at a particular position in the image. A global RF is
tuned to a spatial pattern of orientations and scales across the
entire image. A global RF can be generated as a combination of
local RFs and can, in theory, be implemented from a population
of local RFs like the ones found in the early visual areas. Larger
RFs, which can be selective to global scene properties, could be
found in higher cortical areas (V4 or IT). The global feature
illustrated in this figure is tuned to images with vertical structures
at the top part and horizontal component at the bottom part,
and will reply strongly to the scene street image.

28

source: Torralba & Oliva 2006 2007

image representations were developed within the
framework of scene recognition (e.g. classifying an image
as being a beach scene, street or living room [48]). Themain
characteristic of global image representations is that the
scene is represented as awhole, rather than splitting it into
its constituent objects. Suchmodels correspond to the state
of the art in scene recognition and context-based object
recognition.

Box 2 summarizes the general framework used to com-
pute global scene representations. These representations
are derived from computing statistics of low-level features
(similar to representations available in early visual areas,
such as oriented edges and vector-quantized image
patches) over fixed image regions. Despite the low dimen-
sionality of the representation, global features preserve
most of the relevant information needed for categorizing
scenes into superordinate categories (e.g. nature, urban or
indoor), which can be used to provide strong contextual
priors. Because object information is not explicitly
represented in the global features, they provide a comp-
lementary source of information for scene understanding,
which can be used to improve object recognition. For
instance, global features have been used to classify images
into those that contain a particular object and those that do
not [18,21,51], and this decision is taken without localizing

the object within the image. These representations are
reminiscent of visual-cognition work on summary stat-
istics, the perception of sets and contextual cueing.

Although they might not be the only mechanisms for
scene recognition, global representations have been sur-
prisingly effective at the scene-recognition task [50,52–56].
In tasks that require finer scene-category discrimination
(living room versus dining room rather than city versus
beach), recognition of specific objects will undoubtedly
have a major role. Nevertheless, robust global scene
representations will have a major impact in future
object-detection systems.

Contextual effects on eye movements
When exploring a scene for an object, an ideal observer will
fixate the image locations that have the highest posterior
probability of containing the target object according to the
available image information [57]. Attention can be driven
by global scene properties (e.g. when exploring a street
scene for a parking meter, attention is directed to regions
near the ground plane) and salient objects contextually
related to the target (e.g. when looking for a computer
mouse, the region near a computer screen is explored first).

Most scenes can be recognized by just a glance, even
before any eye movements can be initiated and without

Box 2. Computing global features

There are two major families of global context representations: first,
texture-based methods [50,52,69] or ‘bag-of-words’ models (a term
borrowed from the literature on text analysis). A set of features are
detected in the image and, once a decision has been taken about the
presence or absence of a feature, the location from which it comes is
not encoded in the representation. The scene descriptor is given by a
vector in which each element encodes the number of times that each
kind of feature appears in the image. Randomizing the spatial location
of the features in the image would create an image with the same
scene descriptor (Figure Ic). Despite their simplistic assumptions,
these methods perform surprisingly well and can provide an initial
guess of the scene identity. The second class of models encodes
spatial layout [50,53]: the image is first divided into regions, and then
each region is treated as a bag of words. The scene descriptor is a
vector in which each element contains the number of times each type
of feature appeared in each region. The final representation preserves
some coarse spatial information. Randomizing the location of the
edges within each region will produce a scene with the same
descriptor (Figure Id). However, moving features from one region to
another will result in a different representation. This representation
provides a significant increase in performance over bag-of-words
models.

In the scene representation proposed in Ref. [50], the image is first
decomposed by a bank of multiscale-oriented filters (tuned to six
orientations and four scales). Then, the output magnitude of each
filter is averaged over 16 nonoverlapping windows arranged on a
4 ! 4 grid. The resulting image representation is a 4 ! 8 ! 16 = 512
dimensional vector. The final feature vector, used to represent the
entire image, is obtained by projecting the binned filter outputs onto
the first 80 principal components computed on a large dataset of
natural images. Other techniques involve computing histograms of
complex features such as textons [69] or vector-quantized SIFT
features (SIFT descriptors encode a local image patch by dividing
the patch into 4 ! 4 regions and computing the histogram of local
image gradients within each region) [52,53,55]. Those features
encode complicated patterns, such as grouping of edges. See Ref.
[70] for a review of image representations used in applications for
image indexing. Building more robust global scene representations
will have a major impact on future object-detection systems.

Figure I. Computing global features. This illustration shows the general scheme
underlying many current global scene representations [50,52,53,55,69]. (a) Input
image. (b) A set of features is detected in the image. In this schematic example,
the features are edges grouped into four different orientations at each location.
(c,d) Summary of two scene representations. (c) A bag-of-words model in which
location information is not explicitly stored (randomizing the spatial locations of
the features results in the same representation). (d) Spatially organized textures;
the image is partitioned into several regions. Each region is encoded as if it was a
stationary texture, in which location is irrelevant. The final vector descriptor
contains the number of times each feature is present at each region; therefore,
spatial information is preserved at a coarse resolution.
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Theories of object recognition

recognition per se we recognize by linking to memory to
interpret the input,whereas inanalogy the input is linked to
memory not only for the sake of interpretation, but also for
the purpose of projecting attributes and generating predic-
tions. Therefore, by using the term analogy, the emphasis is
placed on the associations-based predictions that analogies
elicit beyondmererecognition,and it is thisextra step that is
the focus of the proposed framework.

Nevertheless, analogicalmappingstill serves to interpret
the input: inferring what physical input caused a certain
percept, an issue that has received a lot of attention [10–12].
Therefore, the analogy itself also provides an important top-
down prediction regarding the identity of the input using
initial bottom-up information [13,14] (Box 2). However, the
focus here is on the considerably less explored type of pre-
dictions: forecasting that pertains to what is about to hap-
pen,what is likely toappear in the samecontext, andwhat is
the most beneficial action that needs to be taken given the
specific input. In other words, the analogy in Figure 2 med-
iates interpretation, by linking input to memory, whereas
forecasting predictions stem from the subsequent activation
of information associated with that analogy (e.g. Figure 3).

This principle is not limited to the realm of visual
recognition, but rather encompasses a wide variety of
domains where input can be linked to memory to generate
predictions. For example, imagine meeting a new person.
Our first impressions are rapid [15,16] and are based on
rapidly extracted coarse information [15]. According to the
present proposal, this process is mediated by linking the
features of the new person to the most similar representa-
tion in memory; someone we know and that looks to some
extent like this new person. We automatically project
information such as personality attributes to the new
person based simply on this analogy. Although this ana-
logy is an approximated set of traits, it might be beneficial,
at least under some circumstances, to not start inter-
actions without any assumptions on that new person.

Analogies can be based on similarity on various levels,
including perceptual similarity (e.g. in shape or smell),
abstract conceptual dimensions, and goals [12]. Analogy-
based mappings of properties manifest themselves in
processes ranging from perception and memory [17] to
stereotypic judgments and prejudice [18].

It is important to note that the input is rarely mapped
with a single analogy directly to memory. Instead, the
function of analogies can be based on the integration of
multiple analogies that accumulate to complex mapping.
For example, if you are trying to understand a conversation
that is taking place on a screen when watching a new
movie, you will have to map novel sounds to similar and
familiar sounds in memory (which will then be connected
with their associated linguistic meaning), to map the novel
face appearances to similar and familiar face expressions
(which will then be connected with the intentions associ-
ated with them), the context in which the conversation is
taking place will be mapped to other similar contexts in
memory and, when combined, these analogies can help
map the complete, new situation to a collection of frag-
ments in memory that together can allow you to under-
stand the scene, and to forecast what is likely to be next.

While our existing memories are used to derive analo-
gies and activate predictions, they are constantly being
updated. The analogical process, in addition to affording
the interpretation of our environment, subsequently aug-
ments previous representations in a way that fosters
increasingly flexible future analogies.

Box 2. Top-down facilitation based on rudimentary

information

In the framework outlined here, the activation of a memory
representation based on a sensory or internally generated input is
a process of analogical mapping. A central question is how gist
information, how ever defined, can be sufficient for mapping the
input onto an analogous memory. One model (Figure I), from object
recognition, postulates that rudimentary information in the image
(i.e. low spatial frequencies), which is extracted rapidly, is suffi-
ciently powerful to activate expectations about what the observed
object might be [14,75]. A similar mechanism is proposed to be
operating on multiple levels, although the representation of gist
information on higher levels of analysis is yet to be defined (see
Concluding remarks section). Note that the gist-based initial guess
could elicit more than a single alternative. This ambiguity is
resolved gradually as high-spatial frequencies arrive with the
bottom-up streams. But it can also be resolved more quickly by
incorporating other rapidly extracted sources of information, such
as context [2], which would fine-tune this analogical mapping to
have fewer alternatives and, thus, less ambiguity.

Figure I. A top-down facilitation model. A partially processed, low spatial
frequency (LSF) image of the visual input is rapidly projected to OFC from the
early visual cortex and/or from subcortical structures such as the amygdala,
while detailed, slower analysis of the visual input is being performed along the
ventral visual stream. This ‘gist’ image activates predictions about candidate
objects that are similar to the image in their LSF appearance, which are fed
back to the ventral object recognition regions to facilitate bottom-up
processing. Reproduced with permission from Ref. [14].

Box 3. Questions for future research

! What are the computational operations and the underlying
cortical mechanisms mediating the transformation of a past
memory into a future thought?

! How does the brain handle completely novel situations where no
reliable predictions can be generated?

! To what extent are we aware of our predictions and their origin? In
some cases, such as in stereotypical thinking, being aware of
these predictions can eliminate unwanted influences.

! What does it mean for predictions to provide a perception of
stable environment? In most typical situations, we know what to
expect and what not to expect. How is finding something
alarmingly incongruent with our expectations (e.g. an elephant
in the living-room) different from finding something unexpected
yet insignificant (e.g. a shoe in the living-room)?

! How do we become aware of a mismatch between predictions
and perception? And how do we incorporate lessons from
prediction errors into future behavior?
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Data compression

Based on principles of human vision that we just discussed, how would you 
use image pyramids/spatial frequency channels for data compression 
applications?
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MPEG basics

MPEG Basics

A compression encoder works by identifying the useful part of a signal which is called the entropy and
sending this to the decoder. The remainder of the signal is called the redundancy because it can be
worked out at the decoder from what is sent. Video compression relies on two basic assumptions. The
first is that human sensitivity to noise in the picture is highly dependent on the frequency of the noise.
The second is that even in moving pictures there is a great deal of commonality between one picture
and the next. Data can be conserved both by raising the noise level where it is less visible and by sending
only the difference between one picture and the next.

In a typical picture, large objects result in low spatial frequencies whereas small objects result in high spatial
frequencies. Human vision detects noise at low spatial frequencies much more readily than at high frequencies.
The phenomenon of large-area flicker is an example of this. Spatial frequency analysis also reveals that in
many areas of the picture, only a few frequencies dominate and the remainder are largely absent.

For example if the picture contains a large, plain object, high frequencies will only be present at the edges.
In the body of a plain object, high spatial frequencies are absent and need not be transmitted at all.

In MPEG, two-dimensional spatial frequency analysis is performed using the Discrete Cosine Transform
(DCT). An array of pixels, typically 8 x 8, is converted into an array of coefficients. The magnitude of
each coefficient represents the amount of a particular spatial frequency which is present. Fig.1 shows
that in the resulting coefficient block, the coefficient in the top left corner represents the DC component
or average brightness of the pixel block. Moving to the right the coefficients represent increasing horizontal
spatial frequency. Moving down, the coefficients represent increasing vertical spatial frequency. The
coefficient in the bottom right hand corner represents the highest diagonal frequency.

In real program material, many of these coefficients will have negligible or zero value yielding enough
compression for some purposes. Further compression is obtained by shortening or truncating the
wordlength of the remaining coefficients, reducing their resolution and raising noise. If this noise is to
be produced in a way which minimizes its visibility, it must vary with spatial frequency. Prior to truncation,
the coefficients are weighted, or multiplied by scale factors which are a function of their spatial frequency.
At the decoder an equal but opposite weighting process is needed. This multiplies higher spatial frequency
coefficients by larger factors, raising the high frequency noise which is less visible without raising low
frequency noise.

After weighting, the large value coefficients are mostly found in the top left corner; the remainder of the
coefficients are often negligible or zero. It is an advantage to transmit the coefficients in a zig-zag
sequence starting from the top left corner. When this is done, the non-zero coefficients are typically
transmitted first.

Figure 1

Horizontal distance

Vertical distance

8x8 pixel block

Horizontal frequency

Vertical frequency

8x8 coefficient block

DCT

IDCT

MPEG basics

source: http://www.media-matters.net/docs/resources/Digital%20Files/MPEG/MPEG%20Encoding%20Basics.pdf



Computational Vision

• Orientation selectivity

• Spatial frequency

• Color opponency

• Normalization

Primary visual cortex





Luminance vs. color 
selectivity in simple cells



Zhang Barhomi & Serre ’12

Color processing

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

ECCV
#1052

ECCV
#1052

ECCV-12 submission ID 1052 5

DO SO

ĉ Ċ

Half-squaring

Divisive
 normalization

¦
RZ

GZ

BZ

Half-wave

C
ol

or
 c

ha
nn

el
s

/

Spatio-chromatic opponent operator
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Fig. 2. Spatio-chromatic opponent descriptor: Individual R, G, B color channels are
first convolved with either the center or surround components from an filter at ori-
entation ✓, phase ', and scale s. The corresponding color channels are combined
(see text for detail) and further rectified by half-squaring and divisive normalization
(I). This yields 8 chromatic SO channels organized in 4 pairs (e.g., R+-G� and R�-
G+, here we show R+-G� for example). At stage II, an oriented filter (with both
excitatory and inhibitory subunits) is further applied on the output of the SO channels
followed by half-wave rectification and summation over squared pairs c and multi-
ple phases ' (if any) to yield 4 spatio-chromatic DO channels that are invariant to
figure-ground reversal (e.g., R-G).
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2, 0) where the “+”

indicates excitatory red component to the center, and “-” indicates inhibitory
green component to the surround.

Consistent with biology [13], this can be thought of as a 3D convolution be-
tween a color image and a non-separable (spatio-chromatic opponent) operator.
The corresponding RFs exhibit some selectivities for opponent color channels
and are typically weakly oriented due to the isolation of positive and neg-
ative subunits.

Non-linear (half-squaring) rectification and divisive normalization: At the stage
II, the response of the spatio-chromatic opponent operator is first half-squaring
rectified [24] to prevent negative firing rates. Here we suggest an extension of
the divisive normalization circuit originally used to model the contrast response
of cells in the primary visual cortex [25] to color processing. This step can be
described by the following equation:

v(x, y, c) =

s
k ⇥ u(x, y, c)

�

2 +
P

u(x, y, c)
, (2)

where u(x, y, c) here corresponds to the half-squaring response of model
units at location (x, y) and channel c. k and � are the constant scale factor

Parameters fitted to 
psychophysics data on color 

perception

R/G R/C Y/B Lum
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0

1

R G� �� G R� �� R C� �� C R� �� Y B� �� B Y� �� Wh Bl

R G� G R� Y B� Wh Bl�

SO

DO

Fig. 3. Schematic description of spatio-chromatic opponent representation. The orange
panel shows the response obtained from the 8 chromatic SO channels for the image
shown on the top. The green panel shows how DO units are obtained by combination
of the SO units (best viewed in colors). Note that on the image the light intensity is
highest for the magenta region, which leads to highest model SO responses at that
location.

the processing of surfaces unlike the DO stage that captures shape/boundary
information.

3 System extensions

sift descriptor: We follow the sift and the standard bag-of-words im-
plementation used in [14] without a spatial pyramid. The descriptors
are computed over a 16⇥ 16 pixel image patch over a dense grid with
a spacing of 8 pixels. This type of dense sampling is known to work
better than a sparse sampling for object and scene recognition [28, 14].
K-means is used to cluster the descriptors to form visual words. Code-
book (hard assign) sizes are determined by cross-validation (leading to
600-2000 centers depending on the specific system and/or dataset).
For comparison, in addition to a grayscale sift descriptor we also implement
two other color descriptors proposed by [10], where weighted hue and opponent
angle histograms were generated to represent the image. We also consider the
Opponentsift descriptor that was shown to be the best color descriptor without
prior knowledge about the type of light source variation, and Csift descriptor
that was the best choice for Pascal voc 2007 [6]. Here we compute two new
descriptors based on the proposed color processing pipeline: The SO and DO
representations are incorporated into the sift computation. That is,
the color tuned SOsift and shape tuned DOsift use Gaussian deriva-
tives as done in the standard sift (see Fig. 4A), and then construct
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Table 2. Recognition performance on soccer team and 17-category flower dataset.
The data in each feature type are percentage of classification accuracy (Data inside
the parentheses are the initial performance reported by [10, 31] using the same features
in a bag-of-words scheme.)

Soccer team Flower
Method Color Shape Both Color Shape Both
Hue/sift 69 (67) 43 (43) 73 (73) 58 (40) 65 (65) 77 (79)
Opp/sift 69 (65) 43 (43) 74 (72) 57 (39) 65 (65) 74 (79)
SOsift/DOsift 82 66 83 68 69 79
SOHmax/DOHmax 87 76 89 77 73 83

approaches that do not rely on any prior knowledge about object categories. It
was shown, however, that the performance of various color descriptors could be
further improved on this dataset (up to 96% performance) when used in con-
junction with semantic color features (i.e., Color Names) and bottom-up
and top-down attentional mechanisms [32]. Whether such an approach would
similarly boost the performance of the SO and DO descriptors should be further
studied.

The results obtained on the flower dataset are qualitatively very similar (see
Table 2). One small di↵erence is that most shape-based descriptors tend to
perform on par or better than their color counterparts. Note, the superiority
of the SO channels is over the DO channels on soccer team dataset,
which is a color predominant dataset. As illustrated in Fig. 3, hue is
the main cue extracted by the SO channels. However, as reported in
the paper (also see Table 2), we found the DO channels to perform
better as well as the following experiments on other datasets. This
can be explained by the relatively large intra-class (hue) variations
for these datasets and the fact that the DO channels contribute to
better edge information (as opposed to chrominance information per
se). On flower dataset, it has been suggested that the performance of various
descriptors could be further improved with top-down attentional mechanisms
with state-of-the-art performance reaching 73% [33] for sift descriptors alone
and 95% when combined with Color Names, hue descriptors and sift
descriptors in the bottom-up and top-down attention framework [32].
Similarly, pre-segmentation and multiple kernel learning methods were shown to
further improve performance [34–36].

Pascal voc 2007 challenge: Here we compare the SODOsift descriptor (com-
bination of SOsift and DOsift) on the Pascal voc 2007 dataset with other
color-based sift descriptors as evaluated in [37, 6]. Table 3 shows a compari-
son between the proposed descriptor (i.e. SO/DOsift with 800 and 1000
words) and other descriptors (i.e. grayscale/Hue/Opponent/Csift with
2000, 1000, 1000, and 800 words) using the same bag-of-words implemen-
tation as well as published results with the same descriptors (in parenthesis).
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Table 3. Recognition performance on Pascal voc 2007 dataset. Performance corre-
sponds to the mean average precision (AP) over all 20 classes. Performance (in paren-
thesis) corresponds to the best performance reported in [37, 6]

Method sift Huesift Opponentsift Csift SODOsift SODOHmax

AP 40 (38.4) 41 43 (42.5) 43 (44.0) 46.5 (33.3/39.8) 46.8 (30.1/36.4)

Table 4. Recognition performance on scene categorization

Method gist RGBgist SOgist DOgist SODOgist

Accuracy 83.5 84.1 70.5 85.9 87.1

We also obtain the similar performance when incorporating SO and DO into
Hmax model. The performance of SO- and DO- (sift and Hmax) are
also given on the right of the combination for comparision.

4.2 Scene classification

To test our extension of the gist algorithm to color, we use the 8 category
scene dataset [18]. Table 4 shows a comparison between the proposed SOgist
and DOgist descriptors and their combination SODOgist. We report the av-
erage performance over 10 random splits of the data. Unlike the RGBgist and
DOgist that extracts shape information defined by color cues, the SOgist en-
codes mostly surface properties. The somewhat lower performance of the SOgist
on the scene dataset compared to RGBgist and DOgist suggests that color cues
may not be diagnostic for the task and that most of the improvement for the
RGBgist and DOgist is due to better edge and boundary information.

4.3 Contour detection

The BSDS500 dataset [19] is an image dataset with human annotations for the
evaluation of contour detection and segmentation algorithms. This is a newly
extended segmentation dataset and benchmark from the BSDS300 [38]. Fol-
lowing the BSDS500 guidelines, precision-recall curves are generated. The best
F-measure and the average precision are reported as an overall performance
measure for contour detection. We build on earlier work focusing on tex-
ture gradient because of the formation of Gaussian derivatives and
center-surround filter [29, 19].

Here we show that simply extending the texton-based (grayscale) texture
representation in the approach by [19] leads to a very significant gain in perfor-
mance (compare TG and its extension SOTG in Fig. 5B). The performance of
the extended texture channel alone is already higher than the performance of

• SO/DO approach improves on 
all recognition and 
segmentation datasets tested 
as compared to existing color 
representations

• Color datasets 

• Pascal challenge
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C. Gaussian derivatives used in segmentationB. Gabor filters used in HMAXA. Gradient used in SIFT

Fig. 4. Filters and their components used in the spatio-chromatic opponent operator.
(A) Gradient in the y directions used in sift computation [14]. (B) Gabor filters used
in Hmax [15]. (C) Gaussian derivatives used in segmentation [19]. From left to right
are: the original filter and the individual center and surround components used to
process the input color channels. Note that additional filters (not shown) at multiple
orientations, scales and phases are also used in Hmax and segmentation.

On these two datasets, unlike the Pascal voc dataset, color cues are
highly diagnostic of object category. Individual color descriptors perform better
than their grayscale counterparts on both datasets, and SO- and DO- (sift
and Hmax) descriptors significantly boost the performance compar-
ing to other color descriptors (compare the performance under Color vs.
Shape in Table 2). The hue and opponent angle color descriptors (Huesift and
Oppsift in Table 2) have shown to be the best descriptors for use in combina-
tion within a bag-of-words scheme [31]. For a fair comparison, we use the same
dense sift sampling strategy across all descriptors. The dictionary sizes of
grayscale/Hue/Opp/SO/DOsift are 1000, 800, 800, 600, and 800, re-
spectively on soccer team dataset, and 800, 800, 800, 600, and 800 on
flower dataset. We also report (in parenthesis) the performance reported in
[10, 31] for the Huesift and Oppsift descriptors based on a sparse sift sampling
strategy (using the Harris-Laplace detector). The performance of the dense and
sparse strategies are comparable on soccer team dataset. The dense approach
exhibits better performance when shape and color descriptors are evaluated in-
dividually whereas the sparse strategy seems to perform slightly better when the
two types of descriptors are combined on flower dataset (Both in Table 23).

We report on the performance of a bag-of-words scheme that uses a com-
bination of the sift descriptors with our SO (Color) and DO (Shape) repre-
sentations. Both descriptors outperform baseline systems both in isolation and
combination. Interestingly, we found that the Hmax model performs better than
the sift-based bag-of-words approaches both when used in conjunction with the
SO and DO descriptors. Additional, the original grayscale Hmax model per-
forms rather poorly on soccer team dataset with 42% accuracy. It should be
noted that for a fair comparison, we only compare the performance of bottom-up

3 Experientially, a late fusion scheme is used here for combining color and
shape cues (i.e. color (SO) and shape (DO) cues are concatenated to
form a compact representation. However we did try an early fusion of
SO- and DO- (sift and Hmax) features and found the performance to
be inferior to those of a late fusion scheme. The reason we guess could
be DO descriptors bind both color and shape cues, so the combination
at local feature level will not introduce more feature information. This
fusion strategy is the main method used here throughout this paper.
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C. Gaussian derivatives used in segmentationB. Gabor filters used in HMAXA. Gradient used in SIFT

Fig. 4. Filters and their components used in the spatio-chromatic opponent operator.
(A) Gradient in the y directions used in sift computation [14]. (B) Gabor filters used
in Hmax [15]. (C) Gaussian derivatives used in segmentation [19]. From left to right
are: the original filter and the individual center and surround components used to
process the input color channels. Note that additional filters (not shown) at multiple
orientations, scales and phases are also used in Hmax and segmentation.

On these two datasets, unlike the Pascal voc dataset, color cues are
highly diagnostic of object category. Individual color descriptors perform better
than their grayscale counterparts on both datasets, and SO- and DO- (sift
and Hmax) descriptors significantly boost the performance compar-
ing to other color descriptors (compare the performance under Color vs.
Shape in Table 2). The hue and opponent angle color descriptors (Huesift and
Oppsift in Table 2) have shown to be the best descriptors for use in combina-
tion within a bag-of-words scheme [31]. For a fair comparison, we use the same
dense sift sampling strategy across all descriptors. The dictionary sizes of
grayscale/Hue/Opp/SO/DOsift are 1000, 800, 800, 600, and 800, re-
spectively on soccer team dataset, and 800, 800, 800, 600, and 800 on
flower dataset. We also report (in parenthesis) the performance reported in
[10, 31] for the Huesift and Oppsift descriptors based on a sparse sift sampling
strategy (using the Harris-Laplace detector). The performance of the dense and
sparse strategies are comparable on soccer team dataset. The dense approach
exhibits better performance when shape and color descriptors are evaluated in-
dividually whereas the sparse strategy seems to perform slightly better when the
two types of descriptors are combined on flower dataset (Both in Table 23).

We report on the performance of a bag-of-words scheme that uses a com-
bination of the sift descriptors with our SO (Color) and DO (Shape) repre-
sentations. Both descriptors outperform baseline systems both in isolation and
combination. Interestingly, we found that the Hmax model performs better than
the sift-based bag-of-words approaches both when used in conjunction with the
SO and DO descriptors. Additional, the original grayscale Hmax model per-
forms rather poorly on soccer team dataset with 42% accuracy. It should be
noted that for a fair comparison, we only compare the performance of bottom-up

3 Experientially, a late fusion scheme is used here for combining color and
shape cues (i.e. color (SO) and shape (DO) cues are concatenated to
form a compact representation. However we did try an early fusion of
SO- and DO- (sift and Hmax) features and found the performance to
be inferior to those of a late fusion scheme. The reason we guess could
be DO descriptors bind both color and shape cues, so the combination
at local feature level will not introduce more feature information. This
fusion strategy is the main method used here throughout this paper.
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C. Gaussian derivatives used in segmentationB. Gabor filters used in HMAXA. Gradient used in SIFT

Fig. 4. Filters and their components used in the spatio-chromatic opponent operator.
(A) Gradient in the y directions used in sift computation [14]. (B) Gabor filters used
in Hmax [15]. (C) Gaussian derivatives used in segmentation [19]. From left to right
are: the original filter and the individual center and surround components used to
process the input color channels. Note that additional filters (not shown) at multiple
orientations, scales and phases are also used in Hmax and segmentation.

On these two datasets, unlike the Pascal voc dataset, color cues are
highly diagnostic of object category. Individual color descriptors perform better
than their grayscale counterparts on both datasets, and SO- and DO- (sift
and Hmax) descriptors significantly boost the performance compar-
ing to other color descriptors (compare the performance under Color vs.
Shape in Table 2). The hue and opponent angle color descriptors (Huesift and
Oppsift in Table 2) have shown to be the best descriptors for use in combina-
tion within a bag-of-words scheme [31]. For a fair comparison, we use the same
dense sift sampling strategy across all descriptors. The dictionary sizes of
grayscale/Hue/Opp/SO/DOsift are 1000, 800, 800, 600, and 800, re-
spectively on soccer team dataset, and 800, 800, 800, 600, and 800 on
flower dataset. We also report (in parenthesis) the performance reported in
[10, 31] for the Huesift and Oppsift descriptors based on a sparse sift sampling
strategy (using the Harris-Laplace detector). The performance of the dense and
sparse strategies are comparable on soccer team dataset. The dense approach
exhibits better performance when shape and color descriptors are evaluated in-
dividually whereas the sparse strategy seems to perform slightly better when the
two types of descriptors are combined on flower dataset (Both in Table 23).

We report on the performance of a bag-of-words scheme that uses a com-
bination of the sift descriptors with our SO (Color) and DO (Shape) repre-
sentations. Both descriptors outperform baseline systems both in isolation and
combination. Interestingly, we found that the Hmax model performs better than
the sift-based bag-of-words approaches both when used in conjunction with the
SO and DO descriptors. Additional, the original grayscale Hmax model per-
forms rather poorly on soccer team dataset with 42% accuracy. It should be
noted that for a fair comparison, we only compare the performance of bottom-up

3 Experientially, a late fusion scheme is used here for combining color and
shape cues (i.e. color (SO) and shape (DO) cues are concatenated to
form a compact representation. However we did try an early fusion of
SO- and DO- (sift and Hmax) features and found the performance to
be inferior to those of a late fusion scheme. The reason we guess could
be DO descriptors bind both color and shape cues, so the combination
at local feature level will not introduce more feature information. This
fusion strategy is the main method used here throughout this paper.
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Gain-control circuits

the model responses to such stimuli, and we found that these
equations provided good fits to the neural responses.

Portions of this work have been presented briefly elsewhere
(Carandini and Heeger, 1994, 1995).

MATERIALS AND METHODS
Experiments were performed on five cynomolgus macaque monkeys
(Macaca fascicularis) and four pigtail macaque monkeys (M. nemestrina)
ranging in weight from 1.5 to 4 kg.

Preparation and maintenance
Animals were initially anesthetized with ketamine HCl (10 mg/kg) and
premedicated with atropine sulfate (0.05 mg/kg) and acepromazine
maleate (0.1 mg/kg). Anesthesia continued on 1.5–2.0% halothane in a
98% O2–2% CO2 mixture while the initial surgery was performed.
Indwelling catheters were introduced into the saphenous veins of each
hindlimb, and a tracheotomy was performed.

The animal was then mounted in a stereotaxic instrument, and halo-
thane anesthesia was replaced by a continuous infusion of sufentanil
citrate (typically 4–6 �gzkg ⇤1zhr ⇤1, beginning with a loading dose of 4
�g/kg). EEG, ECG, and arterial blood pressure were monitored contin-
uously, and any signs of arousal were corrected by modifying the rate of
anesthetic infusion. The monkey was artificially respirated with a mix-
ture of O2 , N2O, and CO2 adjusted so that end-tidal CO2 was maintained
at 3.8–4.0%. Rectal temperature was kept near 37°C with a heating pad.

A small craniotomy was performed, usually 9–10 mm lateral to the
midline and 3–4 mm posterior to the lunate sulcus. This location often
yielded two encounters with the primary visual cortex, with eccentricities
first at �2–5° and then at �8–15°. A small slit in the dura was made, and
a vertical hydraulic microdrive containing a glass-coated tungsten micro-
electrode (Merrill and Ainsworth, 1972) in a guide tube was positioned.
The craniotomy was covered with a chamber containing 4% agar in
sterile saline solution.

On completion of surgery, animals were paralyzed to minimize eye
movements. Paralysis was maintained with an infusion of vecuronium

bromide (Norcuron, 0.1 mgzkg ⇤1zhr ⇤1) in lactated Ringer’s solution with
dextrose (5.4 ml/hr). The pupils were dilated and accommodation par-
alyzed with topical atropine. The corneas were protected with zero
power gas-permeable contact lenses; supplementary lenses were chosen
to focus the eyes on a tangent screen plotting table set up at a distance
of 57 in. To maintain the animal in good physiological condition during
experiments (typically 72–96 hr), intravenous supplementation of 2.5%
dextrose/ lactated Ringer’s was given at 5–15 ml/hr. Animals received
daily injections of a broad-spectrum antibiotic (Bicillin) as well as an
anti-inflammatory agent (dexamethasone) to prevent cerebral edema.

Stimuli
Stimuli were generated by a Truevision ATVista board operating at a
resolution of 582 ⇥ 752 and a frame rate of 106 Hz, the output of which
was directed to a Nanao T560i monitor (mean luminance, 72 cd/m 2,
subtending 10–25° of visual angle). Nonlinearities in the relation be-
tween applied voltage and phosphor luminance were compensated by
appropriate look-up tables. Stimulus strength is measured in units of
contrast, defined as the difference between the highest and lowest inten-
sities, divided by the sum of the two.

Drifting luminance-modulated sinusoidal gratings were presented
alone or superimposed on another grating or on a noise background.
Superposition was obtained by interleaving, i.e., by presenting the two
components in alternate frames. When two gratings were presented
together they had the same temporal frequency and differed in orienta-
tion and/or spatial frequency. Their contrast could be varied indepen-
dently. The noise background was composed of square pixels, the size of
which was chosen for each cell to be approximately one-fourth of the
spatial period of the optimal grating. Occasionally we used one-
dimensional noise (bars rather than squares). The intensity of each
square was randomly refreshed at 13.4 or 26.8 Hz and assumed one of
two possible values.

All the stimuli had the same mean luminance. The grating and plaid
stimuli were vignetted by a square window, the size of which was chosen
to elicit the maximal responses. The noise masks occupied the whole
screen. In their absence the surrounding field was uniform.

Experiments. Experiments consisted of two to nine consecutive blocks
of stimuli. Each block consisted of a random permutation of 5–90 stimuli.
Randomization was adopted to minimize the effects of adaptation and
other nonstationarities. The stimuli had equal duration (generally 5–10
sec) and were separated by uniform field presentations lasting about
4 sec.

Experimental protocol. Receptive fields were initially mapped by hand
on a tangent screen. When the activity of a single neuron was isolated, we
established the dominant eye of the neuron and occluded the other eye.
We then positioned the receptive field on the face of the monitor, and
quantitative experiments proceeded under computer control.

To characterize each cell we performed the following sequence of
measurements using single gratings: (1) orientation and direction tuning;
(2) spatial frequency tuning; (3) temporal frequency tuning; and (4)
stimulus size tuning. Each of these measurements was performed at the
optimal values of the parameters as obtained from the previous measure-
ments. Cells were classified as simple or complex on the basis of the
frequency component of their response to the drifting grating eliciting
the maximum number of spikes, as classified by Skottun et al. (1991). If
the cell was simple we proceeded to the core experiments in this study.
These were of three types:

(1) Grating matrix experiments, consisting of drifting sinusoidal stimuli
having 5–10 different contrasts, two to four different temporal frequen-
cies, and two to four different orientations or spatial frequencies. A
typical experiment would involve three orientations or spatial frequen-
cies, three temporal frequencies, and five contrasts, yielding a total of 45
stimuli.

(2) Plaid experiments, consisting of sums of two gratings with contrasts
that were independently varied. Often the two directions were opposite,
and the “plaid” was a counterphase flickering grating. A typical experi-
ment would involve two orthogonal gratings with contrasts that assumed
five possible values, yielding a total of 25 different stimuli.

(3) Noise-masking experiments, in which the contrast response to
drifting gratings was measured in the presence of noise at different
contrasts. A typical experiment would involve nine grating contrasts and
two noise contrasts (0 and 0.5), yielding a total of 18 different stimuli.

Figure 1. Two models of simple cell function. A, The linear model,
composed of a linear stage (receptive field) and a rectification stage. The
linear stage performs a weighted sum of the light intensities over local
space and recent time. This sum is converted into a positive firing rate by
the rectification stage. Rectification is a nonlinearity, so the “linear
model” is not entirely linear. B, The normalization model extends the
linear model by adding a divisive stage. The linear stage feeds into a
circuit composed of a resistor and a capacitor in parallel (RC circuit). The
conductance of the resistor grows with the pooled output of a large
number of cortical cells. This effectively divides the output of the linear
stage.
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bipolar cells and ganglion cells41, and to become stronger 
in subsequent stages of visual processing.

Under contrast normalization, responses are no 
longer proportional to local contrast Cj (the output of 
the first normalization stage). Instead, the response Rj 
of neuron j is divided by a constant σ plus a measure of 
overall contrast40: 

Σk αk Ck

Σi wi CiRj = γ
σ + 

2

 
(5)

Here, the weights wi (positive or negative) define the 
spatial profile of the summation field (typically, a centre-
surround difference of Gaussians), and the weights αk 
(positive) define the spatial profile of the suppressive field 
(typically, a large Gaussian40). The responses of neurons 
at the output of the retina (as measured in the lateral 
geniculate nucleus (LGN)) are characterized well by this 
equation, in which the normalization in the denomina-
tor corresponds to the standard deviation of contrasts 
over a region of the visual field42. 

A common way to probe contrast normalization is to 
use gratings that vary in overall contrast and size (FIG. 2f). 
As predicted by the model, increasing grating contrast 
leads to response saturation when gratings are shown in 
a large window, but not when they are shown in a small 
window40 (FIG. 2f). For small windows, local contrast is 
zero in most of the suppressive field, so the denomi-
nator has a small role in equation 5. For larger stimuli, 
increasing grating contrast increases local contrast not 
only in the numerator but also in the denominator, and 
responses saturate. Response saturation, therefore, is due 
to contrast and not to the evoked response: it is strongest 
for largest stimuli, which evoke weaker responses than 
smaller stimuli. 

Normalization in the primary visual cortex

Normalization is thought to operate not only in the ret-
ina but also at multiple subsequent stages along the vis-
ual pathway. Indeed, the normalization model was first 
developed to account for the physiological responses of 
neurons in the primary visual cortex (V1)17–19,43–45.

Here, we describe the normalization model for a pop-
ulation of V1 neurons differing in preference for stimu-
lus position and orientation. This characterization of the 
responses of neural populations46–48 encompasses previ-
ous descriptions of single neurons19,43. In the model, the 
responses of a population of V1 neurons are given by:

R(x, θ) = D(x , θ)n

σ n + N(x , θ)n

 
(6)

Here, x and θ indicate the preferred position and orien-
tation of each neuron in the population (the only two 
stimulus attributes that we consider in this simplified 
explanation). The numerator contains the stimulus drive 
D, which results from each neuron’s summation field and 
determines the selectivity for stimulus position and ori-
entation. The normalization factor N in the denominator, 
in turn, is determined by the suppressive field α(x,θ), 
which provides weights with which to pool the stimu-
lus drive received by each of the neurons (BOX 1). The 

Figure 2 | Normalization in the retina. a | Light adaptation operates on light intensity 

to produce a neural estimate of contrast (multiple arrows indicate light intensities from 

multiple locations). b | Responses of a turtle cone photoreceptor to light of increasing 

intensity. The intensity of the coloured squares reflects background intensity. Curves are 

fits of normalization model (equation 2) with n = 1. c | Light adaptation moves the 

operating point to suit images of differing intensity. Histograms on abscissa indicate 

distributions of light intensity for a sinusoidal grating under dim illumination (shown in 

blue) and bright illumination (shown in green). Histograms on ordinate indicate 

distributions of responses, which are more similar to one another than the light  

intensity distributions. d | The same data as in part c plotted as a function of local 

contrast (Weber contrast) rather than light intensity. Light adaptation makes responses 

roughly proportional to local contrast. The linear approximation given by equation 3 is 

shown (indicated by the dotted line). e | Contrast normalization operates on the neural 

estimate of contrast and normalizes it with respect to the standard deviation (sd) of 

nearby contrasts (multiple arrows indicate local contrast from multiple locations).  

f | Effects of contrast normalization. Responses of a neuron in lateral geniculate nucleus 

(which receives input from the retina) as a function of grating contrast and size. deg, 

degrees. Data in part b, from REF. 24. Data in part f, from REF. 40.
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Summation field
A region of sensory space that 
provides drive to a neuron. In 
many sensory systems, 
neurons derive their stimulus 
selectivity from a weighted sum 
of sensory inputs. The 
summation field comprises the 
weights in this sum.

Suppressive field
A region of sensory space 
providing suppression. In the 
normalization model, 
responses are suppressed by  
a weighted sum of activity of a 
population of neurons. The 
suppressive field comprises the 
weights in this weighted sum.

Grating contrast 
(Also known as Michelson 
contrast). The contrast of a 
grating is given by twice the 
mean intensity minus the 
lowest intensity divided by the 
highest intensity. This is often 
expressed as a percentage. A 
100% contrast grating is one in 
which the black bars have zero 
intensity.

Response saturation
Neural responses that increase 
with the strength of the input 
but progressively level off with 
very strong inputs. 
Normalization controls the 
strength at which responses 
saturate.

Normalization factor
A weighed sum of activity of a 
population of neurons, as 
determined by the suppressive 
field.

Winner-take-all
A neural computation in which 
the response depends on the 
maximum of the inputs.

MT
(Middle temporal area). 
Primate cortical area in which 
most neurons are selective for 
speed and direction of visual 
motion.

Another widespread phenomenon in V1 that is 
explained by normalization is surround suppression58,59 
(FIG. 3d). A neuron’s responses to stimuli inside the sum-
mation field can be suppressed by placing additional 
stimuli in the surrounding region60,61. Normalization 
accounts for this phenomenon58 (FIG. 3d) for similar rea-
sons to those discussed in relation to cross-orientation 
suppression: the suppressive field covers a larger region 
of visual space than does the summation field.

Normalization correctly predicts that the V1 popu-
lation exhibits strong winner-take-all competition in 
response to sums of stimuli with different contrasts48 
(FIG. 3e). When a low-contrast vertical grating is added 
to a high-contrast horizontal grating, the popula-
tion responses mostly reflect the high-contrast grat-
ing (FIG. 3e), even though the low-contrast grating was 
perfectly able to elicit strong responses when presented 
alone (FIG. 3e). Normalization provides winner-take-all 
competition because the presence of multiple stimuli 
effectively raises the constant in the denominator, 

reducing the sensitivity of the neurons to the point that 
the weaker stimuli become unable to drive them (FIG. 3b). 
An exponent n > 1 strengthens this effect, but normaliza-
tion can provide winner-take-all competition even when 
the exponent in the numerator is 1 (see FIG. 3e).

Normalization in other cortical areas

There is evidence for normalization downstream from 
area V1, and particularly in the visual cortical area 
MT62–64, where neurons are selective for visual motion 
(speed and direction). An established model of MT 
responses62,63 involves a summation field that operates 
on the population activity of V1, followed by a normali-
zation stage. The summation field determines the selec-
tivity for velocity, and the normalization stage helps to 
make this selectivity independent of spatial pattern63. 
The presence of normalization in MT would explain 
a number of suppressive phenomena that have been 
observed65, but it is challenging to determine whether 
normalization is computed de novo in MT or simply 

Figure 3 | Normalization in the primary visual cortex. a | Contrast saturation. Responses as a function of grating 

contrast for gratings having optimal orientation (shown in red) and suboptimal orientation (shown in yellow).  

b | Cross-orientation suppression. Responses to the sum of a test grating and an orthogonal mask grating (colours indicate 

mask contrast, from 0% (shown in yellow) to 50% (shown in dark red)). c | Transition from drive to suppression. Grating 1 

had optimal orientation and grating 2 had suboptimal orientation. Grating 2 could provide some drive to the neuron when 

presented alone (shown in yellow) but became suppressive when grating 1 had moderate contrasts (shown in red).  

d | Surround suppression. A grating contained in a central disk was surrounded by a grating in an annulus. The annulus 

elicited minimal responses when presented alone, but suppressed responses to the central disk. e | Effects of 

normalization on population responses. Each dot indicates the response of a population of neurons selective for a given 

orientation, and each panel indicates the population responses to a stimulus. Stimuli are gratings of increasing contrast, 

presented alone (top) or together with an orthogonal grating (bottom). Data in part a from REF. 43; data in part b from 

REF. 56; data in part c from REF. 43; data in part d from REF. 142; data in part e from REF. 48.
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Summation field
A region of sensory space that 
provides drive to a neuron. In 
many sensory systems, 
neurons derive their stimulus 
selectivity from a weighted sum 
of sensory inputs. The 
summation field comprises the 
weights in this sum.

Suppressive field
A region of sensory space 
providing suppression. In the 
normalization model, 
responses are suppressed by  
a weighted sum of activity of a 
population of neurons. The 
suppressive field comprises the 
weights in this weighted sum.

Grating contrast 
(Also known as Michelson 
contrast). The contrast of a 
grating is given by twice the 
mean intensity minus the 
lowest intensity divided by the 
highest intensity. This is often 
expressed as a percentage. A 
100% contrast grating is one in 
which the black bars have zero 
intensity.

Response saturation
Neural responses that increase 
with the strength of the input 
but progressively level off with 
very strong inputs. 
Normalization controls the 
strength at which responses 
saturate.

Normalization factor
A weighed sum of activity of a 
population of neurons, as 
determined by the suppressive 
field.

Winner-take-all
A neural computation in which 
the response depends on the 
maximum of the inputs.

MT
(Middle temporal area). 
Primate cortical area in which 
most neurons are selective for 
speed and direction of visual 
motion.

Another widespread phenomenon in V1 that is 
explained by normalization is surround suppression58,59 
(FIG. 3d). A neuron’s responses to stimuli inside the sum-
mation field can be suppressed by placing additional 
stimuli in the surrounding region60,61. Normalization 
accounts for this phenomenon58 (FIG. 3d) for similar rea-
sons to those discussed in relation to cross-orientation 
suppression: the suppressive field covers a larger region 
of visual space than does the summation field.

Normalization correctly predicts that the V1 popu-
lation exhibits strong winner-take-all competition in 
response to sums of stimuli with different contrasts48 
(FIG. 3e). When a low-contrast vertical grating is added 
to a high-contrast horizontal grating, the popula-
tion responses mostly reflect the high-contrast grat-
ing (FIG. 3e), even though the low-contrast grating was 
perfectly able to elicit strong responses when presented 
alone (FIG. 3e). Normalization provides winner-take-all 
competition because the presence of multiple stimuli 
effectively raises the constant in the denominator, 

reducing the sensitivity of the neurons to the point that 
the weaker stimuli become unable to drive them (FIG. 3b). 
An exponent n > 1 strengthens this effect, but normaliza-
tion can provide winner-take-all competition even when 
the exponent in the numerator is 1 (see FIG. 3e).

Normalization in other cortical areas

There is evidence for normalization downstream from 
area V1, and particularly in the visual cortical area 
MT62–64, where neurons are selective for visual motion 
(speed and direction). An established model of MT 
responses62,63 involves a summation field that operates 
on the population activity of V1, followed by a normali-
zation stage. The summation field determines the selec-
tivity for velocity, and the normalization stage helps to 
make this selectivity independent of spatial pattern63. 
The presence of normalization in MT would explain 
a number of suppressive phenomena that have been 
observed65, but it is challenging to determine whether 
normalization is computed de novo in MT or simply 

Figure 3 | Normalization in the primary visual cortex. a | Contrast saturation. Responses as a function of grating 

contrast for gratings having optimal orientation (shown in red) and suboptimal orientation (shown in yellow).  

b | Cross-orientation suppression. Responses to the sum of a test grating and an orthogonal mask grating (colours indicate 

mask contrast, from 0% (shown in yellow) to 50% (shown in dark red)). c | Transition from drive to suppression. Grating 1 

had optimal orientation and grating 2 had suboptimal orientation. Grating 2 could provide some drive to the neuron when 

presented alone (shown in yellow) but became suppressive when grating 1 had moderate contrasts (shown in red).  

d | Surround suppression. A grating contained in a central disk was surrounded by a grating in an annulus. The annulus 

elicited minimal responses when presented alone, but suppressed responses to the central disk. e | Effects of 

normalization on population responses. Each dot indicates the response of a population of neurons selective for a given 

orientation, and each panel indicates the population responses to a stimulus. Stimuli are gratings of increasing contrast, 

presented alone (top) or together with an orthogonal grating (bottom). Data in part a from REF. 43; data in part b from 

REF. 56; data in part c from REF. 43; data in part d from REF. 142; data in part e from REF. 48.
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many sensory systems, 
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of sensory inputs. The 
summation field comprises the 
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Suppressive field
A region of sensory space 
providing suppression. In the 
normalization model, 
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a weighted sum of activity of a 
population of neurons. The 
suppressive field comprises the 
weights in this weighted sum.

Grating contrast 
(Also known as Michelson 
contrast). The contrast of a 
grating is given by twice the 
mean intensity minus the 
lowest intensity divided by the 
highest intensity. This is often 
expressed as a percentage. A 
100% contrast grating is one in 
which the black bars have zero 
intensity.

Response saturation
Neural responses that increase 
with the strength of the input 
but progressively level off with 
very strong inputs. 
Normalization controls the 
strength at which responses 
saturate.

Normalization factor
A weighed sum of activity of a 
population of neurons, as 
determined by the suppressive 
field.

Winner-take-all
A neural computation in which 
the response depends on the 
maximum of the inputs.

MT
(Middle temporal area). 
Primate cortical area in which 
most neurons are selective for 
speed and direction of visual 
motion.

Another widespread phenomenon in V1 that is 
explained by normalization is surround suppression58,59 
(FIG. 3d). A neuron’s responses to stimuli inside the sum-
mation field can be suppressed by placing additional 
stimuli in the surrounding region60,61. Normalization 
accounts for this phenomenon58 (FIG. 3d) for similar rea-
sons to those discussed in relation to cross-orientation 
suppression: the suppressive field covers a larger region 
of visual space than does the summation field.

Normalization correctly predicts that the V1 popu-
lation exhibits strong winner-take-all competition in 
response to sums of stimuli with different contrasts48 
(FIG. 3e). When a low-contrast vertical grating is added 
to a high-contrast horizontal grating, the popula-
tion responses mostly reflect the high-contrast grat-
ing (FIG. 3e), even though the low-contrast grating was 
perfectly able to elicit strong responses when presented 
alone (FIG. 3e). Normalization provides winner-take-all 
competition because the presence of multiple stimuli 
effectively raises the constant in the denominator, 

reducing the sensitivity of the neurons to the point that 
the weaker stimuli become unable to drive them (FIG. 3b). 
An exponent n > 1 strengthens this effect, but normaliza-
tion can provide winner-take-all competition even when 
the exponent in the numerator is 1 (see FIG. 3e).

Normalization in other cortical areas

There is evidence for normalization downstream from 
area V1, and particularly in the visual cortical area 
MT62–64, where neurons are selective for visual motion 
(speed and direction). An established model of MT 
responses62,63 involves a summation field that operates 
on the population activity of V1, followed by a normali-
zation stage. The summation field determines the selec-
tivity for velocity, and the normalization stage helps to 
make this selectivity independent of spatial pattern63. 
The presence of normalization in MT would explain 
a number of suppressive phenomena that have been 
observed65, but it is challenging to determine whether 
normalization is computed de novo in MT or simply 

Figure 3 | Normalization in the primary visual cortex. a | Contrast saturation. Responses as a function of grating 

contrast for gratings having optimal orientation (shown in red) and suboptimal orientation (shown in yellow).  

b | Cross-orientation suppression. Responses to the sum of a test grating and an orthogonal mask grating (colours indicate 

mask contrast, from 0% (shown in yellow) to 50% (shown in dark red)). c | Transition from drive to suppression. Grating 1 

had optimal orientation and grating 2 had suboptimal orientation. Grating 2 could provide some drive to the neuron when 

presented alone (shown in yellow) but became suppressive when grating 1 had moderate contrasts (shown in red).  

d | Surround suppression. A grating contained in a central disk was surrounded by a grating in an annulus. The annulus 

elicited minimal responses when presented alone, but suppressed responses to the central disk. e | Effects of 

normalization on population responses. Each dot indicates the response of a population of neurons selective for a given 

orientation, and each panel indicates the population responses to a stimulus. Stimuli are gratings of increasing contrast, 

presented alone (top) or together with an orthogonal grating (bottom). Data in part a from REF. 43; data in part b from 

REF. 56; data in part c from REF. 43; data in part d from REF. 142; data in part e from REF. 48.
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Summation field
A region of sensory space that 
provides drive to a neuron. In 
many sensory systems, 
neurons derive their stimulus 
selectivity from a weighted sum 
of sensory inputs. The 
summation field comprises the 
weights in this sum.

Suppressive field
A region of sensory space 
providing suppression. In the 
normalization model, 
responses are suppressed by  
a weighted sum of activity of a 
population of neurons. The 
suppressive field comprises the 
weights in this weighted sum.

Grating contrast 
(Also known as Michelson 
contrast). The contrast of a 
grating is given by twice the 
mean intensity minus the 
lowest intensity divided by the 
highest intensity. This is often 
expressed as a percentage. A 
100% contrast grating is one in 
which the black bars have zero 
intensity.

Response saturation
Neural responses that increase 
with the strength of the input 
but progressively level off with 
very strong inputs. 
Normalization controls the 
strength at which responses 
saturate.

Normalization factor
A weighed sum of activity of a 
population of neurons, as 
determined by the suppressive 
field.

Winner-take-all
A neural computation in which 
the response depends on the 
maximum of the inputs.

MT
(Middle temporal area). 
Primate cortical area in which 
most neurons are selective for 
speed and direction of visual 
motion.

Another widespread phenomenon in V1 that is 
explained by normalization is surround suppression58,59 
(FIG. 3d). A neuron’s responses to stimuli inside the sum-
mation field can be suppressed by placing additional 
stimuli in the surrounding region60,61. Normalization 
accounts for this phenomenon58 (FIG. 3d) for similar rea-
sons to those discussed in relation to cross-orientation 
suppression: the suppressive field covers a larger region 
of visual space than does the summation field.

Normalization correctly predicts that the V1 popu-
lation exhibits strong winner-take-all competition in 
response to sums of stimuli with different contrasts48 
(FIG. 3e). When a low-contrast vertical grating is added 
to a high-contrast horizontal grating, the popula-
tion responses mostly reflect the high-contrast grat-
ing (FIG. 3e), even though the low-contrast grating was 
perfectly able to elicit strong responses when presented 
alone (FIG. 3e). Normalization provides winner-take-all 
competition because the presence of multiple stimuli 
effectively raises the constant in the denominator, 

reducing the sensitivity of the neurons to the point that 
the weaker stimuli become unable to drive them (FIG. 3b). 
An exponent n > 1 strengthens this effect, but normaliza-
tion can provide winner-take-all competition even when 
the exponent in the numerator is 1 (see FIG. 3e).

Normalization in other cortical areas

There is evidence for normalization downstream from 
area V1, and particularly in the visual cortical area 
MT62–64, where neurons are selective for visual motion 
(speed and direction). An established model of MT 
responses62,63 involves a summation field that operates 
on the population activity of V1, followed by a normali-
zation stage. The summation field determines the selec-
tivity for velocity, and the normalization stage helps to 
make this selectivity independent of spatial pattern63. 
The presence of normalization in MT would explain 
a number of suppressive phenomena that have been 
observed65, but it is challenging to determine whether 
normalization is computed de novo in MT or simply 

Figure 3 | Normalization in the primary visual cortex. a | Contrast saturation. Responses as a function of grating 

contrast for gratings having optimal orientation (shown in red) and suboptimal orientation (shown in yellow).  

b | Cross-orientation suppression. Responses to the sum of a test grating and an orthogonal mask grating (colours indicate 

mask contrast, from 0% (shown in yellow) to 50% (shown in dark red)). c | Transition from drive to suppression. Grating 1 

had optimal orientation and grating 2 had suboptimal orientation. Grating 2 could provide some drive to the neuron when 

presented alone (shown in yellow) but became suppressive when grating 1 had moderate contrasts (shown in red).  

d | Surround suppression. A grating contained in a central disk was surrounded by a grating in an annulus. The annulus 

elicited minimal responses when presented alone, but suppressed responses to the central disk. e | Effects of 

normalization on population responses. Each dot indicates the response of a population of neurons selective for a given 

orientation, and each panel indicates the population responses to a stimulus. Stimuli are gratings of increasing contrast, 

presented alone (top) or together with an orthogonal grating (bottom). Data in part a from REF. 43; data in part b from 

REF. 56; data in part c from REF. 43; data in part d from REF. 142; data in part e from REF. 48.
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Gain control circuits in computer vision!

• Normalization appears to be the most important component of a good 
computer vision system (over learning algorithms, architecture, etc)
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Abstract

In many recent object recognition systems, feature ex-
traction stages are generally composed of a filter bank, a
non-linear transformation, and some sort of feature pooling
layer. Most systems use only one stage of feature extrac-
tion in which the filters are hard-wired, or two stages where
the filters in one or both stages are learned in supervised
or unsupervised mode. This paper addresses three ques-
tions: 1. How does the non-linearities that follow the filter
banks influence the recognition accuracy? 2. does learn-
ing the filter banks in an unsupervised or supervised man-
ner improve the performance over random filters or hard-
wired filters? 3. Is there any advantage to using an ar-
chitecture with two stages of feature extraction, rather than
one? We show that using non-linearities that include recti-
fication and local contrast normalization is the single most
important ingredient for good accuracy on object recogni-
tion benchmarks. We show that two stages of feature ex-
traction yield better accuracy than one. Most surprisingly,
we show that a two-stage system with random filters can
yield almost 63% recognition rate on Caltech-101, provided
that the proper non-linearities and pooling layers are used.
Finally, we show that with supervised refinement, the sys-
tem achieves state-of-the-art performance on NORB dataset
(5.6%) and unsupervised pre-training followed by super-
vised refinement produces good accuracy on Caltech-101
(> 65%), and the lowest known error rate on the undis-
torted, unprocessed MNIST dataset (0.53%).

1. Introduction
Over the last few years, considerable efforts have been

devoted to designing appropriate feature descriptors for ob-
ject recognition. Many recent proposals use dense features
extracted on regularly-spaced patches over the input image.
The vast majority of these systems use a feature extrac-
tion process composed of a filter bank (generally based on
oriented edge detectors), a non-linear operation (quantiza-
tion, winner-take-all, sparsification, normalization, and/or
point-wise saturation), and a pooling operation that com-

bines nearby values in real space or feature space through
a max, average, or histogramming operator. For example,
the SIFT operator applies oriented edge filters to a small
patch and determines the dominant orientation through a
winner-take-all operation. Finally, the resulting sparse vec-
tors are added (pooled) over a larger patch to form local ori-
entation histograms. Several recognition architectures use a
single stage of such features followed by a supervised clas-
sifier. Particular embodiments of the single-stage systems
use SIFT features [19, 13], HoG [6], Geometric Blur [5],
and models inspired by the architecture of the mammalian
primary visual cortex [24], to mention a few. Other models
use two or more successive stages of such feature extractors,
followed by a supervised classifier. This includes convolu-
tional networks globally trained in purely supervised mode
with gradient descent [10], convolutional networks trained
in supervised mode with an auxiliary task [3], or trained
in purely unsupervised mode [25, 11, 18]. Multi-stage sys-
tems also include HMAX-type models [28, 22] in which the
first layer is hardwired with Gabor filters, and the second
layer is trained in unsupervised mode by storing randomly-
picked output configurations from the first stage into filters
of the second stage. All of these models essentially differ
by whether they have one or two (or more) feature extrac-
tion stages, by the type of non-linearity used after the filter
banks, the method used to pick the filters (hard-wired, un-
supervised, supervised), and the top-level classifier (linear
or more sophisticated).

This paper addresses three questions: 1. How do the non-
linearities that follow the filter banks influence the recogni-
tion accuracy? 2. Does learning the filter banks in an un-
supervised or supervised manner improve the performance
over hard-wired filters or even random filters? 3. Is there
any advantage to using an architecture with two successive
stages of feature extraction, rather than with a single stage?
To address these questions, we experimented with various
combinations of architectures (with 1 or 2 stages of fea-
ture extraction), non-linearities, filter types, filter learning
methods (random, unsupervised and supervised). We use
a recently-proposed unsupervised feature learning method
called Predictive Sparse Decomposition (PSD), based on


