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Boundary annotation



Here’s the deal

• Annotate the boundaries 
between things in 100 
natural scenes


• $5 an hour (est. 10 hours 
of work)


• You have to complete 
within two weeks


• Speed bonus: $50 if you 
complete within one week


• contact: 
david_mely@brown.edu

mailto:david_mely@brown.edu


The visual system
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The intensity measurements taken by both scan-
ners and digital cameras are recorded as numbers 
stored in a digital memory. To call this collection 
of numbers a “gray level description” is apt because 
this is exactly what the numbers are providing, as 
in 1.8.

The term “gray level” arises from the black- 
and-white nature of the system, with black being 
regarded as a very dark gray (and recorded with a 
small number) and white as a very light gray (and 
recorded with a large number).

The numbers are a description in the sense 
defined earlier: they make explicit the gray levels 
in the input image. That is, they make these gray 
levels immediately usable (which means there is 
no need for further processing to recover them) by 
subsequent stages of image processing. 

Retinal images are upside-down, due to the 
optics of the eyes (Ch 2) and many people are 
worried by this. “Why doesn’t the world therefore 
appear upside down?”, they ask.

The answer is simple: as long as there is a 
systematic correspondence between the outside 
scene and the retinal image, the processes of image 
interpretation can rely on this correspondence, and 
build up the required scene description according-
ly. Upside-down in the image is simply interpreted 
as right-way-up in the world, and that’s all there is 
to it.

If an observer is equipped with special spectacles 
which optically invert the retinal images so that 
they become the “right-way-up,” then the world 
appears upside-down until the observer learns to 
cope with the new correspondence between image 
and scene. This adjustment process can take weeks, 
but it is possible. The exact nature of the adjust-
ment process is not yet clear: does the upside-down 
world really begin to “look” right-way-up again, or 
is it simply that the observer learns new patterns of 
adjusted movement to cope with the strange new 
perceptual world he finds himself in?

1.8 Gray level description for a small region of an image of Lennon

Input image

Spectacle lens region enlarged to 
reveal individual pixels as squares 
with different gray levels

A sample of pixels from the upper left section of the spectacle 
region picked out above. This shows the pixel intensities both as 
different shades of gray and as the numbers stored in the gray level 
description in the computer’s memory.



Computing with LGN

• Basic anatomy and 
physiology


• Center-surround 
processing


• Color opponency channels

• Convolution and filtering

source: unknown
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Visual analysis: Cortex vs. computers

intermediate one. It uses full replication, but at the level of
object fragments rather than complete views. These shape
fragments can then serve as building blocks for defining
much larger sets of complex shapes. According to this
view, the brain will learn over time to extract appropriate
shape fragments, as well as the connection between similar
fragments at different locations. Shift invariance for
complex shapes is then obtained from straightforward
conjunctions of the responses to the more elementary frag-
ments comprising the full shape.
The fragment detectors are simpler than full-view detec-

tors, but more complex than elementary feature detectors
such as an oriented edge. In this scheme, not all object
representations are stored at each position, but only a
number of partial fragments, at a number of complexity
levels. As we shall see, view-fragments of this type can be
used in such a manner that a relatively small number of
features can allow the invariant recognition of a much larger
set of complex patterns.
A generalization of this approach is also proposed for

other forms of invariant recognition. The general proposal
is that the brain constructs, on the basis of past experience, a

S. Ullman, S. Soloviev / Neural Networks 12 (1999) 1021–10361024

Fig. 1. Detecting a shape by the conjunction of overlapping fragments. F2
unit responds to the maximal activity of its F1 units.

Fig. 2. Example of face parts from a system for face detection using the conjunction of fragments. The system uses multiple overlapping fragments, at different
levels of resolution. Figure prepared by E. Sali.

Brains: Full-replication 
scheme Computers: Convolution

feature maps

kernel



From feature detectors to population codes

Source: David Hubel
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Reverse-correlation / spike-triggered average
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Gabor functions as models of simple cells
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enough for sin(0) to be approximated by 0 in radians. For
filters with orientation half-bandwidths larger than about 300,
the expressions for A01/2 should be replaced by arcsine argu-
ments, and for still larger angles (corresponding to very short
filters in the space domain) the orientation bandwidth and
even the preferred orientation would start to depend dra-
matically on spatial frequency. The reciprocal scaling rela-
tions depicted graphically in Fig. 2 and the expressions for
bandwidths in terms of space-domain properties can be de-
rived from the 2D similarity theorem and the 2D modulation
theorem, which relate the shapes and locations of the fre-
quency-domain ellipses to the filter modulation and dimen-
sions in the space domain.

A fundamental property captured in Fig. 2 is that the
product of the occupied areas of any filter's analytic function
in the two 2D domains is always independent of any dilation,
translation, or modulation of its profile, and for 2D Gabor
filters contained in the analytic functions of Eqs. (3) this
product of occupied areas is always as small as it can possibly
be, regardless of the values of any of the six parameters that
generate the different filters in the family. A further property
captured in Fig. 2 is that for different filters constrained to
occupy the same total amount of 2D space-domain area (e.g.,
those in panels B and C), any gain in spatial-frequency reso-
lution AF must be paid for by a loss in orientation resolution
A01/2; conversely, any gain in orientation resolution must be
paid for by a loss in spatial-frequency resolution. This is
because such filters that have a constant degree of 2D spatial
resolution (integration area) must also occupy a fixed amount
of area in the 2D frequency domain, and thus the frequency-
domain ellipses in panels B and C are constant in area while
their different shapes negotiate different trade-offs between
A01/2 and AF.

Finally, in analogy with Gabor's original information di-

2D Receptive Field

2D Gabor Function

Difference

A X~~~'

agram (time-frequency plane), it is useful to think of these
2D spatial filters as located in a four-dimensional (4D) in-
formation hyperspace whose four orthogonal axes are x, y, u,
and v (the 2D space and 2D frequency coordinates). In this
geometrical interpretation of spatial information there is a 4D
grain size, or minimal quantal volume, taken up by any spatial
signal or filter, namely, 1/167r2 as noted in relation (2). Ar-
bitrary 2D signals, such as actual images, could be efficiently
represented by decomposition into the elementary signals
defined in Eqs (3). Integrating the product of the image in
question times each elementary signal results in a coefficient
that specifies the amount of energy contained in each of these
minimal quantal volumes that pack information hyperspace.
Their minimal volume makes them the natural basis for image
analysis in which both 2D spatial location and 2D spectral
signature are recognized as important parameters. This
completes our generalization of Gabor's information diagram
and scheme for decomposition.

4. SIMPLE-CELL TWO-DIMENSIONAL
RECEPTIVE-FIELD PROPERTIES IN STRIATE
CORTEX
We turn now to empirical properties of simple cells in mam-
malian visual cortex in order to apply the 2D Gabor theoretical
framework developed above for understanding their recep-
tive-field profiles and the relationship between their selec-
tivities for orientation and spatial frequency. Inasmuch as
the preceding analysis is based on linear theory, the scope of
an empirical characterization must be largely limited to linear
neurons. Of the three classical categories of neurons found
in the striate cortex as enumerated by Hubel and Wiesel,1"2

namely, simple, complex, and hypercomplex cell types, only
the simple cells are generally considered linear integrators of

Fig. 3. Illustration of experimentally measured 2D receptive-field profiles of three simple cells in cat striate cortex (top row) obtained in thelaboratory of L. A. Palmer and J. P. Jones (University of Pennsylvania Medical School). Each plot shows the excitatory or inhibitory effectof a small flashing light or dark spot on the firing rate of the cell, as a function of the (x, y) location of the stimulus, computed by reverse correlation
of the 2D stimulus sequence with the neural-response sequence. The second row shows the best-fitting 2D Gabor function for each coll's re-ceptive-field profile, based on Eqs. (3) with the parameters fitted by least squares. The third row shows the residual error between the measured
response profile of each cell and Eqs. (3). In formal statistical tests, the residuals were indistinguishable from random error for 33 of the 36
simple cells tested. (From Ref. 28.)

John G. Daugman

RECEPTIVE-FIELD 2D GABOR FILTER MODEL 1235 

Space Domain Frequency Domain 

A Plane wave D lmpulses 

B Elliptic Gaussian E Elliptic Gaussian 

C 2D Gabor filter 
spatial response profile 

F 2D Gabor filter 
spectral response profile 

FIG. 1. Structure of two-dimensional (2D) Gabor filters in the space (left) and spatial frequency (right) domains. 
In the space domain, a 2D Gabor filter (C) can be described as the product of a sinusoidal plane wave (A) and a 
bivariate elliptic Gaussian (B). In the spatial frequency domain, a 2D Gabor filter (F) can be described as the 
convolution of a pair of impulses at a specific frequency (D) and an elliptic Gaussian (E). Graphs in the left- and 
right-hand columns are of Fourier transform pairs. The coordinates of the 2D space domain are illustrated in B. The 
surface Y is a function of the two Cartesian variables x and y. The coordinates of the 2D spatial frequency domain are 
illustrated in E. The surface R can be thought of as a function of the polar variables spatial frequency (the radial axis 
F) and orientation (the angular axis e). In B and -E, the axes have been drawn above the base plane for clarity. 

the x and y  directions, respectively. Using Euler’s The optimality of the 2D Cabor filter applies 
formula, this can be written only to the filter in its complex form. In an exper- 
m(x, y) = cos [-274 Ufl+ Vi&] iment we can observe only real signals (here, the 

cosine term). As before, there is no unique prop- 
+ i sin [-27r(U@ + v&)] erty of the coordinate system on which we collect 

Jones & Palmer ’87

Gabor filters optimize the general 
uncertainty relations for joint  spatial-

spectral information resolution
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tive-field profiles and the relationship between their selec-
tivities for orientation and spatial frequency. Inasmuch as
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Fig. 3. Illustration of experimentally measured 2D receptive-field profiles of three simple cells in cat striate cortex (top row) obtained in thelaboratory of L. A. Palmer and J. P. Jones (University of Pennsylvania Medical School). Each plot shows the excitatory or inhibitory effectof a small flashing light or dark spot on the firing rate of the cell, as a function of the (x, y) location of the stimulus, computed by reverse correlation
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John G. Daugman

Jones & Palmer ’87

y(x) = w

T
x

Gabor filters optimize the general 
uncertainty relations for joint  spatial-

spectral information resolution



Tuning in the visual 
cortex

Webster & Devalois 1985

Next assignment!
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Fig. 1. A, Responses of a simple cell to gratings of each of various
spatial frequencies at each of several different orientations. Note
that, whereas the response of course decreases at off orientations, the
peak spatial-frequency tuning does not change with orientation. B,
Responses of the same cell to various orientations at each of several
spatial frequencies. Note the invariance of the orientation tuning
with spatial frequency.

ferent orientation. In Fig. 1B the same data have been re-
plotted, this time as orientation functions at each of several
spatial frequencies.

In several respects, these data are exemplary of all the cells
examined. First, as expected, the cell had an absolutely
preferred stimulus among the combinations tested, as was true
of all cells. In this case it was a grating of 0.97 c/deg (FmaX)
at an orientation of 359.60 (0ma,). The orientation band-
width measured at Fmax was 49.10, whereas the frequency
bandwidth at Omax was 0.94 octave. Thus this cell was quite

narrowly selective for spatial frequency but slightly more
broadly tuned than average for orientation.

The second general point illustrated in Fig. 1A is that for
spatial frequencies sufficiently far from Fmax, no orientation
could be found that elicited a significant response. Similarly,
it can be seen in Fig. 1B that, at orientations far from Omax,
no responses could be obtained from gratings of any spatial
frequency. Thus this cell (and the others tested) did in fact
have well-localized responses in the two-dimensional fre-
quency domain, as the data of De Valois et al. 6 clearly sug-
gested. The areas over which the cells responded varied
widely depending on their tuning properties, but the critical
point here is that the range of stimuli to which any cell was
responsive was in fact well predicted simply from a knowledge
of the orientation- and the frequency-tuning curves at Fmax
and Om,, respectively.

From an inspection of Figs. 1A and 1B, it is clear that all the
orientation curves and all the spatial-frequency-tuning curves
peak at roughly the same value. For this cell, then, the peak
spatial frequency was found to be independent of orientation
and vice versa.

This final point has been illustrated by plotting the peaks
of the various curves from this cell (cell 3) at the tops of Figs.
2A and 2B. In Fig. 2A the change in peak frequency is plotted
as a function of orientation (relative to Omax), and in Fig. 2B
the change in orientation is plotted as a function of frequency
(relative to Fmax). Also plotted in Fig. 2 are data from three
other simple cells, representative of the range of results ob-
tained from the sample. (Cells 3 and 16 form the two ex-
tremes of the population, and 4 and 5 are more-typical sam-
ples). Complex cells showed essentially the same pattern of
results and exhibited a similar range of variability.

It can be seen in Fig. 2 that the curves for cell 3 are reason-
ably flat, indicating that the preferred value for one of these
variables was largely independent of the value of the other,
which is the result reported by Movshon7 and Glezer et al. 9
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Fig. 2. A, Plots of the peak spatial frequency as a function of or-
ientation and B, peak orientation as a function of spatial frequency
for each of four cells. The data from the cell whose detailed data were
presented in Fig. 1 (cell 3) are plotted at the top. Note that all cells
show orientation peaks that are largely independent of spatial fre-
quency, but some cells (notably cell 16) show considerable change in
spatial-frequency tuning at off orientations.
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Computing with V1

Gabor filters at multiple phases (one phase shown), orientations and spatial 
frequencies/scales (parameters derived from available experimental data)

contributed articles

OCTOBER 2010  |   VOL.  53  |   NO.  10  |   COMMUNICATIONS OF THE ACM     59

terial http://serre-lab.clps.brown.edu/
resources/ACM2010 for details). 

Supervised learning in higher ar-
eas. After this initial developmental 
stage, learning a new object category 
requires training only of task-specif-
ic circuits at the top of the ventral-
stream hierarchy, thus providing a 
position and scale-invariant represen-
tation to task-specific circuits beyond 
IT to learn to generalize over trans-
formations other than image-plane 
transformations (such as 3D rotation) 
that must be learned anew for each 
object or category. For instance, pose-
invariant face categorization circuits 
may be built, possibly in PFC, by com-
bining several units tuned to different 
face examples, including different 
people, views, and lighting conditions 
(possibly in IT). 

A default routine may be running in 
a default state (no specific visual task), 
perhaps the routine What is there? 
As an example of a simple routine con-
sider a classifier that receives the activ-
ity of a few hundred IT-like units, tuned 
to examples of the target object and 
distractors. While learning in the mod-
el from the layers below is stimulus-
driven, the PFC-like classification units 
are trained in a supervised way follow-
ing a perceptron-like learning rule. 

Immediate Recognition 
The role of the anatomical back-projec-
tions present (in abundance) among 
almost all areas in the visual cortex is 
a matter of debate. A commonly ac-
cepted hypothesis is that the basic pro-
cessing of information is feedforward,30 
supported most directly by the short 
times required for a selective response 
to appear in cells at all stages of the hi-
erarchy. Neural recordings from IT in 
a monkey12 show the activity of small 
neuronal populations over very short 
time intervals (as short as 12.5ms and 
about 100ms after stimulus onset) con-
tains surprisingly accurate and robust 
information supporting a variety of 
recognition tasks. While this data does 
not rule out local feedback loops within 
an area, it does suggest that a core hi-
erarchical feedforward architecture 
(like the one described here) may be a 
reasonable starting point for a theory of 
the visual cortex, aiming to explain im-
mediate recognition, the initial phase 
of recognition before eye movement 

and high-level processes take place. 
Agreement with experimental data. 

Since its original development in the 
late 1990s,24,29 the model in Figure 2 
has been able to explain a number of 
new experimental results, including 
data not used to derive or fit model pa-
rameters. The model seems to be qual-
itatively and quantitatively consistent 
with (and in some cases predicts29) 
several properties of subpopulations 
of cells in V1, V4, IT, and PFC, as well 
as fMRI and psychophysical data (see 
the sidebar “Quantitative Data Com-
patible with the Model” for a complete 
list of findings). 

We compared the performance of 
the model against the performance 
of human observers in a rapid animal 
vs. non-animal recognition task28 for 
which recognition is quick and cortical 
back-projections may be less relevant. 
Results indicate the model predicts 
human performance quite well during 
such a task, suggesting the model may 

indeed provide a satisfactory descrip-
tion of the feedforward path. In par-
ticular, for this experiment, we broke 
down the performance of the model 
and human observers into four image 
categories with varying amounts of 
clutter. Interestingly, the performance 
of both the model and the human ob-
servers was most accurate (r90% cor-
rect for both human participants and 
the model) on images for which the 
amount of information is maximal and 
clutter minimal and decreases monoti-
cally as the clutter in the image increas-
es. This decrease in performance with 
increasing clutter likely reflects a key 
limitation of this type of feedforward 
architecture. This result is in agree-
ment with the reduced selectivity of 
neurons in V4 and IT when presented 
with multiple stimuli within their re-
ceptive fields for which the model pro-
vides a good quantitative fit29 with neu-
rophysiology data (see the sidebar). 

Application to computer vision. 

Figure 2. Hierarchical feedforward models of the visual cortex. 

Complex units

Simple units
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AIT

visual 
routines
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the boundary 
of the object?Gabor filters



Computing with V1
Gaussian derivatives

source: http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html
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Fig. 9. Benefits of globalization. When compared with the local detector Pb, our detector gPb reduces clutter and
completes contours. The thresholds shown correspond to the points of maximal F-measure on the curves in Figure 1.

algorithm such as K-means to create a hard partition of
the image. Unfortunately, this can lead to an incorrect
segmentation as large uniform regions in which the
eigenvectors vary smoothly are broken up. Figure 7
shows an example for which such gradual variation
in the eigenvectors across the sky region results in an
incorrect partition.

To circumvent this difficulty, we observe that the
eigenvectors themselves carry contour information.
Treating each eigenvector vk as an image, we convolve
with Gaussian directional derivative filters at multiple
orientations ✓, obtaining oriented signals {r

✓

vk(x, y)}.
Taking derivatives in this manner ignores the smooth
variations that previously lead to errors. The information
from different eigenvectors is then combined to provide
the “spectral” component of our boundary detector:

sPb(x, y, ✓) =

nX

k=1

1p
�

k

·r
✓

vk(x, y) (13)

where the weighting by 1/
p

�
k

is motivated by the
physical interpretation of the generalized eigenvalue
problem as a mass-spring system [66]. Figures 7 and 8
present examples of the eigenvectors, their directional
derivatives, and the resulting sPb signal.

The signals mPb and sPb convey different informa-
tion, as the former fires at all the edges while the latter
extracts only the most salient curves in the image. We
found that a simple linear combination is enough to ben-
efit from both behaviors. Our final globalized probability
of boundary is then written as a weighted sum of local
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Fig. 10. Globalization improves contour detection.
The spectral Pb detector (sPb), derived from the eigen-
vectors of a spectral partitioning algorithm, improves the
precision of the local multiscale Pb signal (mPb) used
as input. Global Pb (gPb), a learned combination of the
two, provides uniformly better performance. Also note the
benefit of using multiple scales (mPb) over single scale
Pb. Results shown on the BSDS300.

http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html
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the organization of low and high spatial frequencies
in the image.

Building a scene representation from global image
features

High-level properties of a scene such as the degree
of perspective or the mean depth of the space that
the scene subtends have been found to be corre-
lated with the configuration of low-level image
features (Torralba and Oliva, 2002, 2003). Evi-
dence from the psychophysics literature suggest
that our visual system analyzes global statistical
summary of the image in a preselective stage of
visual processing, or at least with minimal attent-
ional resources (mean orientation, Parkes et al.,
2001; mean of set of objects, Ariely, 2001; Chong
and Treisman, 2003). By pooling together the ac-
tivity of local low-level feature detectors across
large regions of the visual field, we can build a
holistic and low-dimensional representation of the
structure of a scene that does not require explicit
segmentation of image regions and objects (as in
Oliva and Torralba, 2001) and therefore require
very low computational (or attentional) resources.
This suggests that a reliable scene representation
can be built, in a feed-forward manner, from the
same low-level features used for local neural rep-
resentations of an image (receptive fields of early
visual areas, Hubel and Wiesel, 1968).

For instance, in a forest-scene picture, the shape
of a leaf can be estimated by a set of local recep-
tive fields (encoding oriented edges). The shape of
the whole forest picture can be summarized by the
configuration of many small-oriented contours,
distributed everywhere in the image. In the case of
the forest scene, a global features encoding ‘‘fine-
grained texture everywhere in the image’’ will pro-
vide a good summary of the texture qualities found
in the image. In the case of a street scene, we will
need a variety of global features encoding the per-
spective, the level of clutter, etc. Fig. 3 illustrates a
global receptive field that would respond maxi-
mally to scenes with vertical structures at the top
part and horizontal components at the bottom
part (as in the case of a street scene).

Given the variability of layout and feature dis-
tribution in the visual world, and given the vari-
ability of viewpoints that an observer can have on
any given scene, most real-world scene structures
will need to be estimated not only by one, but by a
collection of global features. The number of global
features that can be computed is quite high. The
most effective global features will be those that
reflect the global structures of the visual world.
Several methods of image analysis can be used to
learn a suitable basis of global features (Vailaya
et al., 1998; Oliva and Torralba, 2001; Vogel and
Schiele, 2004; Fei-Fei and Perona, 2005) that cap-
ture the statistical regularities of natural-scene
images. In the modeling presented here, we only
consider global features of receptive fields meas-
uring orientations and spatial frequencies of image
components that have a spatial resolution between
1 and 8 cycles/image (see Fig. 5). We employed a
basis derived by principal component analysis to

Fig. 3. Illustration of a local receptive field and a global recep-
tive field (RF). A local RF is tuned to a specific orientation and
spatial scale, at a particular position in the image. A global RF is
tuned to a spatial pattern of orientations and scales across the
entire image. A global RF can be generated as a combination of
local RFs and can, in theory, be implemented from a population
of local RFs like the ones found in the early visual areas. Larger
RFs, which can be selective to global scene properties, could be
found in higher cortical areas (V4 or IT). The global feature
illustrated in this figure is tuned to images with vertical structures
at the top part and horizontal component at the bottom part,
and will reply strongly to the scene street image.
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image representations were developed within the
framework of scene recognition (e.g. classifying an image
as being a beach scene, street or living room [48]). Themain
characteristic of global image representations is that the
scene is represented as awhole, rather than splitting it into
its constituent objects. Suchmodels correspond to the state
of the art in scene recognition and context-based object
recognition.

Box 2 summarizes the general framework used to com-
pute global scene representations. These representations
are derived from computing statistics of low-level features
(similar to representations available in early visual areas,
such as oriented edges and vector-quantized image
patches) over fixed image regions. Despite the low dimen-
sionality of the representation, global features preserve
most of the relevant information needed for categorizing
scenes into superordinate categories (e.g. nature, urban or
indoor), which can be used to provide strong contextual
priors. Because object information is not explicitly
represented in the global features, they provide a comp-
lementary source of information for scene understanding,
which can be used to improve object recognition. For
instance, global features have been used to classify images
into those that contain a particular object and those that do
not [18,21,51], and this decision is taken without localizing

the object within the image. These representations are
reminiscent of visual-cognition work on summary stat-
istics, the perception of sets and contextual cueing.

Although they might not be the only mechanisms for
scene recognition, global representations have been sur-
prisingly effective at the scene-recognition task [50,52–56].
In tasks that require finer scene-category discrimination
(living room versus dining room rather than city versus
beach), recognition of specific objects will undoubtedly
have a major role. Nevertheless, robust global scene
representations will have a major impact in future
object-detection systems.

Contextual effects on eye movements
When exploring a scene for an object, an ideal observer will
fixate the image locations that have the highest posterior
probability of containing the target object according to the
available image information [57]. Attention can be driven
by global scene properties (e.g. when exploring a street
scene for a parking meter, attention is directed to regions
near the ground plane) and salient objects contextually
related to the target (e.g. when looking for a computer
mouse, the region near a computer screen is explored first).

Most scenes can be recognized by just a glance, even
before any eye movements can be initiated and without

Box 2. Computing global features

There are two major families of global context representations: first,
texture-based methods [50,52,69] or ‘bag-of-words’ models (a term
borrowed from the literature on text analysis). A set of features are
detected in the image and, once a decision has been taken about the
presence or absence of a feature, the location from which it comes is
not encoded in the representation. The scene descriptor is given by a
vector in which each element encodes the number of times that each
kind of feature appears in the image. Randomizing the spatial location
of the features in the image would create an image with the same
scene descriptor (Figure Ic). Despite their simplistic assumptions,
these methods perform surprisingly well and can provide an initial
guess of the scene identity. The second class of models encodes
spatial layout [50,53]: the image is first divided into regions, and then
each region is treated as a bag of words. The scene descriptor is a
vector in which each element contains the number of times each type
of feature appeared in each region. The final representation preserves
some coarse spatial information. Randomizing the location of the
edges within each region will produce a scene with the same
descriptor (Figure Id). However, moving features from one region to
another will result in a different representation. This representation
provides a significant increase in performance over bag-of-words
models.

In the scene representation proposed in Ref. [50], the image is first
decomposed by a bank of multiscale-oriented filters (tuned to six
orientations and four scales). Then, the output magnitude of each
filter is averaged over 16 nonoverlapping windows arranged on a
4 ! 4 grid. The resulting image representation is a 4 ! 8 ! 16 = 512
dimensional vector. The final feature vector, used to represent the
entire image, is obtained by projecting the binned filter outputs onto
the first 80 principal components computed on a large dataset of
natural images. Other techniques involve computing histograms of
complex features such as textons [69] or vector-quantized SIFT
features (SIFT descriptors encode a local image patch by dividing
the patch into 4 ! 4 regions and computing the histogram of local
image gradients within each region) [52,53,55]. Those features
encode complicated patterns, such as grouping of edges. See Ref.
[70] for a review of image representations used in applications for
image indexing. Building more robust global scene representations
will have a major impact on future object-detection systems.

Figure I. Computing global features. This illustration shows the general scheme
underlying many current global scene representations [50,52,53,55,69]. (a) Input
image. (b) A set of features is detected in the image. In this schematic example,
the features are edges grouped into four different orientations at each location.
(c,d) Summary of two scene representations. (c) A bag-of-words model in which
location information is not explicitly stored (randomizing the spatial locations of
the features results in the same representation). (d) Spatially organized textures;
the image is partitioned into several regions. Each region is encoded as if it was a
stationary texture, in which location is irrelevant. The final vector descriptor
contains the number of times each feature is present at each region; therefore,
spatial information is preserved at a coarse resolution.
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