Computational Vision

* Feature detection
» Filtering
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Neurons as feature
detectors

* ~1M receptors
» 2.5-3.5M connecting neurons

* 0.5 M ganglion cells

- Each ganglion cell receives
many inputs from the
receptors

- Each receptor projects to
many ganglion cells




Neurons as feature detectors
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Fig. 1.Cajals drawing of ganglion cells of the frogs retina.
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Neurons as feature detectors

B Movement of a 2-degree

A Diffuse light biack spot
— Toec off - _/ “‘.ERF size
Class 1 Class 1 —HBHHHHHHHE-HMHH "7 2-4°
Class 2 } Class 2—WHHH+HHH——  25-¢
Class 3 | 3 Ciass 3 —{ijil— §-g°
SR S BMHHHHH Class 4 .. wi0®

of a 2x¥0* vertical at tectal cell a 2xX)* horizontal

, _ Locatiq~ of optic .
C Horizontal movement nerve fiber endings D Horizontal movernent of ‘
black bar black bar ~?

v
Class 1 —HHH-H-HH—~4+——o Cl&sﬂ—llll#”li—”l—l—l—l—l—l—l—l—l—l—l—
Class 2 Class 2—HHH—-H—
Class 3—JHH $95. Class 3}
Class &bt b — Class 4 i H b

We have been tempted for example, to call the convexity detectors [class 2] “bug perceivers”. Such a
fiber responds best when a dark object, smaller than a receptive field, enters that field, stops, and
moves about intermittently thereafter. The response is not affected if the lighting changes or if the
background (say a picture of grass and flowers) is moving, and is not there if only the background,
moving or still, is in the field. Could one better describe a system for detecting an accessible bug?
[Lettvin et al 1959]



Template matching
by the jumping spider

4 pairs of eyes

Eyes have single lenses like
mammals (unlike insects with
compound eyes)

Scan visual scenes by moving
body and retina (lens is fixed)

Detection at 30-40cm

Hunt preys




Template matching by the jumping spider
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Cortex vs. computers

Srains: Full-replication Retinotopy in early
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Cortex vs. computers

Computers:
Filtering/Convolution

FIGURE 3.13
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Principles of spatial convolution/filtering

i‘lnwgc origin

« Multiply each pixel in a
neighborhood by a corresponding
coefficient and sum the results to
get response at each point (x,y)

FIGURE 3.13

The mechanics of
lincar spatial
filtering. The
magnified drawing
shows a 3x 3 filter
mask and the
corresponding
image
neighborhood
directly under

it. The image
neighborhood is
shown displaced
out from under

+ Neighborhood of size (m,n) requires
nm coefficients

the mask for ease
of readability.

Image f

- Coefficients arranged as matrix l

called filter, mask, filter mask, kernel,

or template

« Move center of the filter mask, w,
from point to point in image f

Image coordinases under the mask

Example mask
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Convolution is correlation with a rotated filter

FIGURE 3.14 Correlation Convolution
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D convolution
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Filtering In Image processing

- Filtering the image is a set of

dot-products

* Insight: Filters look like the
effects they are intended to find

 Exercise:

* How well does the template matching operation works for detecting faces
and objects?

- What happens when the appearance of the target object changes (small
changes in size, view-point, background clutter, etc)?

 Play with the size of the templates: What are the pros and cons of small vs.
large templates?



Neurons as edge detectors
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Neurons as edge detectors
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Differential operators
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—dges and contours play a special role In vision

Source: Cavanagh '95

SO urce: B | ed erman Figure 11. Nine of the experimental objects,



llusions and center-surround processing

Source: http://www.nku.edu/~issues/illusions



http://www.nku.edu/~issues/illusions

llusions and center-surround processing

Source: http://www.nku.edu/~issues/illusions



http://www.nku.edu/~issues/illusions

llusions and center-surround processing

Source: Adelson (2000)



Computing with RFs: Summary

- Basic model of neural processing PRI :

* Reverse engineering
computations by trying to interpret
synaptic weights

* Filtering, convolution, preferred
stimulus, template matching




Graphics Processing Units
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http://dual.sphysics.org/index.php/gpu/

Graphics Processing Units

+ Send Data to GPU:
- M = magic(6);
- G = gpuArray(M);

* Retrieve Data from GPU:
- D = gather(G);

- Many built-In functions support for
gpuArray (conv2, imfilter, etc)

« gpuarrayB = imfilter(gpuArrayA,h)

CPU GPU
MULTIPLE CORES THOUSANDS OF CORES

source: NVIDIA



Speeding up MATLAB

- Leveraging the power of vector
& matrix operations

- Vectorize your code (MATLAB
optimized for column / blo
processing)

* Pre-allocate memory

- Timing functions (tic; toc;)

p




Speeding up MATLAB

Desktop Computer

- MATLAB Distributed
Computing Server

- matlabpool open 4
- do stuff

- matlabpool close

a = zeros (10, 1)

a(i) = 1i;

end

S

Pool of MATLAB Workers



Other best practices

Minimize dynamically changing path
- ‘addpath’+ “fullfile’, rather than ‘cd’

Use the functional load syntax

- X = load('myvars.mat’) instead of just load('myvars.mat’)

Minimize changing variable class
- X=1;
- xnew = 'hello"; instead of x = 'hello’;

File I/0

- Disk is slow compared to RAM

Displaying output

- Creating new figures is expensive
- Writing to command window is slow



