
Computational Vision

• Feature detection

• Filtering

LGN

What do neurons compute?

• Neurons detect features (=patterns
or templates) that are stored in
their synaptic weights

wx

Source: Hubel

Neurons as feature
detectors

• ~1M receptors

• 2.5-3.5M connecting neurons

• 0.5 M ganglion cells

• Each ganglion cell receives
many inputs from the
receptors

• Each receptor projects to
many ganglion cells

Neurons as feature detectors

source: webvision

Neurons as feature detectors

We have been tempted for example, to call the convexity detectors [class 2] “bug perceivers”. Such a
fiber responds best when a dark object, smaller than a receptive field, enters that field, stops, and
moves about intermittently thereafter. The response is not affected if the lighting changes or if the
background (say a picture of grass and flowers) is moving, and is not there if only the background,
moving or still, is in the field. Could one better describe a system for detecting an accessible bug?
[Lettvin et al 1959]

Template matching
by the jumping spider

• 4 pairs of eyes

• Eyes have single lenses like
mammals (unlike insects with
compound eyes)

• Scan visual scenes by moving
body and retina (lens is fixed)

• Detection at 30-40cm

• Hunt preys

Template matching by the jumping spider

mating behavior

capture behavior

Drees ’52

Land & Nilsson ’01

Cortex vs. computers

intermediate one. It uses full replication, but at the level of
object fragments rather than complete views. These shape
fragments can then serve as building blocks for defining
much larger sets of complex shapes. According to this
view, the brain will learn over time to extract appropriate
shape fragments, as well as the connection between similar
fragments at different locations. Shift invariance for
complex shapes is then obtained from straightforward
conjunctions of the responses to the more elementary frag-
ments comprising the full shape.
The fragment detectors are simpler than full-view detec-

tors, but more complex than elementary feature detectors
such as an oriented edge. In this scheme, not all object
representations are stored at each position, but only a
number of partial fragments, at a number of complexity
levels. As we shall see, view-fragments of this type can be
used in such a manner that a relatively small number of
features can allow the invariant recognition of a much larger
set of complex patterns.
A generalization of this approach is also proposed for

other forms of invariant recognition. The general proposal
is that the brain constructs, on the basis of past experience, a

S. Ullman, S. Soloviev / Neural Networks 12 (1999) 1021–10361024

Fig. 1. Detecting a shape by the conjunction of overlapping fragments. F2
unit responds to the maximal activity of its F1 units.

Fig. 2. Example of face parts from a system for face detection using the conjunction of fragments. The system uses multiple overlapping fragments, at different
levels of resolution. Figure prepared by E. Sali.

Brains: Full-replication
scheme

feature maps

source: Hubel

Retinotopy in early
visual areas

Cortex vs. computers

intermediate one. It uses full replication, but at the level of
object fragments rather than complete views. These shape
fragments can then serve as building blocks for defining
much larger sets of complex shapes. According to this
view, the brain will learn over time to extract appropriate
shape fragments, as well as the connection between similar
fragments at different locations. Shift invariance for
complex shapes is then obtained from straightforward
conjunctions of the responses to the more elementary frag-
ments comprising the full shape.
The fragment detectors are simpler than full-view detec-

tors, but more complex than elementary feature detectors
such as an oriented edge. In this scheme, not all object
representations are stored at each position, but only a
number of partial fragments, at a number of complexity
levels. As we shall see, view-fragments of this type can be
used in such a manner that a relatively small number of
features can allow the invariant recognition of a much larger
set of complex patterns.
A generalization of this approach is also proposed for

other forms of invariant recognition. The general proposal
is that the brain constructs, on the basis of past experience, a

S. Ullman, S. Soloviev / Neural Networks 12 (1999) 1021–10361024

Fig. 1. Detecting a shape by the conjunction of overlapping fragments. F2
unit responds to the maximal activity of its F1 units.

Fig. 2. Example of face parts from a system for face detection using the conjunction of fragments. The system uses multiple overlapping fragments, at different
levels of resolution. Figure prepared by E. Sali.

Brains: Full-replication
scheme

Computers:  
Filtering/Convolution

feature maps

kernel

Principles of spatial convolution/filtering

• Multiply each pixel in a
neighborhood by a corresponding
coefficient and sum the results to
get response at each point (x,y)

• Neighborhood of size (m,n) requires
nm coefficients

• Coefficients arranged as matrix
called filter, mask, filter mask, kernel,
or template

• Move center of the filter mask, w,
from point to point in image f

Example mask
!
0 0 0
1. 0 -1
0 0 0

Convolution is correlation with a rotated filter

imfilter conv2

2D convolution

r
i,j

=
X

x,y

w
i�x,j�y

f
x,y

Filtering in image processing

• Filtering the image is a set of
dot-products

• Insight: Filters look like the
effects they are intended to find

• Exercise:

• How well does the template matching operation works for detecting faces
and objects?

• What happens when the appearance of the target object changes (small
changes in size, view-point, background clutter, etc)?

• Play with the size of the templates: What are the pros and cons of small vs.
large templates?

Neurons as edge detectors

edge

First derivative of I Second derivative of II

I(x)

x

Neurons as edge detectors

First derivative of I Second derivative of I

�I(x, y)

�x

⇡ I(x+�x)� I(x)

�x

⇡ I(x+ 1)� I(x)

I

I(x)

x

Differential operators

Edges and contours play a special role in vision

Source: Cavanagh ’95

130 IRVING BIEDERMAN

Figure 11. Nine of the experimental objects.

The purpose of this experiment was to determine whether the
first few geons that would be available from an unoccluded view
of a complete object would be sufficient for rapid identification
of the object. We ordered the components by size and diagnos-
ticity because our interest, as just noted, was on primal access
in recognizing a complete object. Assuming that the largest and
most diagnostic components would control this access, we stud-
ied the contribution of the nth largest and most diagnostic com-
ponent; when added to the n- i already existing components,
because this would more closely mimic the contribution of that
component when looking at the complete object. (Another kind
of experiment might explore the contribution of an "average"
component by balancing the ordering of the components. Such
an experiment would be relevant to the recognition of an object
that was occluded in such a way that only the displayed compo-
nents would be available for viewing.)

Complexity
The objects shown in Figure 11 illustrate the second major

variable in the experiment. Objects differ in complexity; by
RBC's definition, the differences are evident in the number of
components they require to look complete. For example, the
lamp, the flashlight, the watering can, the scissors, and the ele-
phant require two, three, four, six, and nine components, re-
spectively. As noted previously, it would seem plausible that
partial objects would require more time for their identification
than complete objects, so that a complete airplane of nine com-

ponents, for example, might be more rapidly recognized than
only a partial version of that airplane, with only three of its
components. The prediction from RBC was that complex ob-
jects, by furnishing more diagnostic combinations of compo-
nents that could be simultaneously matched, would be more
rapidly identified than simple objects. This prediction is con-
trary to models that assume that objects are recognized through
a serial contour tracing process such as that studied by Oilman
(1983).

General Procedure
Trials were self-paced. The depression of a key on the sub-

ject's terminal initiated a sequence of exposures from three
projectors. First, the corners of a 500-ms fixation rectangle (6*
wide) that corresponded to the corners of the object slide were
shown. This fixation slide was immediately followed by a 100-
ms exposure of a slide of an object that had varying numbers
of its components present. The presentation of the object was
immediately followed by a 500-ms pattern mask consisting of a
random appearing arrangement of lines. The subject's task was
to name the object as fast as possible into a microphone that
triggered a voice key. The experimenter recorded errors. Prior
to the experiment, the subjects read a list of the object names
to be used in the experiment. (Subsequent experiments revealed
that this procedure for name familiarization produced no
effect. When subjects were not familiarized with the names of
the experimental objects, results were virtually identical to

Source: Biederman

130 IRVING BIEDERMAN

Figure 11. Nine of the experimental objects.

The purpose of this experiment was to determine whether the
first few geons that would be available from an unoccluded view
of a complete object would be sufficient for rapid identification
of the object. We ordered the components by size and diagnos-
ticity because our interest, as just noted, was on primal access
in recognizing a complete object. Assuming that the largest and
most diagnostic components would control this access, we stud-
ied the contribution of the nth largest and most diagnostic com-
ponent; when added to the n- i already existing components,
because this would more closely mimic the contribution of that
component when looking at the complete object. (Another kind
of experiment might explore the contribution of an "average"
component by balancing the ordering of the components. Such
an experiment would be relevant to the recognition of an object
that was occluded in such a way that only the displayed compo-
nents would be available for viewing.)

Complexity
The objects shown in Figure 11 illustrate the second major

variable in the experiment. Objects differ in complexity; by
RBC's definition, the differences are evident in the number of
components they require to look complete. For example, the
lamp, the flashlight, the watering can, the scissors, and the ele-
phant require two, three, four, six, and nine components, re-
spectively. As noted previously, it would seem plausible that
partial objects would require more time for their identification
than complete objects, so that a complete airplane of nine com-

ponents, for example, might be more rapidly recognized than
only a partial version of that airplane, with only three of its
components. The prediction from RBC was that complex ob-
jects, by furnishing more diagnostic combinations of compo-
nents that could be simultaneously matched, would be more
rapidly identified than simple objects. This prediction is con-
trary to models that assume that objects are recognized through
a serial contour tracing process such as that studied by Oilman
(1983).

General Procedure
Trials were self-paced. The depression of a key on the sub-

ject's terminal initiated a sequence of exposures from three
projectors. First, the corners of a 500-ms fixation rectangle (6*
wide) that corresponded to the corners of the object slide were
shown. This fixation slide was immediately followed by a 100-
ms exposure of a slide of an object that had varying numbers
of its components present. The presentation of the object was
immediately followed by a 500-ms pattern mask consisting of a
random appearing arrangement of lines. The subject's task was
to name the object as fast as possible into a microphone that
triggered a voice key. The experimenter recorded errors. Prior
to the experiment, the subjects read a list of the object names
to be used in the experiment. (Subsequent experiments revealed
that this procedure for name familiarization produced no
effect. When subjects were not familiarized with the names of
the experimental objects, results were virtually identical to

Illusions and center-surround processing

Source: http://www.nku.edu/~issues/illusions

http://www.nku.edu/~issues/illusions

Illusions and center-surround processing

Source: http://www.nku.edu/~issues/illusions

http://www.nku.edu/~issues/illusions

Illusions and center-surround processing

Source: Adelson (2000)

nested squares. Each square is a constant luminance. The
pattern gives the illusion of a glowing X along the diagonals,
even though the corners of the squares are no brighter than
the straight parts. When a center-surround filter is run over
this pattern (i.e., is convolved with it) it produces the image
shown in figure 24.3(b). The filter output makes the bright
diagonals explicit.

A center-surround filter cannot explain a percept by
itself: perception involves the whole brain. However, it is
interesting that center-surround responses can go a long way
to explaining certain illusions.

Derivative operators respond especially well to sharp
intensity transitions such as edges. The importance of edges,
and the lesser importance of slow gradients, is indicated by
the Craik-O’Brien-Cornsweet effect (COCE) named after its
several discoverers. Figure 24.4 shows one of several COCE
variants. The figure appears to contain a dark square next to

a light square. Actually, the two squares are ramps, and they
are identical, as shown by the luminance profile underneath
(the dashed lines show constant luminances). The response
of a center-surround cell to this pattern will be almost the
same as its response to a true step edge: there will be a big
response at the edge, and a small response elsewhere. While
this doesn’t explain why the image looks as it does, it may
help explain why one image looks similar to the other
(Cornsweet, 1970).

Center-surround processing is presumably in place for a
good reason. Land and McCann (1971) developed a model
they called Retinex, which placed the processing in a mean-
ingful computational context.

Land and McCann began by considering the nature of
scenes and images. They argued that reflectance tends to be
constant across space except for abrupt changes at the tran-
sitions between objects or pigments. Thus a reflectance
change shows itself as step edge in an image, while illumi-
nance will change only gradually over space. By this argu-
ment one can separate reflectance change from illuminance
change by taking spatial derivatives: high derivatives are due
to reflectance and low ones are due to illuminance.

The Retinex model applies a derivative operator to the
image, and thresholds the output to remove illuminance vari-
ation. The algorithm then reintegrates edge information over
space to reconstruct the reflectance image.

The Retinex model works well for stimuli that satisfy its
assumptions, including the Craik-O’Brien-Cornsweet dis-
play, and the “Mondrians” that Land and McCann used. A
Mondrian (so-called because of its loose resemblance to
paintings by the artist Mondrian) is an array of randomly col-
ored, randomly placed rectangles covering a plane surface,
and illuminated non-uniformly.

340 SENSORY SYSTEMS

FIGURE 24.1 The simultaneous contrast effect.

FIGURE 24.2 Center-surround inhibition.

FIGURE 24.3 An illusion by Vasarely (a) and a bandpass filtered ver-
sion (b)

FIGURE 24.4 One version of the Craik-O’Brien-Cornsweet Effect

nested squares. Each square is a constant luminance. The
pattern gives the illusion of a glowing X along the diagonals,
even though the corners of the squares are no brighter than
the straight parts. When a center-surround filter is run over
this pattern (i.e., is convolved with it) it produces the image
shown in figure 24.3(b). The filter output makes the bright
diagonals explicit.

A center-surround filter cannot explain a percept by
itself: perception involves the whole brain. However, it is
interesting that center-surround responses can go a long way
to explaining certain illusions.

Derivative operators respond especially well to sharp
intensity transitions such as edges. The importance of edges,
and the lesser importance of slow gradients, is indicated by
the Craik-O’Brien-Cornsweet effect (COCE) named after its
several discoverers. Figure 24.4 shows one of several COCE
variants. The figure appears to contain a dark square next to

a light square. Actually, the two squares are ramps, and they
are identical, as shown by the luminance profile underneath
(the dashed lines show constant luminances). The response
of a center-surround cell to this pattern will be almost the
same as its response to a true step edge: there will be a big
response at the edge, and a small response elsewhere. While
this doesn’t explain why the image looks as it does, it may
help explain why one image looks similar to the other
(Cornsweet, 1970).

Center-surround processing is presumably in place for a
good reason. Land and McCann (1971) developed a model
they called Retinex, which placed the processing in a mean-
ingful computational context.

Land and McCann began by considering the nature of
scenes and images. They argued that reflectance tends to be
constant across space except for abrupt changes at the tran-
sitions between objects or pigments. Thus a reflectance
change shows itself as step edge in an image, while illumi-
nance will change only gradually over space. By this argu-
ment one can separate reflectance change from illuminance
change by taking spatial derivatives: high derivatives are due
to reflectance and low ones are due to illuminance.

The Retinex model applies a derivative operator to the
image, and thresholds the output to remove illuminance vari-
ation. The algorithm then reintegrates edge information over
space to reconstruct the reflectance image.

The Retinex model works well for stimuli that satisfy its
assumptions, including the Craik-O’Brien-Cornsweet dis-
play, and the “Mondrians” that Land and McCann used. A
Mondrian (so-called because of its loose resemblance to
paintings by the artist Mondrian) is an array of randomly col-
ored, randomly placed rectangles covering a plane surface,
and illuminated non-uniformly.

340 SENSORY SYSTEMS

FIGURE 24.1 The simultaneous contrast effect.

FIGURE 24.2 Center-surround inhibition.

FIGURE 24.3 An illusion by Vasarely (a) and a bandpass filtered ver-
sion (b)

FIGURE 24.4 One version of the Craik-O’Brien-Cornsweet Effect

Computing with RFs: Summary

• Basic model of neural processing

• Reverse engineering
computations by trying to interpret
synaptic weights

• Filtering, convolution, preferred
stimulus, template matching f

Graphics Processing Units

source: http://dual.sphysics.org/index.php/gpu/

http://dual.sphysics.org/index.php/gpu/

Graphics Processing Units

source: NVIDIA

• Send Data to GPU:

- M = magic(6);

- G = gpuArray(M);

• Retrieve Data from GPU:

- D = gather(G);

• Many built-In functions support for
gpuArray (conv2, imfilter, etc)

• gpuarrayB = imfilter(gpuArrayA,h)

Speeding up MATLAB

• Leveraging the power of vector
& matrix operations

• Vectorize your code (MATLAB
optimized for column / block
processing)

• Pre-allocate memory

• Timing functions (tic; toc;)

6/16/2012

4

7

Data Storage of MATLAB Arrays

>> x = magic(3)
x =
 8 1 6
 3 5 7
 4 9 2

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0x0040

0x0048

0x0050

0x0058

0x0060

0x0068

See the June 2007 article in “The MathWorks News and Notes”:
http://www.mathworks.com/company/newsletters/news_notes/june07/patterns.html

8
3
4
1
5
9
6
7
2

9

Indexing into MATLAB Arrays

� Subscripted
– Access elements by rows and columns

� Linear
– Access elements with a single number

� Logical
– Access elements with logical operations or mask

1 4 7

2 5 8

3 6 9

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

Linear indexing

Subscripted indexing

ind2sub sub2ind

6/16/2012

3

5

Effect of Not Preallocating Memory

>> x = 4
>> x(2) = 7
>> x(3) = 12

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

4 4
4
7

4
7

4
7
12

 X(3) = 12 X(2) = 7

6

Benefit of Preallocation

>> x = zeros(3,1)
>> x(1) = 4
>> x(2) = 7
>> x(3) = 12

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0
0
0

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0
0
0

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

4
0
0

4
7
0

4

7

12

Speeding up MATLAB

• MATLAB Distributed
Computing Server

- matlabpool open 4

- do stuff

- matlabpool close

6/16/2012

11

22

Parallel Computing on the Desktop

� Use Parallel Computing Toolbox

� Speed up parallel applications
on local computer

� Take full advantage of desktop
power by using CPUs and GPUs
(up to 12 workers)

� Separate computer cluster
not required

Desktop Computer

Parallel Computing Toolbox

23

Scale Up to Clusters, Grids and Clouds

Desktop Computer

Parallel Computing Toolbox

Computer Cluster

MATLAB Distributed Computing Server

Scheduler

6/16/2012

14

28

Example:
Parameter Sweep of ODEs

Damped spring oscillator

� Sweep through different
values of b and k

� Record peak value for each
simulation

-

, , 0
,...2,1,...2,1

5

 �� xkxbxm ���

� Parameter sweep of ODE
system

� Use pool of MATLAB workers

� Convert for to parfor

� Interleave serial and
parallel code

29

The Mechanics of parfor Loops

Pool of MATLAB Workers

a = zeros(10, 1)
parfor i = 1:10
 a(i) = i;
end
a a(i) = i;

a(i) = i;
a(i) = i;

a(i) = i;

Worker
Worker

Worker Worker

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Other best practices

• Minimize dynamically changing path

- ‘addpath’+ ‘fullfile’, rather than ‘cd’

• Use the functional load syntax

- x = load('myvars.mat') instead of just load('myvars.mat')

• Minimize changing variable class

- x = 1;

- xnew = 'hello'; instead of x = 'hello';

• File I/O

- Disk is slow compared to RAM

• Displaying output

- Creating new figures is expensive

- Writing to command window is slow

