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The intensity measurements taken by both scan-
ners and digital cameras are recorded as numbers 
stored in a digital memory. To call this collection 
of numbers a “gray level description” is apt because 
this is exactly what the numbers are providing, as 
in 1.8.

The term “gray level” arises from the black- 
and-white nature of the system, with black being 
regarded as a very dark gray (and recorded with a 
small number) and white as a very light gray (and 
recorded with a large number).

The numbers are a description in the sense 
defined earlier: they make explicit the gray levels 
in the input image. That is, they make these gray 
levels immediately usable (which means there is 
no need for further processing to recover them) by 
subsequent stages of image processing. 

Retinal images are upside-down, due to the 
optics of the eyes (Ch 2) and many people are 
worried by this. “Why doesn’t the world therefore 
appear upside down?”, they ask.

The answer is simple: as long as there is a 
systematic correspondence between the outside 
scene and the retinal image, the processes of image 
interpretation can rely on this correspondence, and 
build up the required scene description according-
ly. Upside-down in the image is simply interpreted 
as right-way-up in the world, and that’s all there is 
to it.

If an observer is equipped with special spectacles 
which optically invert the retinal images so that 
they become the “right-way-up,” then the world 
appears upside-down until the observer learns to 
cope with the new correspondence between image 
and scene. This adjustment process can take weeks, 
but it is possible. The exact nature of the adjust-
ment process is not yet clear: does the upside-down 
world really begin to “look” right-way-up again, or 
is it simply that the observer learns new patterns of 
adjusted movement to cope with the strange new 
perceptual world he finds himself in?

1.8 Gray level description for a small region of an image of Lennon

Input image

Spectacle lens region enlarged to 
reveal individual pixels as squares 
with different gray levels

A sample of pixels from the upper left section of the spectacle 
region picked out above. This shows the pixel intensities both as 
different shades of gray and as the numbers stored in the gray level 
description in the computer’s memory.



Representing colors: RGB space

each color component corresponds 
to a specific wavelength

700 nm 546 nm

436 nm



• Ideally each component 
represented with floating point in 
the range (0,1)


• In practice: 8 bits per component 
or 24 bits per color, i.e., 16M 
possible colors


• For higher accuracy people use 
10 bits or even 12 bits

Representing colors: 
RGB space

Source: wikipedia



Representing colors

• Color space conversions correspond to matrix multiplications



Representing colors cont’d

• LAB space

- L: lightness (matched to human lightness sensitivity)


- A & B correspond to opponent channels (more next)


• LMS space:

- Long, Medium and Short wavelength based on primate 

cone sensitivity


• HSV space:

- Hue, Saturation and Value


• etc etc



Psychological 
description of color

• Subjective experience of 
color has a very different 
structure from that of the 
physical light 


• Only 3 variables needed 
to describe the 
perception of color!


- hue (dimension we 
associate with ‘color’)


- saturation (also called 
chroma | color purity)


- lightness (also called 
luminance or value)

Source: http://equasys.de/colorformat.html

change in lightness

change in hue

change in saturation

Source: unknown

http://equasys.de/colorformat.html


Psychophysical 
correspondences

• Spectra with approx. normal 
distributions 
(~monochromatic lights)

Source: Frisby & Stone



Color and brightness perception depends on context!



Color and brightness perception depends on context!



The Land-Mondrian experiments (1964)
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Beyond trichromaticity theory

• Until mid 20th century trichromaticity theory widely 
accepted


• Color opponency proposed by Hering in the 19th 
century based on perception of pure colors


• Four color primaries arranged in pairs:

- red/green


- blue/yellow



Afterimages:


- red spot -> green afterimage


- blue dot -> yellow afterimage



Opponent color 
theory

• Color opponency 
proposed by Hering in the 
19th century based on 
perception of pure colors

- colors never lost singly as 

predicted by trichromatic 
theory but in specific pairs


- no bluish yellow or reddish 
green


• Clearly something is going 
on outside the retina...

Ewald Hering  
(1878 – 1964)



Opponent color theory



Hierarchical organization in the retina and beyond

source: webvision source: http://camelot.mssm.edu/~ygyu/research.html

http://camelot.mssm.edu/~ygyu/research.html


Computing neurons

y(x) = w

T
x

y(x) =
X

wixi

Spike trains / firing rates 
coming from each 

afferent neuron

Synaptic efficacies

Summation at the soma

f(u) = u if u>0 
and 0 otherwise 

f(u) = u2 if u>0 
and 0 otherwise 

f

Spike generation 
process introduces 

non-linearity

several layers 
of processing 
in the retina

ganglion cells = 
retinal output / 

LGN



Center surround 
organization



• Neurons detect features 
(=patterns or templates) that are 
stored in their synaptic weights
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What do neurons compute?
wx



Receptive fields (RFs) w

x
y(x) =

X
wixi

= w · x
= ||w||||x|| cos(✓)

f(u) = u if u>0 
and 0 otherwise 

f(u) = u2 if u>0 
and 0 otherwise 



Receptive fields (RFs) w

y(x) =

X
wixi

= w · x
= ||w||||x|| cos(✓)

y(x)>0

y(x)=0



LGN		

• Magno vs. parvo (more 
when we talk about 
spatial frequencies)

source: http://www.els.net/WileyCDA/ElsArticle/refId-a0000230.html



Center surround 
organization

on center - off surround off center - on surround



Center surround 
organization

Source: Hubel

on center - off surround off center - on surround



Linear system theory

• A linear system is one in which the input-output behavior 
may be described in terms of a linear function:

- e.g., y = a*x + b


• What is a linear function? 

- obeys the rules of superposition and scaling


• Linear algebra provides a powerful tool for the analysis of 
complex, multivariate systems


• Although most systems in nature are non-linear, our 
understanding of them can still be aided by the intuitions 
and insights gained from linear systems analysis



Reverse correlation
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Fig. 3. Simple cortical cells can be modeled as a linear system acting on a spatio-temporal volume followed by a
spike encoder. The impulse response of the linear system, h(x, y, t), can be measured via reverse correlation when
the system is stimulated with spatio-temporal white noise.

that describes spatial sensitivity as a function of time offset between stimulus and response
(Fig. 3).
Erich Sutter provided one of the first demonstrations of how white noise analysis can be

used to measure the spatio-temporal impulse response in cat visual cortex (Sutter, 1975). He
devised an ingenious device where the (x, y) position of a dot on an oscilloscope was recorded
on an analog tape and the responses of the neurons were recorded on a second analog tape. To
compute the cross-correlation between stimulus and response the tapes would be delayed one
with respect to the other by a few milliseconds and then played back. The average stimulus
before a spikewas computed by repeatedly exposing photographic filmduring the occurrence of
the spikes (photographic summation), by having the spikes trigger the exposure of the camera.
By repeating this procedure for different lags between the stimulus and response tapes Sutter
calculated the entire spatio-temporal response for a simple cell in cat area 17. He observed the
typical elongated “on” and “off” subfields described in the studies of Hubel and Wiesel. To
our knowledge this is the first time such a calculation was performed in a cortical cell.
Measurements of the spatio-temporal impulse response by cross correlation with spatio-

temporal white noise were also attempted in the retina by Hida and Naka (1982). They stimu-
lated retinal ganglion cells in the catfish retina with white noise and derived spatial weighting
functions at the time delay of peak response. They triggered on each ganglion cell’s spike and
accumulated images at past times in a running sum, to estimate the cross correlation func-
tion. They observed asymmetries in the retinal ganglion cell receptive fields that had been
unobservable before.
Other kinds of stimuli have been used to determine the spatio-temporal impulse response

function. Jones and Palmer (1987) used small, rectangular bar stimuli, flashed at random
locations in the receptive fields of V1 cells in cat visual cortex. By using reverse correlation
between the evoked spikes and the positions and times of occurrence of the stimuli, they
estimated the spatial impulse response at a fixed offset (50ms). Fig. 4 illustrates the kind
of (x, y) maps Jones and Palmer (1987) obtained for the spatio-temporal impulse response
of cat V1 neurons. Jones and Palmer’s stimuli were approximately similar to white noise in
power spectrum and autocorrelation, but differed greatly in other statistical measures. As has
been discussed elsewhere (Reid, Victor, & Shapley, 1997), the stimuli of Jones and Palmer
(1987) were “sparse” in time—most of the time the stimulus at each location (x, y) was zero.
Similar results with similar techniques were obtained in later work by DeAngelis, Ohzawa,
and Freeman (1993) who studied spatio-temporal receptive field properties in the adult cat as
well as in kittens. The approach of Jones and Palmer and of DeAngelis et al. is very unlike
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sensory function that have come out of experiments that used reverse correlation to study spatial
and temporal processing, and some of our new results about the time evolution of categorical
responses.
Many sensory neurons can be understood as stimulus-response transducers that are driven by

sensory stimulation from the outsideworld. Such a neuron is quiet or in a background state in the
absence of stimulation. Then, when presented with an appropriate stimulus, the neuron is either
activated above its background level of activity or in some cases suppressed below background
in amore or less consistent manner from one stimulus presentation to the next.When the stimu-
lation ceases, the sensory neuron’s activity relaxes back to the background state. This functional
description applies to most sub-cortical sensory neurons that have been studied. In the sensory
areas of the cerebral cortex there are neurons that behave as sensory transducers according to
howwe have defined it here, though not all the cortical neurons fit this description. Any cortical
neuron that is involved in memory or decisions or action will have some activity that is not
stimulus driven, and therefore such a neuronwill not fit neatly into the definition of a transducer
neuron. The techniques that we will be discussing in this review paper under the heading of
“reverse correlation” are only applicable to neurons of the transducer type. These techniques
do not apply to cell’s whose response depends on memory or decisions or action. Nevertheless,
there are many neural transducers that are worth understanding in order to understand how the
nervous system works and how neuronal networks can explain aspects of behavior.

2. Linear transducers

The simplest transducers are linear, so let’s consider them first. The simplest linear transduc-
ers are those with a single input and a single output. We can find out the principles of reverse
correlation from these simplest transducers, which we’ll call linear-single-input, single-output
systems, or LSISOS. As illustrated in Fig. 1a, a LSISOS will respond to a brief pulse of input

Linear system
h(t)

Input Output

h(t)
Linear system

h(t)
(a)

(b)

Fig. 1.A linear time-invariant system is characterized by its impulse response, h(t). Thefigure illustrates twodifferent
ways of measuring it. (a) The impulse response can be measured as the response to a brief pulse of unit area, or (b)
the impulse response of the system, h(t), can be measured by having a white noise input and cross-correlating the
resulting output with the input. The impulse response provides a full characterization of a linear system.
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Fig. 5. (A and B) Spatial kernels for parvocellular LGN cells obtained by performing reverse correlation in
cone-isolating directions (Reid & Shapley, 2002).

the input to the neuron from each cone type in time, at each location in the visual field. Such
results are shown in Fig. 5 as a set of response “movie strips,” a column of slices through the
spatio-temporal impulse response at different times (labeled in the figure).

7. Subspace reverse correlation and cortical receptive fields

As one moves from the retina to higher visual areas the receptive field of neurons become
more complex. For example, some studies have found that neurons in V2 can be tuned to



Reconstruction of natural 
scenes from ensemble 
responses in the LGN

half of the cells used in the real reconstruction. Finally, the theoretical
SER was computed as the ratio between the power spectrum of the actual
stimulus and the theoretical spectrum of the error, !ee(!), as defined
above.

Estimation of coverage factor. The coverage factor is defined as the
average number of cells whose receptive fields cover a single point in the
visual space. Previous studies have shown that the coverage factor for X
cells in the cat retina is 7–10 (Peichl and Wässle, 1979). This coverage
factor represents the coverage by the centers of the receptive fields. In
our analysis, some cells were also used to reconstruct signals in the
surround of their receptive fields. In the great majority of cases, the pixel
being reconstructed was within an area twice that of the receptive field
center. Therefore, we scaled the estimate of Peichl and Wässle (1979) by
a factor of 2, resulting in a coverage factor of 14 –20 for the retina. In the
cat, the number of X cells in the retina is "75,000 (Wässle and Boycott,
1991), and the number of geniculate X cells representing each eye is
"120,000 (Peters and Payne, 1993). We estimated the coverage factor for
LGN X cells by multiplying the coverage factor in the retina (14–20) by
the ratio between geniculate and retinal X cells ("1.5). The coverage
factor for LGN X cells is therefore "20–30 cells.

RESULTS
Multiple cells in the LGN of anesthetized cats were recorded
simultaneously with multielectrodes (Eckhorn and Thomas,
1993). The receptive fields of these cells were mapped with
spatiotemporal white-noise stimuli and the reverse correlation
method (Sutter, 1987; Reid et al., 1997). Only X cells were
selected for further studies because they are presumably involved
in processing the spatial details of visual scenes (Wässle and
Boycott, 1991) and they have relatively linear response properties
(So and Shapley, 1981). We recorded the responses of the cells to
multiple repeats of eight short movies, and these data were used
for subsequent analyses. The geniculate cells were well driven by
the movie stimuli, as indicated by their mean firing rates, which
were higher during movie presentation (11.7 spikes/sec; n # 57
cells) than in the absence of visual stimuli (6.8 spikes/sec; n # 41
cells).

A multi-input, multi-output linear decoding technique was im-
plemented to reconstruct the spatiotemporal visual inputs. Figure
1a shows the receptive fields of eight neurons recorded simulta-
neously. Outlined in white are the four pixels at which the movie
signals were reconstructed. As a first step in the reconstruction, a
set of linear reverse filters from the responses of all the neurons
to these pixels was computed (see Data Analyses). These linear
reverse filters (Fig. 1b) are optimal in the sense that they mini-
mize the mean-square error of the reconstructed luminance sig-
nals. They depend on not only the response property of each cell,
but also the correlation between cells, as well as the statistics of
natural scenes (Warland et al., 1997; Bialek and Rieke, 1992). The
visual signal at each pixel was reconstructed by convolving the
spike train of each cell (Fig. 1c) with the corresponding reverse
filter and summing the results from all eight cells. Figure 1d shows
the actual (black) and the reconstructed (magenta) luminance
signals as functions of time. The low frequency, slow varying
features of the stimuli were well captured by the reconstruction.
Consistent with the known temporal properties of X cells, which
respond poorly to stimuli at high frequencies, some of the quick
transients were not well reconstructed. For these four pixels, the
mean correlation coefficient between the reconstructed and the
actual signals was 0.60 $ 0.04.

In addition to reconstructing the temporal features, our goal
was also to capture the spatial patterns of natural scenes. To
reconstruct movie scenes in an area large enough to contain
recognizable objects, we pooled the responses of 177 cells (89 on,
88 off) recorded in 11 experiments using the same visual stimuli.

Figure 2a shows the receptive fields of these cells, distributed
over an area of 6.4 % 6.4°. For each pixel of the movie, we used
the responses of 7–20 cells (average 14, with approximately equal
numbers of on and off cells) whose receptive fields, including both
center and surround, covered that pixel. The reconstruction was
carried out in the same manner as illustrated in Figure 1. The
results at all pixels were then combined to obtain a spatiotempo-
ral signal. Figure 2b shows three examples of the actual and the
reconstructed images in consecutive movie frames. Note that

Figure 1. The procedure for reconstructing visual stimuli from the re-
sponses of multiple neurons. a, Receptive fields of eight neurons recorded
simultaneously with multielectrodes. These receptive fields were mapped
with white-noise stimuli and the reverse correlation method (Sutter, 1987;
Reid et al., 1997). Red, On responses. Blue, Off responses. The brightest
colors correspond to the strongest responses. The area shown is 3.6 %
3.6°. The responses of these cells were used to reconstruct visual inputs at
the four pixels (0.2°/pixel) outlined with the white squares. b, Linear filters
for input reconstruction. The eight blocks correspond to the eight cells
shown in a. Shown in each block are the four filters from that cell to the
four pixels outlined in a. They represent the linear estimates of the input
signals at these pixels immediately preceding and following a spike of that
cell. Each filter is 3.1-sec-long, with 1.55 sec before and 1.55 sec after the
spike. c, Spike trains of the eight neurons in response to movie stimuli. d,
The actual (black) and the reconstructed (magenta) movie signals at the
four pixels outlined in a. Unlike white noise, natural visual signals exhibit
more low-frequency, slow variations than high-frequency, fast variations.
Such temporal features are well captured by the reconstruction.
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half of the cells used in the real reconstruction. Finally, the theoretical
SER was computed as the ratio between the power spectrum of the actual
stimulus and the theoretical spectrum of the error, !ee(!), as defined
above.

Estimation of coverage factor. The coverage factor is defined as the
average number of cells whose receptive fields cover a single point in the
visual space. Previous studies have shown that the coverage factor for X
cells in the cat retina is 7–10 (Peichl and Wässle, 1979). This coverage
factor represents the coverage by the centers of the receptive fields. In
our analysis, some cells were also used to reconstruct signals in the
surround of their receptive fields. In the great majority of cases, the pixel
being reconstructed was within an area twice that of the receptive field
center. Therefore, we scaled the estimate of Peichl and Wässle (1979) by
a factor of 2, resulting in a coverage factor of 14–20 for the retina. In the
cat, the number of X cells in the retina is "75,000 (Wässle and Boycott,
1991), and the number of geniculate X cells representing each eye is
"120,000 (Peters and Payne, 1993). We estimated the coverage factor for
LGN X cells by multiplying the coverage factor in the retina (14–20) by
the ratio between geniculate and retinal X cells ("1.5). The coverage
factor for LGN X cells is therefore "20–30 cells.

RESULTS
Multiple cells in the LGN of anesthetized cats were recorded
simultaneously with multielectrodes (Eckhorn and Thomas,
1993). The receptive fields of these cells were mapped with
spatiotemporal white-noise stimuli and the reverse correlation
method (Sutter, 1987; Reid et al., 1997). Only X cells were
selected for further studies because they are presumably involved
in processing the spatial details of visual scenes (Wässle and
Boycott, 1991) and they have relatively linear response properties
(So and Shapley, 1981). We recorded the responses of the cells to
multiple repeats of eight short movies, and these data were used
for subsequent analyses. The geniculate cells were well driven by
the movie stimuli, as indicated by their mean firing rates, which
were higher during movie presentation (11.7 spikes/sec; n # 57
cells) than in the absence of visual stimuli (6.8 spikes/sec; n # 41
cells).

A multi-input, multi-output linear decoding technique was im-
plemented to reconstruct the spatiotemporal visual inputs. Figure
1a shows the receptive fields of eight neurons recorded simulta-
neously. Outlined in white are the four pixels at which the movie
signals were reconstructed. As a first step in the reconstruction, a
set of linear reverse filters from the responses of all the neurons
to these pixels was computed (see Data Analyses). These linear
reverse filters (Fig. 1b) are optimal in the sense that they mini-
mize the mean-square error of the reconstructed luminance sig-
nals. They depend on not only the response property of each cell,
but also the correlation between cells, as well as the statistics of
natural scenes (Warland et al., 1997; Bialek and Rieke, 1992). The
visual signal at each pixel was reconstructed by convolving the
spike train of each cell (Fig. 1c) with the corresponding reverse
filter and summing the results from all eight cells. Figure 1d shows
the actual (black) and the reconstructed (magenta) luminance
signals as functions of time. The low frequency, slow varying
features of the stimuli were well captured by the reconstruction.
Consistent with the known temporal properties of X cells, which
respond poorly to stimuli at high frequencies, some of the quick
transients were not well reconstructed. For these four pixels, the
mean correlation coefficient between the reconstructed and the
actual signals was 0.60 $ 0.04.

In addition to reconstructing the temporal features, our goal
was also to capture the spatial patterns of natural scenes. To
reconstruct movie scenes in an area large enough to contain
recognizable objects, we pooled the responses of 177 cells (89 on,
88 off) recorded in 11 experiments using the same visual stimuli.

Figure 2a shows the receptive fields of these cells, distributed
over an area of 6.4 % 6.4°. For each pixel of the movie, we used
the responses of 7–20 cells (average 14, with approximately equal
numbers of on and off cells) whose receptive fields, including both
center and surround, covered that pixel. The reconstruction was
carried out in the same manner as illustrated in Figure 1. The
results at all pixels were then combined to obtain a spatiotempo-
ral signal. Figure 2b shows three examples of the actual and the
reconstructed images in consecutive movie frames. Note that

Figure 1. The procedure for reconstructing visual stimuli from the re-
sponses of multiple neurons. a, Receptive fields of eight neurons recorded
simultaneously with multielectrodes. These receptive fields were mapped
with white-noise stimuli and the reverse correlation method (Sutter, 1987;
Reid et al., 1997). Red, On responses. Blue, Off responses. The brightest
colors correspond to the strongest responses. The area shown is 3.6 %
3.6°. The responses of these cells were used to reconstruct visual inputs at
the four pixels (0.2°/pixel) outlined with the white squares. b, Linear filters
for input reconstruction. The eight blocks correspond to the eight cells
shown in a. Shown in each block are the four filters from that cell to the
four pixels outlined in a. They represent the linear estimates of the input
signals at these pixels immediately preceding and following a spike of that
cell. Each filter is 3.1-sec-long, with 1.55 sec before and 1.55 sec after the
spike. c, Spike trains of the eight neurons in response to movie stimuli. d,
The actual (black) and the reconstructed (magenta) movie signals at the
four pixels outlined in a. Unlike white noise, natural visual signals exhibit
more low-frequency, slow variations than high-frequency, fast variations.
Such temporal features are well captured by the reconstruction.
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scenes from ensemble 
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Source: Stanley et al 99

moving objects (tree trunks, branches, and a human face) are
discernible in the reconstructed movies. To evaluate the recon-
struction quantitatively, we computed the correlation coefficients
between the reconstructed and the actual signals along two di-
mensions: as functions of time at each pixel and as functions of
spatial position at each frame (Fig. 2c). Both the spatial and
temporal correlation coefficients peaked at 0.6–0.7. The spatial
correlation coefficients are more dispersed than the temporal
correlation coefficients, which may be caused by the fact that
different pixels were reconstructed from different sets of cells.
Such inhomogeneity may introduce an additional source of vari-
ability along the spatial dimension.

To further evaluate the linear decoding technique used in the
current study, we performed spectral analyses of the reconstruc-
tion. First, we computed the temporal power spectra of the actual
(Fig. 3a, thick line) and the reconstructed (thin line) inputs. They
closely resemble each other, both exhibiting an !1/f2 profile that

is characteristic of natural scenes (Dong and Atick, 1995). Sec-
ond, we computed the power spectrum of the error, which is the
difference between the actual and the reconstructed signals. The
SER of the reconstruction was plotted as a function of temporal
frequency (Fig. 3b, solid line). To evaluate the significance of the
SER, we computed a control SER (dashed line), which is the SER
of the reconstruction generated from randomly matched visual
stimuli and neuronal responses. Between 0.125 and 16 Hz, the
real SER (solid line) is significantly higher than the control SER,
indicating that meaningful visual information is extracted at all of
these frequencies. Finally, previous studies have shown that
geniculate X cells can be modeled as spatiotemporal linear filters
(Derrington and Fuchs, 1979; Dan et al., 1996) with additive
noise (Sestokas and Lehmkuhle, 1988). Using this model, we
estimated the theoretical SER of the reconstruction (dotted line)
based on its analytical relationship with the noise in the re-
sponses, assuming perfect linear encoding (see Data Analyses).

Figure 2. Reconstruction of natural scenes from the responses of a population of neurons. a, Receptive fields of 177 cells used in the reconstruction.
Each receptive field was fitted with a two-dimensional Gaussian function. Each ellipse represents the contour at one SD from the center of the Gaussian
fit. Note that the actual receptive fields (including surround) are considerably larger than these ellipses. Red, On center. Blue, Off center. An area of 32 "
32 pixels (0.2°/pixel) where movie signals were reconstructed is outlined in white. The grid inside the white square delineates the pixels. b, Comparison
between the actual and the reconstructed images in an area of 6.4 " 6.4° (a, white square). Each panel shows four consecutive frames (interframe interval,
31.1 msec) of the actual (top) and the reconstructed (bottom) movies. Top panel, Scenes in the woods, with two trunks of trees as the most prominent
objects. Middle panel, Scenes in the woods, with smaller tree branches. Bottom panel, A face at slightly different displacements on the screen. c,
Quantitative comparison between the reconstructed and the actual movie signals. Top, Histogram of temporal correlation coefficients between the actual
and the reconstructed signals (both as functions of time) at each pixel. The histogram was generated from 1024 (32 " 32) pixels in the white square.
Bottom, Histogram of spatial correlation coefficients between the actual and the reconstructed signals (both as functions of spatial position) at each frame.
The histogram was generated from 4096 frames (512 frames per movie; 8 movies).

Stanley et al. • Reconstruction of Natural Scenes J. Neurosci., September 15, 1999, 19(18):8036–8042 8039
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Fig. 5. (A and B) Spatial kernels for parvocellular LGN cells obtained by performing reverse correlation in
cone-isolating directions (Reid & Shapley, 2002).

the input to the neuron from each cone type in time, at each location in the visual field. Such
results are shown in Fig. 5 as a set of response “movie strips,” a column of slices through the
spatio-temporal impulse response at different times (labeled in the figure).

7. Subspace reverse correlation and cortical receptive fields

As one moves from the retina to higher visual areas the receptive field of neurons become
more complex. For example, some studies have found that neurons in V2 can be tuned to



Functional connectivity 
in the retina

Field et al ’10

the present data, tests for cone clumping on the scale of midget-cell
receptive fields indicated a weak tendency towards clumping in three
out of seven recordings (Methods). However, clumping alone cannot
account for the observed purity, because artificial conemosaics with the
same degree of clumping reduced purity (Fig. 4m). Thus, the purity
indicates that midget cells sample L- and M-cone inputs, through the
retinal network, in a selective manner.
Selective sampling could be produced if (1) each midget cell

receives inputs from one cone type more frequently than the other;
and/or (2) each midget cell weights inputs from one cone type more
strongly than the other. The results of statistical analyses were con-
sistent with both factors. In model (1), the number of cones sampled
by each midget cell should be skewed towards one cone type or the
other. Therefore, random permutation of L- and M-cone identities
should reduce purity, even if the relative weights of different cone
inputs to each cell are ignored by binarizing them. This prediction

was confirmed (Fig. 4n). In model (2), the weights on cone inputs to
each midget cell should be skewed towards one cone type or the other.
Therefore, random permutation of the strength of all the cone inputs
within the receptive field of eachmidget cell should reduce purity. This
prediction was also confirmed (Fig. 4o), although the effect was mod-
est. Control analysis indicated that these findings were not a result of
the tapering receptive-field profile of RGCs or clumping in the cone
mosaic (data not shown).
Selective sampling raises questions about the mechanisms by which

functional connectivity between cones and RGCs is coordinated. The
divergence of the L- and M-cone photopigments in primates is rela-
tively recent43, and there is little evidence for segregation of L- and
M-cone signals in the retinal circuitry44. L and M cones are apparently
indistinguishable both anatomically and histochemically. Furthermore,
there is only tentative anatomical evidence of differences in retinal
circuits carrying L- and M-cone signals35, in contrast to the markedly
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Figure 4 | Cone-type specificity. a, ONmidget cell lacking input fromnearby S
cones (arrows). b, c, OFF midget cells receiving input from these cones.
d, Frequency of strong S-cone sampling by each cell type. e, f, Two midget cells
with relatively pure L- orM-cone input. g, Midget cell withmixed L- andM-cone
input.h,NormalizedL-,M- andS-cone inputs to allmidget cells inone recording,
obtained with cone-isolating stimuli. Abscissa, M̄5M/( |L |1 |M |1 | S | );
ordinate, L̄5L/( |L |1 |M |1 | S | ). Diagonals, no S-cone input. Upper-right and
lower-left quadrants, same-sign (non-opponent) L- or M-cone input. Lower-
right and upper-left quadrants, opposite-sign (opponent) L- or M-cone input.
The letters in bold refer to cells from previous panels. i, Purity index schematic.

j, Top, purity index for ON and OFF midget cells in one recording; width
(standard deviation (s.d.)) 0.45, 0.44 respectively. Bottom, purity index after
random permutation of L and M cones; width 0.376 0.04 and 0.366 0.04,
respectively (mean6 2 s.d. across permutations). k, Comparison of purity
distribution width in data and permutations. Each point represents.50
simultaneously recorded ON or OFF midget cells. Error bars are 1 s.d. across
permutations. l, As k, using cones from receptive-field surround.m, Using
random cone mosaics with clumping matched to data. n, Using binarized cone
weights (0,1). o, Using random permutation of cone weights in receptive-field
centre. Scale bars, 25mm (a–c, e–g).
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What do neurons compute?

• Neurons detect features 
(=patterns or templates) that are 
stored in their synaptic weights

y(x) =

X
wixi

= w · x
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What do neurons compute?

• Neurons detect features 
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What stimulus should I present to elicit 
the max response from the model unit?
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Filtering in image processing

• Filtering the image is a set of 
dot-products


• Insight: Filters look like the 
effects they are intended to find



Cortex vs. computers

intermediate one. It uses full replication, but at the level of
object fragments rather than complete views. These shape
fragments can then serve as building blocks for defining
much larger sets of complex shapes. According to this
view, the brain will learn over time to extract appropriate
shape fragments, as well as the connection between similar
fragments at different locations. Shift invariance for
complex shapes is then obtained from straightforward
conjunctions of the responses to the more elementary frag-
ments comprising the full shape.
The fragment detectors are simpler than full-view detec-

tors, but more complex than elementary feature detectors
such as an oriented edge. In this scheme, not all object
representations are stored at each position, but only a
number of partial fragments, at a number of complexity
levels. As we shall see, view-fragments of this type can be
used in such a manner that a relatively small number of
features can allow the invariant recognition of a much larger
set of complex patterns.
A generalization of this approach is also proposed for

other forms of invariant recognition. The general proposal
is that the brain constructs, on the basis of past experience, a

S. Ullman, S. Soloviev / Neural Networks 12 (1999) 1021–10361024

Fig. 1. Detecting a shape by the conjunction of overlapping fragments. F2
unit responds to the maximal activity of its F1 units.

Fig. 2. Example of face parts from a system for face detection using the conjunction of fragments. The system uses multiple overlapping fragments, at different
levels of resolution. Figure prepared by E. Sali.

Brains: Full-replication 
scheme

feature maps

source: Hubel

Retinotopy in early 
visual areas
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Neurons as feature 
detectors

• ~1M receptors


• 2.5-3.5M connecting neurons


• 0.5 M ganglion cells


• Each ganglion cell receives 
many inputs from the 
receptors


• Each receptor projects to 
many ganglion cells



Neurons as feature detectors

source: webvision



Neurons as feature detectors

We have been tempted for example, to call the convexity detectors [class 2] “bug perceivers”. Such a 
fiber responds best when a dark object, smaller than a receptive field, enters that field, stops, and 
moves about intermittently thereafter. The response is not affected if the lighting changes or if the 
background (say a picture of grass and flowers) is moving, and is not there if only the background, 
moving or still, is in the field. Could one better describe a system for detecting an accessible bug? 
[Lettvin et al 1959]



Neurons as edge detectors
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Neurons as edge detectors
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Differential operators



Edges and contours play a special role in vision

Source: Cavanagh ’95

130 IRVING BIEDERMAN

Figure 11. Nine of the experimental objects.

The purpose of this experiment was to determine whether the
first few geons that would be available from an unoccluded view
of a complete object would be sufficient for rapid identification
of the object. We ordered the components by size and diagnos-
ticity because our interest, as just noted, was on primal access
in recognizing a complete object. Assuming that the largest and
most diagnostic components would control this access, we stud-
ied the contribution of the nth largest and most diagnostic com-
ponent; when added to the n- i already existing components,
because this would more closely mimic the contribution of that
component when looking at the complete object. (Another kind
of experiment might explore the contribution of an "average"
component by balancing the ordering of the components. Such
an experiment would be relevant to the recognition of an object
that was occluded in such a way that only the displayed compo-
nents would be available for viewing.)

Complexity
The objects shown in Figure 11 illustrate the second major

variable in the experiment. Objects differ in complexity; by
RBC's definition, the differences are evident in the number of
components they require to look complete. For example, the
lamp, the flashlight, the watering can, the scissors, and the ele-
phant require two, three, four, six, and nine components, re-
spectively. As noted previously, it would seem plausible that
partial objects would require more time for their identification
than complete objects, so that a complete airplane of nine com-

ponents, for example, might be more rapidly recognized than
only a partial version of that airplane, with only three of its
components. The prediction from RBC was that complex ob-
jects, by furnishing more diagnostic combinations of compo-
nents that could be simultaneously matched, would be more
rapidly identified than simple objects. This prediction is con-
trary to models that assume that objects are recognized through
a serial contour tracing process such as that studied by Oilman
(1983).

General Procedure
Trials were self-paced. The depression of a key on the sub-

ject's terminal initiated a sequence of exposures from three
projectors. First, the corners of a 500-ms fixation rectangle (6*
wide) that corresponded to the corners of the object slide were
shown. This fixation slide was immediately followed by a 100-
ms exposure of a slide of an object that had varying numbers
of its components present. The presentation of the object was
immediately followed by a 500-ms pattern mask consisting of a
random appearing arrangement of lines. The subject's task was
to name the object as fast as possible into a microphone that
triggered a voice key. The experimenter recorded errors. Prior
to the experiment, the subjects read a list of the object names
to be used in the experiment. (Subsequent experiments revealed
that this procedure for name familiarization produced no
effect. When subjects were not familiarized with the names of
the experimental objects, results were virtually identical to

Source: Biederman
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Illusions and center-surround processing

Source: Adelson (2000)

nested squares. Each square is a constant luminance. The
pattern gives the illusion of a glowing X along the diagonals,
even though the corners of the squares are no brighter than
the straight parts. When a center-surround filter is run over
this pattern (i.e., is convolved with it) it produces the image
shown in figure 24.3(b). The filter output makes the bright
diagonals explicit.

A center-surround filter cannot explain a percept by
itself: perception involves the whole brain. However, it is
interesting that center-surround responses can go a long way
to explaining certain illusions. 

Derivative operators respond especially well to sharp
intensity transitions such as edges. The importance of edges,
and the lesser importance of slow gradients, is indicated by
the Craik-O’Brien-Cornsweet effect (COCE) named after its
several discoverers. Figure 24.4 shows one of several COCE
variants. The figure appears to contain a dark square next to

a light square. Actually, the two squares are ramps, and they
are identical, as shown by the luminance profile underneath
(the dashed lines show constant luminances). The response
of a center-surround cell to this pattern will be almost the
same as its response to a true step edge:  there will be a big
response at the edge, and a small response elsewhere. While
this doesn’t explain why the  image looks as it does, it may
help explain why one image looks similar to the other
(Cornsweet, 1970). 

Center-surround processing is presumably in place for a
good reason. Land and McCann (1971) developed a  model
they called Retinex, which placed the processing in a mean-
ingful computational context. 

Land and McCann began by considering the nature of
scenes and images. They argued that reflectance tends to  be
constant across space except for abrupt changes at the tran-
sitions between objects or pigments. Thus a reflectance
change shows itself as step edge in an image, while illumi-
nance will change only gradually over space. By this argu-
ment one can separate reflectance change from illuminance
change by taking spatial derivatives: high derivatives are due
to reflectance and low ones are due to illuminance.

The Retinex model applies a derivative operator to the
image, and thresholds the output to remove illuminance vari-
ation. The algorithm then reintegrates edge information over
space to reconstruct the reflectance image.

The Retinex model works well for stimuli that satisfy its
assumptions, including the Craik-O’Brien-Cornsweet dis-
play, and the “Mondrians” that Land and McCann used. A
Mondrian (so-called because of its loose resemblance to
paintings by the artist Mondrian) is an array of randomly col-
ored, randomly placed rectangles covering a plane surface,
and illuminated non-uniformly.

340 SENSORY SYSTEMS

FIGURE 24.1  The simultaneous contrast effect.

FIGURE 24.2  Center-surround inhibition.

FIGURE 24.3  An illusion by Vasarely (a) and a bandpass filtered ver-
sion (b)

FIGURE 24.4  One version of the Craik-O’Brien-Cornsweet Effect
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Computing with RFs: Summary

• Basic model of neural processing


• Reverse engineering 
computations by trying to interpret 
synaptic weights


• Filtering, convolution, preferred 
stimulus, template matching f


