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Orientation tuning in the visual cortex

Dayan & Abbott, 2001



H&W hierarchical model of striate cortex
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RF organization in V1
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H&W hierarchical model of striate cortex
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From feature detectors to population codes
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Seeing with brain maps
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Seeing with brain maps
Orientation tuning
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Beyond edge detection: Multi-dimensional tuning

Image source: Shmuel & Grinvald ‘96
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Beyond edge detection: Multi-dimensional tuning
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Visual analysis: Cortex vs. computers

intermediate one. It uses full replication, but at the level of
object fragments rather than complete views. These shape
fragments can then serve as building blocks for defining
much larger sets of complex shapes. According to this
view, the brain will learn over time to extract appropriate
shape fragments, as well as the connection between similar
fragments at different locations. Shift invariance for
complex shapes is then obtained from straightforward
conjunctions of the responses to the more elementary frag-
ments comprising the full shape.
The fragment detectors are simpler than full-view detec-

tors, but more complex than elementary feature detectors
such as an oriented edge. In this scheme, not all object
representations are stored at each position, but only a
number of partial fragments, at a number of complexity
levels. As we shall see, view-fragments of this type can be
used in such a manner that a relatively small number of
features can allow the invariant recognition of a much larger
set of complex patterns.
A generalization of this approach is also proposed for

other forms of invariant recognition. The general proposal
is that the brain constructs, on the basis of past experience, a

S. Ullman, S. Soloviev / Neural Networks 12 (1999) 1021–10361024

Fig. 1. Detecting a shape by the conjunction of overlapping fragments. F2
unit responds to the maximal activity of its F1 units.

Fig. 2. Example of face parts from a system for face detection using the conjunction of fragments. The system uses multiple overlapping fragments, at different
levels of resolution. Figure prepared by E. Sali.
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A generic diagram for visual processing. In this approach, early
vision consists of a set of parallel pathways, each analyzing
some particular aspect of the visual stimulus.

1983; Treisman, 1986; Treisman & Gelade, 1980). And in
computational vision, investigators have found that cer-
tain low-level measurements are useful for accomplishing
vision tasks; for examples, see Horn (1986), Levine (1985),
and Marr  (1982).

These various approaches have converged on a set of
superficially similar lists, but there is little sense of struc-
ture. Why do the lists contain certain elements and not
others? Or, indeed, are there other unknown visual ele-
ments waiting to be discovered?

Our interest here is to derive the visual elements in a
systematic way and to show how they are related to the
structure of visual information in the world. We will show
that all the basic visual measurements can be considered    
to characterize local change along one or more dimen-   
sions of a single function that describes the structure of    
the information in the light impinging on an observer.
Since this function describes everything that can be seen,
we call  it the plenoptic function (from plenus, complete or
full,   and optic). Once we have defined this function, the
measurement of various underlying visual properties such
as motion, color, and orientation fall out of the analysis
automatically.

Our approach generates a list of the possible visual
elements, which we think of as somewhat analogous to
Mendeleev's periodic table in the sense that it displays
systematically   all  the  elemental  substances  upon  which

vision can be based. This table catalogues the basic visual
substances and clarifies their relationships.

This cataloging process makes no assumptions about  
the statistics of the world and no assumptions about the
needs of the observing organism. The periodic table lists
every sim-ple visual measurement that an observer could
potentially make, given the structure of the ambient light
expressed in the plenoptic function. A given organism    
will probably not measure all of the elements, and of     
those that it measures it will devote more resources to    
some than to others.

In what follows we will make reference to some of the
relevant psychophysical and physiological literature on
early vision. Our topic is quite broad, however, and if we
were to cite all of the relevant sources we would end up
listing hundreds of papers. Therefore our references will    
be sparse, and readers are encouraged to consult the var-   
ious books and review articles cited above.

The Plenoptic Function

We begin by asking what can potentially be seen. What
information about the world is contained in the light   
filling a region of space? Space is filled with a dense array
of light rays of various intensities. The set of rays passing
through any point in space is mathematically termed a
pencil. Leonardo da Vinci refers to this set of rays as a
“radiant pyramid”:

The body of the air is full of an infinite number of radiant
pyramids caused by the objects located in it. These pyramids
intersect and interweave  without interfering with each  other

4  The Task of Vision

source: Adelson & Bergen ’91
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Hierarchical architecture: 
Function

source: Kobatake & Tanaka ’94; 
Freiwald & Tsao ’10  
see also Oram & Perrett 1993; 
Sheinberg & Logothetis ‘96; Gallant et 
al ‘96;  Riesenhuber & Poggio ’99
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Hierarchical architecture: 
Function

source: Mineault et al 2011
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Invariant image 
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Invariant object category 
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Invariant representation in IT Hung et al ’05
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spikes over a short time interval (100- to 300-
ms interval divided into bins of 50 ms in this
case) (11, 23, 24, 28). This is notable consid-
ering the high trial-to-trial variability of cortical
neurons (27). The IT population performance
is also robust to biological noise sources such
as neuronal death and failures in neurotrans-
mitter release Efig. S1, (35)^. Although Fig. 1
(and most other decoding studies) assumes
precise knowledge about stimulus onset time,
this is not a limitation because we could also
accurately read out stimulus onset time from
the same IT population Efig. S5, (28)^.

A key computational difficulty of object
recognition is that it requires both selectivity
(different responses to distinct objects such
as one face versus another face) and in-
variance to image transformations (similar
responses to, e.g., rotations or translations of
the same face) (8, 12, 17). The main achieve-
ment of mammalian vision, and one reason
why it is still so much better than computer
vision algorithms, is the combination of high
selectivity and robust invariance. The results
in Fig. 1 demonstrate selectivity; the IT
population can also support generalization
over objects within predefined categories,
suggesting that neuronal responses within a
category are similar (36). We also explored
the ability of the IT population to generalize
recognition over changes in position and scale
by testing 71 additional sites with the original
77 images and four transformations in posi-
tion or scale. We could reliably classify (with
less than 10% reduction in performance) the
objects across these transformations even
though the classifier only Bsaw[ each object
at one particular scale and position during
training (Fig. 2). The Bidentification[ per-
formance also robustly generalized across
position and scale (28). Neurons also showed
scale and position invariance for novel objects
not seen before (fig. S6). The IT population

representation is thus both selective and
invariant in a highly nontrivial manner. That
is, although neuronal population selectivity for
objects could be obtained from areas like V1,
this selectivity would not generalize over
changes in, e.g., position (Supporting Online
Material).

We studied the temporal resolution of the
code by examining how classification per-

formance depended on the spike count bin
size in the interval from 100 to 300 ms after
stimulus onset (Supporting Online Material).
We observed that bin sizes ranging from 12.5
through 50 ms yielded better performance than
larger bin sizes (Fig. 3A). This does not imply
that downstream neurons are simply inte-
grating over 50-ms intervals or that no useful
object information is contained in smaller time

Fig. 1. Accurate readout
of object category and
identity from IT popula-
tion activity. (A) Exam-
ple of multi-unit spiking
responses of 3 indepen-
dently recorded sites to
5 of the 77 objects. Ras-
ters show spikes in the
200 ms after stimulus
onset for 10 repetitions
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(black bars indicate object presentation). (B) Performance of a linear classifier over the entire
object set on test data (not used for training) as a function of the number of sites for
reading out object category (red, chance 0 12.5%) or identity (blue, chance 0 1.3%). The
input from each site was the spike count in consecutive 50-ms bins from 100 to 300 ms
after stimulus onset (28). Sequentially recorded sites were combined by assuming independence (Supporting Online
Material). In this and subsequent figures, error bars show the SD for 20 random choices of the sites used for training;
the dashed lines show chance levels, and the bars next to the dashed lines show the range of performances using the
200 ms before stimulus onset (control). (C) Categorization performance (n 0 64 sites, mean T SEM) for different
data sources used as input to the classifier: multi-unit activity (MUA) as shown in (B), single-unit activity (SUA), and
local field potentials (LFP, Supporting Online Material). (D) This confusion matrix describes the pattern of mistakes
made by the classifier (n 0 256 sites). Each row indicates the actual category presented to the monkey (29), and
each column indicates the classifier predictions (in color code).

Fig. 2. Invariance to
scale and position
changes. Classification
performance (categori-
zation, n 0 64 sites,
chance 0 12.5%) when
the classifier was trained
on the responses to the
77 objects at a single
scale and position (de-
picted for one object by
‘‘TRAIN’’) and perform-
ance was evaluated with
spatially shifted or scaled
versions of those ob-
jects (depicted for one
object by ‘‘TEST’’). The
classifier never ‘‘saw’’
the shifted/scaled ver-
sions during training.
Time interval 0 100 to
300 ms after stimulus
onset, bin size 0 50 ms.
The left-most column
shows the performance
for training and testing
on separate repetitions
of the objects at the
same standard position
and scale (as in Fig. 1).
The second bar shows
the performance after
training on the stan-
dard position and scale
(scale 0 3.4-, center of
gaze) and testing on
the shifted and scaled images of the 77 objects. Subsequent columns use different image scales
and positions for training and testing.
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Decoding possible from around 100 ms 


