Foundations

• Fundamentals of primate vision cont'd

RF organization in LGN

RF organization in LGN

Modified from http://thalamus.wustl.edu/course/eyeret.html

Summation at

the soma

RF organization in V1

Simple cell

Hubel & Wiesel

Hubel & Wiesel '59 '62 '68

RF organization in V1

Orientation tuning in the visual cortex

Dayan & Abbott, 2001

RF organization in V1

Complex cell

Hubel & Wiesel

RF organization in V1

Hubel & Wiesel

Complex cell

Hubel & Wiesel '59 '62 '68

Hubel & Wiesel

RF organization in V1

Hubel & Wiesel

From feature detectors to population codes

Source: David Hubel

From feature detectors to population codes

Columnar organization

		1
	0 1 2 Cort	ex 3
	1 degree	
	(50
	22*	
6	°,7°	

Source: David Hubel

Seeing with brain maps

Hubel & Wiesel

Seeing with brain maps

Orientation tuning

Source: Unknown

Frequency channels

Beyond edge detection: Multi-dimensional tuning

Motion direction tuning

Image source: Shmuel & Grinvald '96

Beyond edge detection: Multi-dimensional tuning

Color tuning

Ocular dominance column

Visual analysis: Cortex vs. computers

Brains: Full-replication scheme

Computers: Scanning

Early vision

source: Adelson & Bergen '91

Motion, attention and eye movements

Object, shape, color processing

Streams of processing

Parallel increase in invariance properties (position and scale) of neurons

Hierarchical architecture: Function

source: Kobatake & Tanaka 1994 see also Oram & Perrett 1993; Sheinberg & Logothetis 1996; Gallant et al 1996; Riesenhuber & Poggio 1999

gradual increase in complexity of preferred stimulus

Hierarchical architecture: Function

source: Kobatake & Tanaka '94; Freiwald & Tsao '10 see also Oram & Perrett 1993; Sheinberg & Logothetis '96; Gallant et al '96; Riesenhuber & Poggio '99

Hierarchical architecture: Function

source: Mineault et al 2011

Invariant object category information can be decoded from small populations of cells in IT

V1

V4

Invariant image representation in the IT

77 unique stimuli

Invariant representation in IT

Hung et al '05

Decoding possible from around 100 ms

8 object category

et al '05