Computational Vision

Foundations

- Why studying biological vision?
- Fundamentals of primate vision

Invariant recognition in natural images

Computer vision successes

Face detection

6

Mobileye system

Already available on volvo S60 and soon on most car manufacturers

Machine: Millions of labeled examples for real-world applications

e.g., Mobileye pedestrian detection system

Visual recognition is hard

Yet we excel at it!

Yip & Sinha 2002

Source: Tenenbaum

Yet we excel at it!

Invariant recognition in natural images

- Subjects get the gist of the scene at 7 images/s from unpredictable random sequence of images
 - No time for eye movements
 - No top-down / expectations
- Coarse initial base representation
 - Enables rapid object detection/ recognition ('what is there?')
 - Insufficient for object localization
 - Sensitive to presence of clutter

Potter 1971, 1975; see also Biederman 1972; Thorpe 1996

Two classes of models

Computational Vision

Foundations

- Why studying biological vision?
- Fundamentals of primate vision

Gross Brain Anatomy

50-60% of the brain devoted to vision!

The Visual System

Van Essen & Anderson 1990

Hierarchical architecture: Anatomy

Rockland & Pandya '79; Maunsell & Van Essen '83; Felleman & Van Essen '91

Timing along the visual pathways consistent with anatomy

Observation: ~10 ms latency difference between each cortical area

Eye stimulated by stuff in the world

Fig. 13. Tangential section through the human fovea. Larger cones (arrows) are blue cones. From Ahnelt et al. 1987.

Source: webvision

Eye stimulated by stuff in the world

Receptive fields

receptive field

RF organization in LGN

Modified from http://thalamus.wustl.edu/course/eyeret.html

RF organization in V1

Hubel & Wiesel

Simple cell

