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Hypothesis

• Simple cells correspond to learning 
correlations in space


• Complex cells correspond to learning 
correlations in time
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‘What fires together, 
wires together’

‘What fires together in 
close temporal proximity, 

wires together’
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Figure 3: Overview of the specific implementation of the
Hubel & Wiesel V1 model used. LGN-like ON- and OFF-cen-
ter units are modeled by Difference-of-Gaussian (DoG) filters.
Simple units (denoted S1) sample their inputs from a 7�7 grid
of LGN-type afferent units. Simple S1 units are organized in
cortical hypercolumns (4 � 4 grid, 3 pixels apart, 16 S1 units
per hypercolumn). At the next stage, 4 complex units C1 cells
receive inputs from these 4�4�16 S1 cells. This paper focuses
on the learning of the S1 to C1 connectivity.

and Sejnowski, 1998; Stringer and Rolls, 2000; Rolls and
Milward, 2000; Wiskott and Sejnowski, 2002; Einhäuser
et al., 2002; Spratling, 2005).

However, as pointed out by Spratling (2005), the trace
rule by itself is inappropriate when multiple objects
are present in a scene: it cannot distinguish which in-
put corresponds to which object, and it may end-up
combining multiple objects in the same representation.
Hence most trace-rule based algorithm require stimuli
to be presented in isolation (Földiák, 1991; Oram and
Földiák, 1996; Wallis, 1996; Stringer and Rolls, 2000),
and would fail to learn from cluttered natural input se-
quences.

To solve this problem, Spratling made the hypothe-
sis that the same object could not activate two distinct
inputs, hence co-active units necessarily correspond to
distinct objects. He proposed a learning rule that can
exploit this information, and successfully applied it on
drifting bar sequences (Spratling, 2005).

However the ‘one object activates one input’ hypoth-
esis is a strong one. It seems incompatible with the re-
dundancy observed in the mammalian brain and repro-
duced in our model. Instead we propose another hy-
pothesis: from one frame to another the most active
inputs are likely to represent the same object. If the
hypothesis is true, by restraining the reinforcement to
the most active inputs we usually avoid to combine dif-
ferent objects in the same representation (note that this
idea was already present in (Einhäuser et al., 2002), al-
though not formulated in those terms).

In this work we focus on the learning of simple S1

Figure 4: Reconstructed S1 preferred stimuli for each one of
the 4 � 4 cortical hypercolumns (on this figure the position
of the reconstructions within a cortical column is arbitrary).
Most units show a Gabor-like selectivity similar to what has
been previously reported in the literature (see text).

and complex C1 units (see Fig. 3), which constitutes a
direct implementation of the Hubel and Wiesel (1962)
model of striate cortex (see Box 1). The goal of a C1 unit
is to pool over S1 units with the same preferred orien-
tation, but with shifted receptive fields. In this context
our hypothesis becomes: ‘in a given neighborhood, the
dominant orientation is likely to be the same from one
frame to another’. As our results suggests (see later),
this constitutes a reasonable hypothesis, which leads to
appropriate pooling.

2 Results
We tested the proposed learning mechanisms in a
3 layer feedforward network mimicking the Lateral
Geniculate Nucleus (LGN) and V1 (see Fig. 3). Details
of the implementation can be found in Section 4.

The stimuli we used were provided by Betsch et al.
(2004). The videos were captured by CCD cameras at-
tached to a cat’s head, while the animal was exploring
several outdoor environments. Theses videos approxi-
mate the input to which the visual system is naturally
exposed, although eye movements are not taken into
account.

To simplify the computations, learning was done
in two phases: First S1 units learned their selectivity
through competitive Hebbian learning. After conver-
gence, plasticity at the S1 stage was switched off and
learning at the complex C1 unit level started. In a more
realistic scenario, this two-phase learning scheme could
be approximated with a slow time constant for learning
at the S1 stage and a faster time constant at the C1 stage.
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model of striate cortex (see Box 1). The goal of a C1 unit
is to pool over S1 units with the same preferred orien-
tation, but with shifted receptive fields. In this context
our hypothesis becomes: ‘in a given neighborhood, the
dominant orientation is likely to be the same from one
frame to another’. As our results suggests (see later),
this constitutes a reasonable hypothesis, which leads to
appropriate pooling.

2 Results
We tested the proposed learning mechanisms in a
3 layer feedforward network mimicking the Lateral
Geniculate Nucleus (LGN) and V1 (see Fig. 3). Details
of the implementation can be found in Section 4.

The stimuli we used were provided by Betsch et al.
(2004). The videos were captured by CCD cameras at-
tached to a cat’s head, while the animal was exploring
several outdoor environments. Theses videos approxi-
mate the input to which the visual system is naturally
exposed, although eye movements are not taken into
account.

To simplify the computations, learning was done
in two phases: First S1 units learned their selectivity
through competitive Hebbian learning. After conver-
gence, plasticity at the S1 stage was switched off and
learning at the complex C1 unit level started. In a more
realistic scenario, this two-phase learning scheme could
be approximated with a slow time constant for learning
at the S1 stage and a faster time constant at the C1 stage.
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Földiák, 1996; Wallis, 1996; Stringer and Rolls, 2000),
and would fail to learn from cluttered natural input se-
quences.

To solve this problem, Spratling made the hypothe-
sis that the same object could not activate two distinct
inputs, hence co-active units necessarily correspond to
distinct objects. He proposed a learning rule that can
exploit this information, and successfully applied it on
drifting bar sequences (Spratling, 2005).

However the ‘one object activates one input’ hypoth-
esis is a strong one. It seems incompatible with the re-
dundancy observed in the mammalian brain and repro-
duced in our model. Instead we propose another hy-
pothesis: from one frame to another the most active
inputs are likely to represent the same object. If the
hypothesis is true, by restraining the reinforcement to
the most active inputs we usually avoid to combine dif-
ferent objects in the same representation (note that this
idea was already present in (Einhäuser et al., 2002), al-
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frame to another’. As our results suggests (see later),
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Geniculate Nucleus (LGN) and V1 (see Fig. 3). Details
of the implementation can be found in Section 4.

The stimuli we used were provided by Betsch et al.
(2004). The videos were captured by CCD cameras at-
tached to a cat’s head, while the animal was exploring
several outdoor environments. Theses videos approxi-
mate the input to which the visual system is naturally
exposed, although eye movements are not taken into
account.

To simplify the computations, learning was done
in two phases: First S1 units learned their selectivity
through competitive Hebbian learning. After conver-
gence, plasticity at the S1 stage was switched off and
learning at the complex C1 unit level started. In a more
realistic scenario, this two-phase learning scheme could
be approximated with a slow time constant for learning
at the S1 stage and a faster time constant at the C1 stage.
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quences were concatenated leading to a total of about
19 hours of video (about 1.6 million frames).

In the following, we set the receptive field sizes for
model LGN-like, simple S1 and complex C1 units to the
average values reported in the literature for foveal cells
in the cat visual cortex (Hubel and Wiesel, 1968). We
did not model the increase in RF size with eccentricity
and assumed that foveal values stood everywhere. This
leads to receptive field sizes for the three layers that are
summarized in Table 1.

Table 1: Receptive field sizes in pixels, and in degree of visual
angle.

ON �OFF S1 C1

Pixels 7 13 22

Degrees 1.6 2.9 4.9

4.2 LGN ON- and OFF-center unit layer
Gray level images are first analyzed by an array of
LGN-like units that correspond to 7 � 7 Difference-of-
Gaussian (DoG) filters:

DoG =
1
2�

�
1
�1

e
� r2

2�2
1 � 1

�2
e
� r2

2�2
2

�
(1)

We used �2 = 1.4 and �2/�1 = 1.6 to make the DOG
receptive fields approximate a Laplacian filter profile,
which in turn resembles the receptive fields of biologi-
cal retinal ganglion cells (Marr and Hildreth, 1980). Pos-
itive values ended in the ON-center cell map, and the
absolute value of negative values in the OFF-center cell
map.

4.3 S1 layer: competitive Hebbian learning
Model S1 units are organized on a 4� 4 grid of cortical
columns. Each column contains 16 S1 units (see Fig.
3). The distance between columns was set to 3 pixels
(i.e., about half a degree of visual angle). Each S1 unit
received their inputs from a 7� 7 grid of afferent LGN-
like units (both ON- and OFF-center) for a total of 7 �
7�2 input units. S1 units perform a bell-shape TUNING
(see (Serre et al., 2005a) for details) function which can
be approximated by the following static mathematical
operation (see Box 2):

yraw =
�n

j=1 wj .x
p
j

k + (
�n

j=1 xq
j)r

(2)

Here for the S1 cells we set the parameters to: k = 0,
p = 1, q = 2 and r = 1/2, which is exactly a normalized
dot-product:

yraw =
w.x

||x|| (3)

The reader should refer to (Knoblich et al., 2007) for
biophysical circuits of integrate and fire neurons that
use realistic parameters of synaptic transmission ap-
proximating Eq. 3.

The response of a simple S1 unit is maximal if the in-
put vector x is collinear to the synaptic weight vector w
(i.e., the preferred stimulus of the unit). As the pattern
of input becomes more dissimilar to the preferred stim-
ulus, the response of the unit decreases monotonically
in a bell-shape-like way (i.e., the cosine of the angle be-
tween the two vectors).

The unit activity yraw is further normalized by the re-
cent unit history, i.e., a ‘running average (denoted by
tr(.)) of the raw activities over past few frames’:

y =
yraw

tr(yraw)
(4)

Such unit history is often referred to as a (memory)
trace (Földiák, 1991; Wallis, 1996; Wallis and Rolls, 1997;
Stringer and Rolls, 2000; Rolls and Milward, 2000). For
our model S1 unit, such normalization by the trace ap-
proximates adaptation effects. One can think of yraw
as the membrane potential of the unit while y approxi-
mates the instantaneous firing rate of the unit over short
time intervals: units that have been strongly active will
become less responsive. While non-critical, this normal-
ization by the trace significantly speeds-up the conver-
gence of the learning algorithm by balancing the activ-
ity between all S1 units (the response of units with a
record of high recent activity is reduced while the re-
sponse of units which have not been active in the recent
past is enhanced).3

The initial w weights of all the S1 units were initial-
ized at random (sampled from a uniform distribution
on the [0,1] interval). In each cortical hypercolumn only
the most active cell is allowed to fire (1-Winner-Take-
All mechanism). However, it will do so if and only if its
activity reaches its threshold T . It will then trigger the
(modified) Hebbian rule:

�w = � · y · (x�w) (5)

The �w, added to the standard Hebb rule, allows to
keep the w bounded. However, the learning rule is still
fully local.

The winner then updates its threshold as follows:

T = y (6)

At each time step, all thresholds are decreased as fol-
lows:

T = (1� �) · T (7)

There is experimental evidence for such threshold
modulations in pyramidal neurons, which contribute to
homeostatic regulation of firing rates. For example, De-
sai et al. showed that depriving neurons of activity for
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on the learning of the S1 to C1 connectivity.

and Sejnowski, 1998; Stringer and Rolls, 2000; Rolls and
Milward, 2000; Wiskott and Sejnowski, 2002; Einhäuser
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However, as pointed out by Spratling (2005), the trace
rule by itself is inappropriate when multiple objects
are present in a scene: it cannot distinguish which in-
put corresponds to which object, and it may end-up
combining multiple objects in the same representation.
Hence most trace-rule based algorithm require stimuli
to be presented in isolation (Földiák, 1991; Oram and
Földiák, 1996; Wallis, 1996; Stringer and Rolls, 2000),
and would fail to learn from cluttered natural input se-
quences.

To solve this problem, Spratling made the hypothe-
sis that the same object could not activate two distinct
inputs, hence co-active units necessarily correspond to
distinct objects. He proposed a learning rule that can
exploit this information, and successfully applied it on
drifting bar sequences (Spratling, 2005).

However the ‘one object activates one input’ hypoth-
esis is a strong one. It seems incompatible with the re-
dundancy observed in the mammalian brain and repro-
duced in our model. Instead we propose another hy-
pothesis: from one frame to another the most active
inputs are likely to represent the same object. If the
hypothesis is true, by restraining the reinforcement to
the most active inputs we usually avoid to combine dif-
ferent objects in the same representation (note that this
idea was already present in (Einhäuser et al., 2002), al-
though not formulated in those terms).

In this work we focus on the learning of simple S1

Figure 4: Reconstructed S1 preferred stimuli for each one of
the 4 � 4 cortical hypercolumns (on this figure the position
of the reconstructions within a cortical column is arbitrary).
Most units show a Gabor-like selectivity similar to what has
been previously reported in the literature (see text).

and complex C1 units (see Fig. 3), which constitutes a
direct implementation of the Hubel and Wiesel (1962)
model of striate cortex (see Box 1). The goal of a C1 unit
is to pool over S1 units with the same preferred orien-
tation, but with shifted receptive fields. In this context
our hypothesis becomes: ‘in a given neighborhood, the
dominant orientation is likely to be the same from one
frame to another’. As our results suggests (see later),
this constitutes a reasonable hypothesis, which leads to
appropriate pooling.

2 Results
We tested the proposed learning mechanisms in a
3 layer feedforward network mimicking the Lateral
Geniculate Nucleus (LGN) and V1 (see Fig. 3). Details
of the implementation can be found in Section 4.

The stimuli we used were provided by Betsch et al.
(2004). The videos were captured by CCD cameras at-
tached to a cat’s head, while the animal was exploring
several outdoor environments. Theses videos approxi-
mate the input to which the visual system is naturally
exposed, although eye movements are not taken into
account.

To simplify the computations, learning was done
in two phases: First S1 units learned their selectivity
through competitive Hebbian learning. After conver-
gence, plasticity at the S1 stage was switched off and
learning at the complex C1 unit level started. In a more
realistic scenario, this two-phase learning scheme could
be approximated with a slow time constant for learning
at the S1 stage and a faster time constant at the C1 stage.
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to be presented in isolation (Földiák, 1991; Oram and
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and complex C1 units (see Fig. 3), which constitutes a
direct implementation of the Hubel and Wiesel (1962)
model of striate cortex (see Box 1). The goal of a C1 unit
is to pool over S1 units with the same preferred orien-
tation, but with shifted receptive fields. In this context
our hypothesis becomes: ‘in a given neighborhood, the
dominant orientation is likely to be the same from one
frame to another’. As our results suggests (see later),
this constitutes a reasonable hypothesis, which leads to
appropriate pooling.

2 Results
We tested the proposed learning mechanisms in a
3 layer feedforward network mimicking the Lateral
Geniculate Nucleus (LGN) and V1 (see Fig. 3). Details
of the implementation can be found in Section 4.

The stimuli we used were provided by Betsch et al.
(2004). The videos were captured by CCD cameras at-
tached to a cat’s head, while the animal was exploring
several outdoor environments. Theses videos approxi-
mate the input to which the visual system is naturally
exposed, although eye movements are not taken into
account.

To simplify the computations, learning was done
in two phases: First S1 units learned their selectivity
through competitive Hebbian learning. After conver-
gence, plasticity at the S1 stage was switched off and
learning at the complex C1 unit level started. In a more
realistic scenario, this two-phase learning scheme could
be approximated with a slow time constant for learning
at the S1 stage and a faster time constant at the C1 stage.
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two days increased sensitivity to current injection (De-
sai et al., 1999).

At each time step the traces are updated as follows:

tr(yraw) =
yraw

�
+ (1� 1

�
) · tr(yraw) (8)

We used � = 2�15 and � = 100. It was found use-
ful to geometrically increase the learning rate � for each
S1 cell every 10 weight updates, starting from an initial
value of 0.01 and ending at 0.1 after 200 weight updates.
Only half of the 1,683,891 frames were needed to reach
convergence.

4.4 C1 Layer: pool together consecutive winners

4 C1 cells receive inputs from the 4 � 4 � 16 S1 cells
through synapses with weight w � [0, 1] (initially set to
.75).

Each C1 cell’s activity is computed using Eq. 2, but
this time with p = 6 (and still q = 2 and r = 1/2). It has
been shown that such operation performs a SOFT-MAX
(Yu et al., 2002), and biophysical circuits to implement
it have been proposed in (Knoblich et al., 2007).

Winner-Take-All mechanisms select the C1 winner at
time t ��t (previous frame), Jt��t, and the current S1

winner at time t (current frame), It. The synapse be-
tween them is reinforced, while all the other synapses
of Jt��t are depressed:

�wiJt��t =

�
�

�
a+ · wiJt��t · (1� wiJt��t) if i = It

a� · wiJt��t · (1� wiJt��t) otherwise.
(9)

Synaptic weights for the non-winning C1 cells are un-
changed.

This learning rule was inspired by previous work on
Spike Timing Dependent Plasticity (STDP) (Masquelier
and Thorpe, 2007). The multiplicative term wiJt��t ·
(1 � wiJt��t) ensures the weight remains in the range
[0,1] (excitatory synapses) and implements a soft bound
effect: when the weight approaches a bound, weight
changes tend toward zero, while the most plastic
synapses are those in an intermediate state.

As recommended by (Rolls and Milward, 2000) we
chose to exploit correlations between the previous out-
put and the current input (as opposed to current out-
put and previous output, as Einhäuser et al. (2002)). We
empirically confirmed that learning was indeed more
robust this way.

It was found useful to geometrically increase the
learning rates every 1000 iterations, while maintaining
the a+/a� ratio at a constant value (-170). We started
with a+ = 2�3 and set the increase factor so as to reach
a+ = 2�1 at the end of the simulation.

4.5 Main differences with Einhäuser et al. 2002
• Learning rule for complex cells: first Einhäuser et

al. select the C1 winner at time t (current frame),
Jt, and the previous S1 winner at time t��t (pre-
vious frame), It��t. The synapse between them is
reinforced, while all the other synapses of Jt are de-
pressed. Second, Einhäuser et al. (2002) use a dif-
ferent weight update rule:

�wiJt =

�
�

�
� · (1� wiJt) if i = It��t

�� · wiJt otherwise.
(10)

This learning rule leads to a continuum of weights
at the end (as opposed to binary weights). Tests
have shown that the problem persists if (like us)
we select the C1 winner at time t � �t (previous
frame), Jt��t, and the current S1 winner at time t
(current frame), It, and apply the rule by Einhäuser
et al. (2002):

�wiJt��t =

�
�

�
� · (1� wiJt��t) if i = It

�� · wiJt��t otherwise
(11)

This suggests that the problem comes from the
weight update rule that was used in (Einhäuser
et al., 2002), and not from the type of correlation
involved.

• In the model by (Einhäuser et al., 2002) the activity
of the units is normalized by the “trace” (see ear-
lier) also at the complex cell level.

• The model by (Einhäuser et al., 2002) is similar to
an energy-type model of complex cells such that
simple and complex cells have identical receptive
field sizes. In particular, the model does not ac-
count for the increase in RF sizes between S1 and
C1 units (typically doubling (Hubel and Wiesel,
1962).

4.6 Földiák’s original trace rule
We also reimplemented Földiák’s original trace rule
(Földiák, 1991) (see Section 2), which is given by:

�w = � · tr(y) · (x�w). (12)

Notes
1As suggested by several authors (Földiák and Young, 1995; Per-

rett et al., 1998; Shadlen and Newsome, 1998; Keysers et al., 2001;
Serre et al., 2005a), because of the strong temporal constrains im-
posed on the cortical circuits (i.e., computations at each stage have
to be performed within very small temporal windows of 10 � 30 ms
(Thorpe and Imbert, 1989; Thorpe and Fabre-Thorpe, 2001; Keysers
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(a) S1 units (n=73) that remain connected to C1 unit
# 1 after learning

(b) S1 units (n=35) that remain connected to C1

unit # 2 after learning

(c) S1 units (n=59) that remain connected to C1

unit # 3 after learning
(d) S1 units (n=38) that remain connected to C1

unit # 4 after learning

Figure 5: Pools of S1 units connected to each C1 unit. For e.g., C1 unit # 1 became selective for horizontal bars: After learning
only 73 S1 units (out of 256) remain connected to the C1 unit, and they are all tuned to an horizontal bar, but at different positions
(corresponding to different cortical columns; on this figure the positions of the reconstructions correspond to their positions in
Fig. 4).

2.1 Simple cells

After about 9 hours of simulated time S1 units have
learned a Gabor-like selectivity (see Fig. 4) similar to
what has been previously reported for cortical cells
(Hubel and Wiesel, 1959, 1962, 1965, 1968; Schiller et al.,
1976a,b,c; DeValois et al., 1982a,b; Jones and Palmer,
1987; Ringach, 2002). In particular, receptive fields are
localized, tuned to specific spatial frequencies in a given
orientation. In this experiment, only four dominant ori-
entations emerged spanning the full range of orienta-
tions with 45� increment: 0� , 45� , 90� and 135� . In-
terestingly, in an another experiment using S1 receptive

fields larger than the 7�7 receptive field sizes used here,
we found instead a continuum of orientations. The fact
that we obtain only four orientations here is likely to be
a discretization artifact. With this caveat in mind, in the
following we used the 7�7 RF sizes (see Table 1), which
match the receptive field sizes of cat LGN cells.

Our results are in line with previous studies that have
shown that competitive Hebbian learning with DoG in-
puts leads to Gabor-like selectivity (see for instance (De-
lorme et al., 2001; Einhäuser et al., 2002; Guyonneau,
2006) and (Olshausen and Field, 1996) for a more so-
phisticated model).
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number of match and nonmatch trials was the same. The number
of between-group and within-group nonmatches was also bal-
anced with 96 of each. Test images always depicted a face either
directly from the front or in profile; i.e., no morphed images were
tested (Fig. 3).

Subjects were made aware of the layout of the experiment and,
more specifically, that they would be performing a speeded
discrimination task after the training. To help motivate them to
attend to the images during training, they were told that their
performance in the discrimination task would be affected by
what they learned in the training phase. They were, however, not
told that learning might actually lead to worse performance!

Results. Overall performance was good: on average, 74.7% of the
face pairs were correctly categorized as being the same or
different. In a study with the same face database, subjects with
no prior exposure to the faces managed only 65.4% correct (10).
This figure is lower than the worst performance of 72.6%
recorded in the first block of the experiment, confirming that

exposure to the morph sequences had not impaired overall
performance in the task.

To analyze the effects of the training, signal detection tech-
niques were used. The value of d! was calculated for each subject
and a within-subject ANOVA constructed with the block num-
ber and group membership of each pair (WG or BG) as factors.
Analysis revealed a significant effect of block F(3,27) " 4.327,
MSe " 0.2605, P " 0.013, indicating a differentiation in overall
performance across blocks. A Page’s L analysis (12) of the
ranked average d! values revealed a strong trend L(10,4) " 274,
P # 0.01, indicating that overall discrimination performance
rose as a function of block.§

ANOVA also revealed a significant effect of group member-
ship. Discrimination performance on pairs of faces chosen from
WG was significantly worse than for faces chosen from BG,
F(1,9) " 8.854, MSe " 0.2782, P " 0.016. A Page’s L analysis
on the ranked d! values for the WG condition revealed a small
but significant trend across blocks: L(10,4) " 269.5, P # 0.05.
The BG condition revealed a similar but stronger trend:
L(10,4) " 276.5, P # 0.01. As can be seen from the graph (Fig.
4A), although performance rose under both conditions, perfor-
mance on BG faces appears to increase more rapidly than on WG
faces. A best-fit straight line revealed an increase in d! of 0.14 per
block for WG versus 0.21 for BG face pairs. However, despite
this apparent difference in what is effectively learning rate, the
group $ block interaction fell well short of significance
F(3,27) " 0.867, MSe " 0.0563, P " 0.470.

Although signal-detection analysis gives the best overall im-
pression of performance changes, it is worth pointing out that the
temporal association hypothesis actually predicts three quite
specific effects rather than just one. First, the observers’ ability
to distinguish faces on nonmatch trials for WG stimuli should
become worse, because the views have been erroneously asso-
ciated during training. Second, their ability to recognize faces as
the same during match trials should also become worse, because
each face has been seen with views of other faces from within its
group, but never in its veridical form. Third, performance on
nonmatch trials for BG stimuli should improve, because BG

§Page’s L is a nonparametric trend analysis based, in this case, on the rankings of d! in each
block.

Fig. 1. (A) Twelve three-dimensional head models were generated by scan-
ning the heads of 12 female volunteers. These scans, which contained both
textural and shape information, were then cropped to remove extraneous
cues such as hair. (B) The heads were split into three groups (!, ", and #), each
containing four individuals (1, 2, 3, and 4). The figure shows the grouping used
for one of the 10 observers.

Fig. 3. (A) During training, subjects were exposed to the morph sequences
such that for each sequence, a single head appeared to rotate twice from left
profile to right and back. Examples of the training sequences can be viewed
at the following web sites: http:!!www.kyb.tuebingen.mpg.de!bu!people!
guy!morph.html and http:!!www.kyb.tuebingen.mpg.de!bu!people!guy!
webexpt!index.html. (B) After training, individual faces were tested in a
delayed match-to-sample task, in which observers were asked to indicate
whether the two faces were different views of the same head. Test images
always depicted a face either directly from the front or in profile, i.e., no
morphed images were tested.

Fig. 2. (A) The heads were used to render two-dimensional (2D) facial images
in the frontal (0°) and both profile views (%90°). A new set of head models was
then generated by morphing both the shape and textural information of pairs
of heads selected from a single training group. These new heads were then
rendered to 2D facial images in left and right %45° views. The images were
then organized into sequences of five views. (B) The complementary sequence
was also prepared in which the second head was seen in profile and the first
head from the front, resulting in a total of 12 such sequences per training
group.

Wallis and Bülthoff PNAS " April 10, 2001 " vol. 98 " no. 8 " 4801
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transforming) object. As we turn a box in our hand, for
example, it produces a stream of reproducible, temporally
correlated views. Associating views in this way has the
advantage that it is useful for invariance learning across all
manner of naturally occurring transformations including
rotation in depth, spatial shifts and in-plane rotations, size
changes, illumination changes, non-rigid motion, and so on.
The literature on object recognition in humans contains

evidence both for and against the importance of sequential
association during learning. For objects that rotate in
depth, sequential views do come to be associated with one
another in a manner that aids recognition (Liu, 2007;
Stone, 1998; Vuong & Tarr, 2004; Wallis & Bülthoff,
2001). However, there have also been counter examples,
suggesting that temporal association is neither necessary
for view generalization (Wang, Obama, Yamashita,
Sugihara, & Tanaka, 2005), nor even beneficial (Harman
& Humphrey, 1999). One way of reconciling these results
might be to suggest that sequential association is important
for sequences in which the majority of object parts change
(as is true of rotation in depth), but not in cases where
views can be easily associated on the basis of shared
features. Indeed it makes intuitive sense. However, we do
not believe that temporal association is therefore limited to
helping observers cope with rotation in depth. In this paper
we report face recognition studies looking at image-plane
rotation and changes of illumination, in which object
(face) parts were neither gained nor lost. We conclude that
the manner in which recognition is generalized across
views reflects a process by which object representations
are built up, in part, from associated sequential views.

General methods

Background

The temporal association hypothesis predicts that views
of objects are associated as examples of a single object

simply on the basis of their being temporally proximate.
In order to test this, subjects were exposed to sequences of
images which altered the temporal presentation order of
certain views of a person’s head. The basic methodology
involved displaying a head undergoing a natural change in
appearance, while simultaneously undergoing a change in
identity from person A to person BVsee Figures 1 and 2.
According to the temporal association hypothesis, expo-
sure to the consistent association of two different people
across two different viewing conditions should cause the
views of their heads to be regarded as belonging to the
same person.

Observers

Twenty-four participants with corrected to normal
vision were tested in three separate experiments. All 24
were naive as to the purpose of the experiment and were
tested in accordance with the rules and regulations of the
University of Queensland’s Behavioural and Social
Sciences Ethical Review Committee.

Procedure

In each experiment the participants sat 60 cm from a
24” Sony Trinitron monitor observing the projection of a
3D head model displayed centrally, and subtending an
angle of approximately.
Each experiment consisted of three interleaved blocks

of sequence presentation and testing. During the exposure
phase, participants were presented with a total of ten heads.
Each presentation consisted of the head being displayed in
seven different poses at 200 ms per imageVsee Figure 1.
By presenting the images in rapid sequential order the
head appeared to undergo a smooth transformation.
The sequence was played back and forth for a total of
8.4 seconds. During each exposure phase, the faces were
presented in pseudo-random order twice. Each subject

Figure 1. The faces presented during the experiment are rendered views of a three-dimensional head model. Each head consists of a) a
textured surface and b) a surface mesh. c) Examples of the face pairs used in the three experiments. Each experiment used a unique set
of twenty heads of this type.

Journal of Vision (2009) 9(7):6, 1–8 Wallis et al. 2
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number of match and nonmatch trials was the same. The number
of between-group and within-group nonmatches was also bal-
anced with 96 of each. Test images always depicted a face either
directly from the front or in profile; i.e., no morphed images were
tested (Fig. 3).

Subjects were made aware of the layout of the experiment and,
more specifically, that they would be performing a speeded
discrimination task after the training. To help motivate them to
attend to the images during training, they were told that their
performance in the discrimination task would be affected by
what they learned in the training phase. They were, however, not
told that learning might actually lead to worse performance!

Results. Overall performance was good: on average, 74.7% of the
face pairs were correctly categorized as being the same or
different. In a study with the same face database, subjects with
no prior exposure to the faces managed only 65.4% correct (10).
This figure is lower than the worst performance of 72.6%
recorded in the first block of the experiment, confirming that

exposure to the morph sequences had not impaired overall
performance in the task.

To analyze the effects of the training, signal detection tech-
niques were used. The value of d! was calculated for each subject
and a within-subject ANOVA constructed with the block num-
ber and group membership of each pair (WG or BG) as factors.
Analysis revealed a significant effect of block F(3,27) " 4.327,
MSe " 0.2605, P " 0.013, indicating a differentiation in overall
performance across blocks. A Page’s L analysis (12) of the
ranked average d! values revealed a strong trend L(10,4) " 274,
P # 0.01, indicating that overall discrimination performance
rose as a function of block.§

ANOVA also revealed a significant effect of group member-
ship. Discrimination performance on pairs of faces chosen from
WG was significantly worse than for faces chosen from BG,
F(1,9) " 8.854, MSe " 0.2782, P " 0.016. A Page’s L analysis
on the ranked d! values for the WG condition revealed a small
but significant trend across blocks: L(10,4) " 269.5, P # 0.05.
The BG condition revealed a similar but stronger trend:
L(10,4) " 276.5, P # 0.01. As can be seen from the graph (Fig.
4A), although performance rose under both conditions, perfor-
mance on BG faces appears to increase more rapidly than on WG
faces. A best-fit straight line revealed an increase in d! of 0.14 per
block for WG versus 0.21 for BG face pairs. However, despite
this apparent difference in what is effectively learning rate, the
group $ block interaction fell well short of significance
F(3,27) " 0.867, MSe " 0.0563, P " 0.470.

Although signal-detection analysis gives the best overall im-
pression of performance changes, it is worth pointing out that the
temporal association hypothesis actually predicts three quite
specific effects rather than just one. First, the observers’ ability
to distinguish faces on nonmatch trials for WG stimuli should
become worse, because the views have been erroneously asso-
ciated during training. Second, their ability to recognize faces as
the same during match trials should also become worse, because
each face has been seen with views of other faces from within its
group, but never in its veridical form. Third, performance on
nonmatch trials for BG stimuli should improve, because BG

§Page’s L is a nonparametric trend analysis based, in this case, on the rankings of d! in each
block.

Fig. 1. (A) Twelve three-dimensional head models were generated by scan-
ning the heads of 12 female volunteers. These scans, which contained both
textural and shape information, were then cropped to remove extraneous
cues such as hair. (B) The heads were split into three groups (!, ", and #), each
containing four individuals (1, 2, 3, and 4). The figure shows the grouping used
for one of the 10 observers.

Fig. 3. (A) During training, subjects were exposed to the morph sequences
such that for each sequence, a single head appeared to rotate twice from left
profile to right and back. Examples of the training sequences can be viewed
at the following web sites: http:!!www.kyb.tuebingen.mpg.de!bu!people!
guy!morph.html and http:!!www.kyb.tuebingen.mpg.de!bu!people!guy!
webexpt!index.html. (B) After training, individual faces were tested in a
delayed match-to-sample task, in which observers were asked to indicate
whether the two faces were different views of the same head. Test images
always depicted a face either directly from the front or in profile, i.e., no
morphed images were tested.

Fig. 2. (A) The heads were used to render two-dimensional (2D) facial images
in the frontal (0°) and both profile views (%90°). A new set of head models was
then generated by morphing both the shape and textural information of pairs
of heads selected from a single training group. These new heads were then
rendered to 2D facial images in left and right %45° views. The images were
then organized into sequences of five views. (B) The complementary sequence
was also prepared in which the second head was seen in profile and the first
head from the front, resulting in a total of 12 such sequences per training
group.
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views have never been seen together, whereas other associations
have been forged.

As a primary indicator of different levels of performance in
the various categories, it is interesting to note that the average
hit rate across all trials was around 5% more than the overall WG
correct rejection rate and around 5% less than the overall BG
correct rejection rate, suggesting that training had differentially
affected the three types of trial in the manner described in the
preceding paragraph. Concentrating on the most straightfor-
wardly comparable nonmatch trials, a new ANOVA was con-
structed, once again with training type and block as conditions,
but now based on the Fisher Z-transformed BG and WG correct
rejection rates. Here, we expect a significantly higher correct
rejection rate on BG than on WG trials, which is indeed what the
ANOVA revealed: F(1,9) ! 6.492, MSe ! 0.3243, P ! 0.031.

Overall, predictions of the temporal association hypothesis
appear to have been borne out in these experiments. There are,
however, various issues that must be addressed and that form the
basis for the following two experiments.

Experiment II
One question raised by the first experiment is whether the use of
morph faces affected recognition, in other words, whether seeing
intermediate views of the faces was decisive in confusing the

identity of the WG faces, rather than their being seen in smooth
temporal order. To test this theory, we devised a second
experiment in which the same morph sequences were presented,
but now simultaneously, rather than in temporal order. If seeing
the morph images was in and of itself sufficient to produce the
erroneous association of views reported in experiment I, one
would predict a similar effect of training under these new
conditions.

Methods. Ten observers took part in the experiments. The overall
design was the same as for the previous experiment, with the
exception that the five views of each training sequence were
presented simultaneously. The images were presented along the
circumference of a circle centered at the point of fixation.
Presentation time was equal in length to the total viewing time
of the sequences used in the first experiment (6,000 ms).

Results. The results of the experiment were analyzed by using the
same within-subject design of experiment I. Analysis revealed a
significant effect of block F(3,27) ! 5.857, MSe ! 0.2485, P !
0.003, but no effect of having seen morphed versions of the faces
or not, F(1,9) ! 0.133, MSe ! 0.0619, P ! 0.724, (Fig. 4B).
Unlike in the previous experiment, average performance hit
rates differed by less than 2% from both WG and BG correct

Fig. 4. The variation in d" for the first three experiments, in which the effect of viewing sequences of morphed face pairs on later discrimination performance
was measured. (A) Discrimination performance in experiment I separated into stimuli chosen from WG that had been morphed and those from BG that had not.
Note the more rapid rise in d" for BG trials. (B) The same analysis for experiment II. Note BG and WG performance levels are indistinguishable. (C) The same analysis
for experiment III. Note BG and WG performance levels are once again indistinguishable.

Fig. 5. Percent correct performance for the three experiments. Squares represent the median and circles the mean for correct rejections; diamonds indicate the
mean hit rate. Error bars represent upper and lower quartiles. (A) Results from experiment I. Note that BG correct rejection rate is consistently higher than both
the hit rate and WG correct rejection rate. (B) Results from experiment II. Note that with training, the hit rate rises above the two correct rejection rates, which
are themselves indistinguishable. (C) Results from experiment III. Note that, once again, the hit rate rises above the two correct rejection rates, and that they
are indistinguishable.

4802 ! www.pnas.org"cgi"doi"10.1073"pnas.071028598 Wallis and Bülthoff
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those statistics can disrupt normal tolerance. Because of these
limitations, we do not know if the naive ventral stream uses
a general, temporal contiguity-driven learning mechanism to
construct its tolerance to all types of image variation.
Here, we set out to test the temporal contiguity hypothesis in

three ways. First, we reasoned that, if the ventral stream is using
temporal contiguity to drive a general tolerance-building mecha-
nism, alterations in that temporal contiguity should reshape other
types of tolerance (e.g., size tolerance, pose tolerance, illumina-
tion tolerance), and the magnitude of that reshaping should be
similar to that found for position tolerance. We decided to test
size tolerance, because normal size tolerance in IT ismuch better
described (Brincat and Connor, 2004; Ito et al., 1995; Logothetis
and Sheinberg, 1996; Vogels and Orban, 1996) than pose or
illumination tolerance. Our experimental logic follows our
previous work on position tolerance (Cox et al., 2005; Li and Di-
Carlo, 2008). Specifically, when an adult animal with a mature
(e.g., size-tolerant) object representation is exposed to an
altered visual world in which object identity is consistently swap-
ped across object size change, its visual system should learn
from those image statistics such that it predictably ‘‘breaks’’
the size tolerance of that mature object representation.
Assuming IT conveys this object representation (Afraz et al.,
2006; Hung et al., 2005; Logothetis and Sheinberg, 1996;
Tanaka, 1996), that learning should result in a specific change
in the size tolerance of mature IT neurons (Figure 1).
Second, many types of identity-preserving image transforma-

tions in natural vision do not involve intervening eye movements
(e.g., object motion producing a change in object image size). If

the ventral stream is using a general tolerance-building mecha-
nism, we should be able to find size tolerance reshaping even
without intervening eye movements, and we should also be
able to find size tolerance reshaping when the dynamics of the
image statistics mimic naturally occurring image dynamics.
Third, our previous studies (Cox et al., 2005; Li and DiCarlo,

2008) and our first two aims above use the breaking of naturally
occurring image statistics to try to break the normal tolerance
observed in IT (i.e., to weaken existing IT object selectivity in a
position- or size-specificmanner; Figure 1). Such results support
the inference that naturally occurring image statistics instruct the
‘‘building’’ of that tolerance in the naive ventral stream. However,
we also sought to test that inference more directly by looking for
evidence that temporally contiguous image statistics can build
new tolerance in IT neurons with immature tolerance (i.e., can
produce an increase in existing IT object selectivity in a position-
or size-specific manner).
Our results showed that targeted alterations in the temporal

contiguity of visual experience robustly and predictably re-
shaped IT neuronal size tolerance over a period of hours. This
change in size tolerance grew gradually stronger with increasing
visual experience, and the rate of reshaping was very similar to
previously reported position tolerance reshaping (Li and DiCarlo,
2008). Second, we found that the size tolerance reshaping
occurred without eye movements, and it occurred when the
dynamics of the image statistics mimicked naturally occurring
dynamics. Third, we found that exposure to ‘‘broken’’ temporal
contiguity image statistics could weaken and even reverse the
previously normal IT object selectivity at a specific position or
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Figure 1. Experimental Design and Prediction
(A) IT selectivity was tested in the Test Phases whereas animals received experience in the altered visual world in the Exposure Phases.

(B) The chart shows the full exposure design for a single IT site in Experiment I. Arrows show the temporal contiguity experience of retinal images (arrow heads

point to the retinal images occurring later in time, e.g., A). Each arrow shows a particular exposure event type (i.e., temporally linked images shown to the animal),

and all eight exposure event types were shown equally often (randomly interleaved) in each Exposure Phase.

(C) Prediction for IT responses collected in the Test Phase: if the visual system builds size tolerance using temporal contiguity, the swap exposure should cause

incorrect grouping of two different object images (P and N). The qualitative prediction is a decrease in object selectivity at the swap size (images and data points

outlined in red) that grows stronger with increasing exposure (in the limit, reversing object preference as illustrated schematically here), and little or no change in

object selectivity at the non-swap size. The experiment makes no quantitative prediction for the selectivity at the medium size (gray oval, see text).
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So far in this class...

• The building blocks of vision:

- spatial filters: edges, blobs, bars, etc


- spatio-chromatic filters: color


- spatio-temporal filters: motion (soon)
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Texture gradient (x,y)

I (x,y)

Fig. 1. Simplified schematics of our model for texture perception.
The image (bottom) is filtered using the kernels F ... Fm and is
half-wave rectified to give the set of simple-cell responses R1 ... R0 .
The postinhibition responses PIR1 ... PIRn are computed by
thresholding the Ri and taking the maximum of the result over small
neighborhoods. The thresholds depend on the activity of all chan-
nels. The texture gradient is computed by taking the maximum of
the responses of wide odd-symmetric filters acting on the postinhi-
bition responses PIRi.

3. MOTIVATION FOR THE STAGES OF THE
MODEL
The general structure of our model follows the findings of
Julesz,1-3 Beck,4 -6 and Treisman2 2 that state that in preat-
tentive vision, precise positional relationships between tex-
tons are not important; only densities matter. These find-
ings suggest that when two textures T and T2 are discrimi-
nable, they are distinguished by different spatial averages 
ST 1 R(x, y) and S ST2 R(x, y) of some locally computed
neural response R. A discussion of how earlier models fit
into this framework may be found in Ref. 23.

Within this framework, a set of appropriate neural mecha-
nisms that produce responses R and a pooling mechanism
utilizing these responses to compute the texture gradient
have to be chosen. Our guiding principles for these two
choices are biological plausibility and parsimony. The final
test for the model is, of course, whether it reproduces human
performance.

A. Choice of the Filters
Several models have been proposed for the point-spread
function of simple cells and subunits of complex cells.
These include Gabor functions,24 differences of offset Gaus-
sians2 5 (DOOG), and differences of offset differences of
Gaussians.2 6 We have chosen to use DOOG (Fig. 2) for our
simulations, given their good fit with the physiological mea-
surements and their computational simplicity. We believe
that this is not a critical choice. Any of the families of
functions mentioned above could have been used instead.

The radially symmetric filter classes DOG1(o-) and

DOG2(a) (Figs. 2a and 2b) model nonoriented simple cells.
Directionally tuned filters DOOG2 (a, r, 0) with even-sym-
metric cross sections perpendicular to their axes (Fig. 2c)
model bar-sensitive simple cells. In our simulations we used
six equally spaced orientations 0 and a constant aspect ratio
r = 3.

Implicit in the DOOG model is the assumption that recep-
tive field profiles in the direction that is perpendicular to the
axes are either odd-symmetric or even-symmetric and not of
an intermediate phase. This model is suggested by psycho-
physical studies on phase discrimination.27 28 One has to be
aware that electrophysiological mapping of the impulse-re-
sponse function of single-cortical simple cells does not sup-
port this view.26 At the cell level there seems to be not a
sharp dichotomy but rather a continuum between even and
odd symmetry. One explanation of this discrepancy could
be that the responses of different cells are pooled together in
such a way that one effectively gets strictly odd- or even-
symmetric mechanisms. We hypothesize (Subsection 3.H)
that information from odd-symmetric mechanisms is not
used for texture perception and therefore exclude from our
model odd-symmetric mechanisms, which respond optimal-
ly to appropriately oriented edges.

The a parameter of the three filter classes that were used
corresponds to a nominal spatial frequency in cycles per
degree (c/deg) (given the viewing distance and size of image).

Fig. 2. Point-spread functions of some of the filters used in our
simulation. The filters were designed after Young25 by summing
Gaussian functions G(xo, yo, ax, ay) - 1/2raxay exp-(x - o/ax)2 +
(y - y0/y)2]j and have zero-mean value. a, Linear combination of
three circular concentric Gaussian functions, DOG2(a) - a G(O, 0,
ai, a) + b G(O, 0, a, a) + c G(O, 0, o-, a) with variance a:a:ao in a
ratio of 0.62:1:1.6 and a:b:c in a ratio of 1:-2:1. b, Linear combina-
tion of two circular concentric Gaussian functions, DOGl(a) -
a -G(0, 0, a, a) + b G(0, 0, ao, a), with variance ai: a:a, in a ratio of
0.71:1:1.14 and coefficients a:b in a ratio of 1:-i. c, Linear combina-
tion of three offset identical Gaussian functions DOOG2(a, r, ) -
a * G(O,y., a., ay) + b .G(O,yb, ax, ay) + c G(O,yc, ax, ry). Variances
are ay = a, a = r * a, offsets are Ya = Yc = a, Yb = 0, and coefficients
are a:b:c in a ratio of -1:2:-i for the filter with an axis of symmetry
along the x direction ( = 0). The other DOOG2( ) filters are
obtained by rotation about the center of the middle Gaussian. The
scaling coefficients aDOG1:aDOG2:aDOOG2 were in a ratio of 3:4.15:2,
which was designed to equalize the dynamic range of the respective
responses.
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Fig. 1. Simplified schematics of our model for texture perception.
The image (bottom) is filtered using the kernels F ... Fm and is
half-wave rectified to give the set of simple-cell responses R1 ... R0 .
The postinhibition responses PIR1 ... PIRn are computed by
thresholding the Ri and taking the maximum of the result over small
neighborhoods. The thresholds depend on the activity of all chan-
nels. The texture gradient is computed by taking the maximum of
the responses of wide odd-symmetric filters acting on the postinhi-
bition responses PIRi.

3. MOTIVATION FOR THE STAGES OF THE
MODEL
The general structure of our model follows the findings of
Julesz,1-3 Beck,4 -6 and Treisman2 2 that state that in preat-
tentive vision, precise positional relationships between tex-
tons are not important; only densities matter. These find-
ings suggest that when two textures T and T2 are discrimi-
nable, they are distinguished by different spatial averages 
ST 1 R(x, y) and S ST2 R(x, y) of some locally computed
neural response R. A discussion of how earlier models fit
into this framework may be found in Ref. 23.

Within this framework, a set of appropriate neural mecha-
nisms that produce responses R and a pooling mechanism
utilizing these responses to compute the texture gradient
have to be chosen. Our guiding principles for these two
choices are biological plausibility and parsimony. The final
test for the model is, of course, whether it reproduces human
performance.

A. Choice of the Filters
Several models have been proposed for the point-spread
function of simple cells and subunits of complex cells.
These include Gabor functions,24 differences of offset Gaus-
sians2 5 (DOOG), and differences of offset differences of
Gaussians.2 6 We have chosen to use DOOG (Fig. 2) for our
simulations, given their good fit with the physiological mea-
surements and their computational simplicity. We believe
that this is not a critical choice. Any of the families of
functions mentioned above could have been used instead.

The radially symmetric filter classes DOG1(o-) and

DOG2(a) (Figs. 2a and 2b) model nonoriented simple cells.
Directionally tuned filters DOOG2 (a, r, 0) with even-sym-
metric cross sections perpendicular to their axes (Fig. 2c)
model bar-sensitive simple cells. In our simulations we used
six equally spaced orientations 0 and a constant aspect ratio
r = 3.

Implicit in the DOOG model is the assumption that recep-
tive field profiles in the direction that is perpendicular to the
axes are either odd-symmetric or even-symmetric and not of
an intermediate phase. This model is suggested by psycho-
physical studies on phase discrimination.27 28 One has to be
aware that electrophysiological mapping of the impulse-re-
sponse function of single-cortical simple cells does not sup-
port this view.26 At the cell level there seems to be not a
sharp dichotomy but rather a continuum between even and
odd symmetry. One explanation of this discrepancy could
be that the responses of different cells are pooled together in
such a way that one effectively gets strictly odd- or even-
symmetric mechanisms. We hypothesize (Subsection 3.H)
that information from odd-symmetric mechanisms is not
used for texture perception and therefore exclude from our
model odd-symmetric mechanisms, which respond optimal-
ly to appropriately oriented edges.

The a parameter of the three filter classes that were used
corresponds to a nominal spatial frequency in cycles per
degree (c/deg) (given the viewing distance and size of image).

Fig. 2. Point-spread functions of some of the filters used in our
simulation. The filters were designed after Young25 by summing
Gaussian functions G(xo, yo, ax, ay) - 1/2raxay exp-(x - o/ax)2 +
(y - y0/y)2]j and have zero-mean value. a, Linear combination of
three circular concentric Gaussian functions, DOG2(a) - a G(O, 0,
ai, a) + b G(O, 0, a, a) + c G(O, 0, o-, a) with variance a:a:ao in a
ratio of 0.62:1:1.6 and a:b:c in a ratio of 1:-2:1. b, Linear combina-
tion of two circular concentric Gaussian functions, DOGl(a) -
a -G(0, 0, a, a) + b G(0, 0, ao, a), with variance ai: a:a, in a ratio of
0.71:1:1.14 and coefficients a:b in a ratio of 1:-i. c, Linear combina-
tion of three offset identical Gaussian functions DOOG2(a, r, ) -
a * G(O,y., a., ay) + b .G(O,yb, ax, ay) + c G(O,yc, ax, ry). Variances
are ay = a, a = r * a, offsets are Ya = Yc = a, Yb = 0, and coefficients
are a:b:c in a ratio of -1:2:-i for the filter with an axis of symmetry
along the x direction ( = 0). The other DOOG2( ) filters are
obtained by rotation about the center of the middle Gaussian. The
scaling coefficients aDOG1:aDOG2:aDOOG2 were in a ratio of 3:4.15:2,
which was designed to equalize the dynamic range of the respective
responses.
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On textures

approach as the analysis of texture foreshortening because
that is the term that is typically used in the literature to
describe the ratio 5/1. Similar computations can also be
performed for less regular isotropic textures from the
distribution of edge orientations in each local image region
(Aloimonos, 1988; Blake & Marinos, 1990; Blostein &
Ahuja, 1989; Marinos & Blake, 1990; Witkin, 1981) or
from the relative anisotropy of their local amplitude spectra
(Bajcsi & Lieberman, 1976; Brown & Shvayster, 1990;
Krumm & Shafer, 1992; Sakai & Finkel, 1994; Super &
Bovik, 1995).
An alternative approach that comes closer to Gibson’s

original conception is to estimate surface slant by
measuring the changes of optical texture across different
local neighborhoods of an image, based on an assumption
that the texture on a physical surface is statistically
homogeneous. As was first demonstrated by Purdy
(1958), the optical slant (A) in a given local region can
be determined by the following equation

tan Að Þ ¼ 2ð11 j 12Þ
%ð11 þ 12Þ

; ð2Þ

where % is the projected distance between neighboring
optical texture elements in the direction that slant is being
estimated, and 11 and 12 are the projected lengths of those
texture elements in a perpendicular direction (see Figure 2).
In the limit of an infinitesimally small %, the right side of
Equation 2 equals the normalized depth gradient (Purdy,
1958, Equation 14; Gårding, 1992, Equation 33). Similar
computations can also be performed on less regular textures
from the affine correlations between the amplitude spectra in
neighboring image regions (Clerc & Mallat, 2002; Malik &
Rosenholtz, 1994, 1997) or from the systematic changes in
the distributions of edges (Gårding, 1992, 1993).

When considering these alternative procedures for
estimating slant from texture, it is important to recognize
that Equations 1 and 2 are only valid when their optical
variables are defined as visual angles rather than distances
in the image plane. As a consequence of this, these
methods can only produce accurate estimates of local
surface slant when an image is viewed at the same visual
angle as the one with which it was photographed or
rendered. It is also interesting to note in this regard that
the predicted effects of an inappropriate viewing angle are
quite different depending upon which method is used to
estimate slant. To demonstrate this more clearly, it is
useful to consider the planar surface at a 50- slant that is
depicted in Figure 1. This image was rendered with a 60-
camera angle, but when viewed on a printed page at a
comfortable distance, its visible angular extent will be much
smaller than that (see Figure 3). Because reductions of
image size increase the magnitudes of the optical texture
gradients, they would also increase the estimated slant as
computed from Equation 2. For example, if the image was
observed from a 10- viewing angle, the information from
optical texture gradients would specify that the depicted
surface has an 83- slant relative to the frontoparallel plane.
Reductions of image size have the opposite effect when
slant is estimated from Equation 1 because optical
foreshortening is reduced in peripheral regions relative to
what would occur when an image is viewed from the
correct visual angle. The estimated surface in that case
would also be curved rather than planar.
To what extent does the perception of three-dimensional

shape from texture conformwith the predictions of either of
these models? The research described in the present article
was designed to address this issue. Human observers were
asked to judge the apparent shapes of textured hyperbolic

Figure 1. An image of a planar surface at a 50- slant with a polka
dot texture.

Figure 2. The variables used to estimate local optical slant from
the gradient of texture scaling.

Journal of Vision (2007) 7(12):9, 1–16 Todd et al. 2

Shape/structure from texture

The depicted surfaces were all presented with six possible
textures that are shown in Figure 7. These included a pattern
of horizontal lines, a pattern of noisy lines, a square grid of
circular polka dots, a random pattern of polka dots, a random
pattern of polka dots that varied in size, and a random
pattern of ellipses with varying eccentricity. Three different
versions were created for all of the random textures, which
were randomly sampled as needed in the relevant con-
ditions. For the textures with translational symmetry, a
random phase was selected for each presentation. The
textures were scaled on each surface so that the average
projected element size would be the same in all conditions.

Procedure

On each trial, an image of a hyperbolic cylinder was
presented on the main display screen directly in front of
the observer. A second monitor was located off to the side
of the main display that contained an adjustment figure
defined by four parameters (P1, P2, P3, and P4), which
observers could manipulate by adjusting four sliders with
a hand held mouse to match the apparent cross-section in
depth of the depicted surface (see Figure 8). Because
some of the stimuli did not appear to have hyperbolic
cross-sections, the adjustment space required four degrees
of freedom to adequately match the observers’ perceptions
in all of the different conditions. The shape of the
adjustment figure was defined by the following equation:

z ¼ T P2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x tan P1ð Þ
P2

" #2
s

j P2 þ
P3x2

2
1 j e

j:5
x
P4

$ %2
0

@

1

A

0

@

1

A:

ð3Þ

Note that the first and the second terms define a hyperbola,
where P1 controls the angle of the asymptotic lines and P2

controls the curvature at its midpoint. The third term with
parameters P3 and P4 was included so that the asymptotic
lines of the hyperbola could be made to bow inward or

Figure 5. The asymptotic slant ! of a hyperbolic cylinder relative to
the frontoparallel plane. This should not be confused with the optical
slant A at any given surface point relative to the viewing direction.

Figure 6. Example images of a concave and a convex surface that were rendered with different camera angles. The asymptotic slant of
each depicted surface is 55-.

Journal of Vision (2007) 7(12):9, 1–16 Todd et al. 4
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Textures in the lab
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which odd-symmetric mechanisms are necessary, we have
chosen to exclude odd-symmetric mechanisms from our
model.

4. EXPERIMENTAL RESULTS
We have compared the degree of texture discriminability
that was predicted by our algorithm with psychophysical
data from Kr6se' 7 and Gurnsey and Browse.10 Figure 7
shows seven bipartite textures with elements constructed
after Krbse17 (Section 3.2, pp. 34-39), two after Williams and
Julesz,19 and one composed of R's and mirror-image R's
(called R-mirror-R). For two of these textures, the texture
gradient ( = 12 pixels, Si = constant) obtained by our
algorithm, using model A for inhibition, is plotted as a func-
tion of column number (Fig. 8). The texture boundary
(column 64) is associated with the central peak in the gradi-
ent. The value of the gradient associated with this peak is
taken to be a measure of the discriminability predicted by
our algorithm. In Table 3, these data are presented in a
more easily readable form and compared with data from
Kr6se (Table 3.1, p. 39; stimulus onset asychrony, 320) and
Gurnsey and Browse (pairs 1.1, 1.2, 1.3, 3.1) for mean overall
discriminability. Note that the rank order of discriminabil-
ity predicted by our model matches the rankings found ex-
perimentally.

The Williams-Julesz textures were constructed to demon-
strate essential nonlinearities in texture preception. Their
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Fig. 7. Nine textures that were used in our experiments.

300T00

200T00
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0.00 100.00

Fig. 8. Texture gradient as a function of column number. For the
128 X 128 textures in Fig. 7 the texture gradient is averaged along
the vertical direction on the central middle portion of each column
and plotted with respect to the horizontal coordinate. Such plots
are shown for the most (L +) and least (R-mirror-R) discriminable
textures. The value of the texture gradient at its central peak is
taken to be the prediction of our model and is reported in Table 3,
column 3.

Table 3. Comparison of Predictions from Texture
Segmentation Algorithm with Two Sets of

Psychophysical Dataa
Discriminability

Data Refs. Data Predicted
Texture Pair 41 and 42 Ref. 43 Data

+ 0 100(saturated) n.a. 407
+ a 88.1 n.a. 225
L + 68.6 0.736 203
L M n.a. n.a. 165
A1 52.3 0.4-0.55 159
+ T 37.6 0.496 120
+ X 30.3 n.a. 104
T L 30.6 0.421 90*
LL ML n.a. n.a. 85
R-mirror-R n.a. n.a. 50*

a The symbol * indicates that a side peak of the texture gradient was higher
than the reported central peak. Because of differences in the scales used, the
three columns should be compared only by the rank ordering of discriminabil-
ity. The rank order of discriminability for the predicted data matches both
other data rankings exactly. The L M and LL LL textures have been invented
by Williams and Julesz as a counterexample to purely linear theories.1 9 Our
algorithm correctly ranks the L M pair within the most discriminable textures
and the LL ML pair within the least discriminable ones. The discriminability
of the + 0 texture given by Krose saturates his psychophysical scale (top
value, zero standard deviation), so it cannot be compared quantitatively with
the other discriminability figures (standard deviation ranging between 6.7
and 11.7); n.a., not available. Also compare Fig. 8.

reasoning is as follows. The LMtexture is easily discrimina-
ble; not so the LLML texture (call it C), which is obtained by
adding to the LM texture (call it A) a uniform texture of
little L's (call it B) placed at the endpoints of the L and M
micropatterns. If the discriminability between the left and
right regions were a linear function of the image, then the
discriminability of C = A + B would be the sum of the
discriminabilities of A and B. As B is a single-texture region
its discriminability is of course zero, so the discriminability
of C should be equal to that of A. Clearly it is not.

The match with the experimental data that we have ob-
tained is surprisingly good; we are not aware of any other

400T00
+ 0

R-mirror-R

©          Nature Publishing Group1983
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Treisman, Wolfe and many others
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• Ss get the gist of a scene from 
ultra-rapid image presentations

- No time for eye movements

- No top-down / expectations


• Coarse initial base representation 
based on parallel processing of 
arrays of feature detectors

Rapid presentation 
paradigms

Potter 1971; Biederman 1972; Thorpe et al 1996; Li et al 2002; Evans & Treisman 2005; Serre et al 2007;  
see Fabre-Thorpe 2011 for review

http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=PubMed&term=%20Fabre-Thorpe%20M%5Bauth%5D
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• Pre-attentive texture discrimination 
possible when basic elements have 
different second-order statistics:

- different sizes 
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Filter-Rectify-Filter (FRF) model 
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Fig. 3. Some textures (top row) and half-wave-rectified responses of one of the filters to each (bottom row). The point-spread function of
each filter is shown at the bottom-right corner of the response image. The filter shapes are as in Fig. 2; the frequency parameters correspond to
a 4 deg X 4 deg image. The response images are composed of two square regions, an upper one depicting R+, the positive part of the response,
and a lower one showing R-. a, Texture from Ref. 10, Fig. 6, pair 2.2 (top) and the response of an 8-c/deg DOG1 filter (bottom); a 0.5 X
(length of texel line segments). b, Texture from Ref. 10, Fig. 6, pair 2.1 (top) and the response of a 5-c/deg DOG1 filter (bottom); a 2 X (width
of texel line segments). c, Arrow-triangle texture (top), for which the arrow texel is obtained from the triangle by shifting one of its legs, and
the response to a 5-c/deg DOG2 filter (bottom); a 0.3) X(length of triangle's hypotenuse). d, Texture from Ref. 30, Fig. 4.2b (top) and the re-
sponse to a 13-c/deg DOOG2 filter (bottom); a, - (width of bars), au:a, = 3, and orientation 120 deg.

To sample adequately the spatial-frequency range around
the peak of the luminance-contrast-sensitivity function, we
used all integer values of the frequency between 3 and 14 c/
deg.2 9 This gives 96 filters Fk, which result in 192 neural
responses Ri. It should be noted that all the filters are zero
mean. Consequently, they have zero response to any image
region in which the luminance I(x, y) is constant.

Representative examples of these responses for some tex-
tures may be found in Fig. 3.

B. Inadequacy of Purely Linear Mechanisms
The mechanisms considered so far-convolutions of the im-
age withV1 cell impulse responses-are linear. To see that a
model based purely on linear mechanisms cannot reproduce
human performance, we consider two textures T1, T2 that
have identical mean brightnesses, i.e., identical spatial aver-
ages. Convolving them with a linear filter F results in re-
sponses RT1(X, y) and RT2(X, y) with identical spatial aver-
ages. (The values of the power spectra at 0 are identical.)
Now, we know that humans can preattentively discriminate
some textures with identical spatial averages. An example
is the even-odd pair from Ref. 31 or indeed any discrimina-
ble texture pair with identical first-order global statistics. A
generalization of this observation to nth-order statistics and
nth-order polynomial operators may be found in Ref. 23.
Some nonlinearity in the system is therefore necessary for
texture perception.

The most obvious choice of nonlinearity is half-wave recti-
fication. V1 cortical cells have low-maintained discharge
rates and are unable to respond with a decrease in firing rate
as required by a negative response. Two different cells are
needed (and used) to represent the positive and negative
parts of the response belonging respectively to the on and off
pathways.

C. Loss of Essential Information from Full-Wave
Rectification
Two nonlinearities that are similar to half-wave rectification
have been used in other models of texture discrimination.
These are

1. Full-wave rectification, where the response in the kth
channel is Rk(x, y) = I(I * Fk)(x, y)l, is equivalent to sum-
ming the outputs in the two corresponding half-wave rectifi-
cation channels. This approach has been used by Bergen
and Adelson.14

2. Energy computation, where Rk(x, y) = I(I * Sk)(X, y)12
+ I * Ck)(X, y)12 and where Sk, Ck constitute a pair of filters
in quadrature phase (e.g., Gabor sine and cosine filters), has
been used by Sutter et al.'5 and by Fogel and Sagi.' 6

We have two reasons for preferring half-wave rectification.
The first is that it is the most natural choice in the context of
current biological evidence; we know that linear filtering

J. Malik and P. Perona
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Fig. 1. Simplified schematics of our model for texture perception.
The image (bottom) is filtered using the kernels F ... Fm and is
half-wave rectified to give the set of simple-cell responses R1 ... R0 .
The postinhibition responses PIR1 ... PIRn are computed by
thresholding the Ri and taking the maximum of the result over small
neighborhoods. The thresholds depend on the activity of all chan-
nels. The texture gradient is computed by taking the maximum of
the responses of wide odd-symmetric filters acting on the postinhi-
bition responses PIRi.

3. MOTIVATION FOR THE STAGES OF THE
MODEL

The general structure of our model follows the findings of
Julesz,1-3 Beck,4 -6 and Treisman2 2 that state that in preat-
tentive vision, precise positional relationships between tex-
tons are not important; only densities matter. These find-
ings suggest that when two textures T and T2 are discrimi-
nable, they are distinguished by different spatial averages 
ST 1 R(x, y) and S ST2 R(x, y) of some locally computed
neural response R. A discussion of how earlier models fit
into this framework may be found in Ref. 23.

Within this framework, a set of appropriate neural mecha-
nisms that produce responses R and a pooling mechanism
utilizing these responses to compute the texture gradient
have to be chosen. Our guiding principles for these two
choices are biological plausibility and parsimony. The final
test for the model is, of course, whether it reproduces human
performance.

A. Choice of the Filters
Several models have been proposed for the point-spread
function of simple cells and subunits of complex cells.
These include Gabor functions,24 differences of offset Gaus-
sians2 5 (DOOG), and differences of offset differences of
Gaussians.2 6 We have chosen to use DOOG (Fig. 2) for our
simulations, given their good fit with the physiological mea-
surements and their computational simplicity. We believe
that this is not a critical choice. Any of the families of
functions mentioned above could have been used instead.

The radially symmetric filter classes DOG1(o-) and

DOG2(a) (Figs. 2a and 2b) model nonoriented simple cells.
Directionally tuned filters DOOG2 (a, r, 0) with even-sym-
metric cross sections perpendicular to their axes (Fig. 2c)
model bar-sensitive simple cells. In our simulations we used
six equally spaced orientations 0 and a constant aspect ratio
r = 3.

Implicit in the DOOG model is the assumption that recep-
tive field profiles in the direction that is perpendicular to the
axes are either odd-symmetric or even-symmetric and not of
an intermediate phase. This model is suggested by psycho-
physical studies on phase discrimination.27 28 One has to be
aware that electrophysiological mapping of the impulse-re-
sponse function of single-cortical simple cells does not sup-
port this view.26 At the cell level there seems to be not a
sharp dichotomy but rather a continuum between even and
odd symmetry. One explanation of this discrepancy could
be that the responses of different cells are pooled together in
such a way that one effectively gets strictly odd- or even-
symmetric mechanisms. We hypothesize (Subsection 3.H)
that information from odd-symmetric mechanisms is not
used for texture perception and therefore exclude from our
model odd-symmetric mechanisms, which respond optimal-
ly to appropriately oriented edges.

The a parameter of the three filter classes that were used
corresponds to a nominal spatial frequency in cycles per
degree (c/deg) (given the viewing distance and size of image).

Fig. 2. Point-spread functions of some of the filters used in our
simulation. The filters were designed after Young25 by summing
Gaussian functions G(xo, yo, ax, ay) - 1/2raxay exp-(x - o/ax)2 +
(y - y0/y)2]j and have zero-mean value. a, Linear combination of
three circular concentric Gaussian functions, DOG2(a) - a G(O, 0,
ai, a) + b G(O, 0, a, a) + c G(O, 0, o-, a) with variance a:a:ao in a
ratio of 0.62:1:1.6 and a:b:c in a ratio of 1:-2:1. b, Linear combina-
tion of two circular concentric Gaussian functions, DOGl(a) -
a -G(0, 0, a, a) + b G(0, 0, ao, a), with variance ai: a:a, in a ratio of
0.71:1:1.14 and coefficients a:b in a ratio of 1:-i. c, Linear combina-
tion of three offset identical Gaussian functions DOOG2(a, r, ) -
a * G(O,y., a., ay) + b .G(O,yb, ax, ay) + c G(O,yc, ax, ry). Variances
are ay = a, a = r * a, offsets are Ya = Yc = a, Yb = 0, and coefficients
are a:b:c in a ratio of -1:2:-i for the filter with an axis of symmetry
along the x direction ( = 0). The other DOOG2( ) filters are
obtained by rotation about the center of the middle Gaussian. The
scaling coefficients aDOG1:aDOG2:aDOOG2 were in a ratio of 3:4.15:2,
which was designed to equalize the dynamic range of the respective
responses.
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Fig. 1. Simplified schematics of our model for texture perception.
The image (bottom) is filtered using the kernels F ... Fm and is
half-wave rectified to give the set of simple-cell responses R1 ... R0 .
The postinhibition responses PIR1 ... PIRn are computed by
thresholding the Ri and taking the maximum of the result over small
neighborhoods. The thresholds depend on the activity of all chan-
nels. The texture gradient is computed by taking the maximum of
the responses of wide odd-symmetric filters acting on the postinhi-
bition responses PIRi.

3. MOTIVATION FOR THE STAGES OF THE
MODEL

The general structure of our model follows the findings of
Julesz,1-3 Beck,4 -6 and Treisman2 2 that state that in preat-
tentive vision, precise positional relationships between tex-
tons are not important; only densities matter. These find-
ings suggest that when two textures T and T2 are discrimi-
nable, they are distinguished by different spatial averages 
ST 1 R(x, y) and S ST2 R(x, y) of some locally computed
neural response R. A discussion of how earlier models fit
into this framework may be found in Ref. 23.

Within this framework, a set of appropriate neural mecha-
nisms that produce responses R and a pooling mechanism
utilizing these responses to compute the texture gradient
have to be chosen. Our guiding principles for these two
choices are biological plausibility and parsimony. The final
test for the model is, of course, whether it reproduces human
performance.

A. Choice of the Filters
Several models have been proposed for the point-spread
function of simple cells and subunits of complex cells.
These include Gabor functions,24 differences of offset Gaus-
sians2 5 (DOOG), and differences of offset differences of
Gaussians.2 6 We have chosen to use DOOG (Fig. 2) for our
simulations, given their good fit with the physiological mea-
surements and their computational simplicity. We believe
that this is not a critical choice. Any of the families of
functions mentioned above could have been used instead.

The radially symmetric filter classes DOG1(o-) and

DOG2(a) (Figs. 2a and 2b) model nonoriented simple cells.
Directionally tuned filters DOOG2 (a, r, 0) with even-sym-
metric cross sections perpendicular to their axes (Fig. 2c)
model bar-sensitive simple cells. In our simulations we used
six equally spaced orientations 0 and a constant aspect ratio
r = 3.

Implicit in the DOOG model is the assumption that recep-
tive field profiles in the direction that is perpendicular to the
axes are either odd-symmetric or even-symmetric and not of
an intermediate phase. This model is suggested by psycho-
physical studies on phase discrimination.27 28 One has to be
aware that electrophysiological mapping of the impulse-re-
sponse function of single-cortical simple cells does not sup-
port this view.26 At the cell level there seems to be not a
sharp dichotomy but rather a continuum between even and
odd symmetry. One explanation of this discrepancy could
be that the responses of different cells are pooled together in
such a way that one effectively gets strictly odd- or even-
symmetric mechanisms. We hypothesize (Subsection 3.H)
that information from odd-symmetric mechanisms is not
used for texture perception and therefore exclude from our
model odd-symmetric mechanisms, which respond optimal-
ly to appropriately oriented edges.

The a parameter of the three filter classes that were used
corresponds to a nominal spatial frequency in cycles per
degree (c/deg) (given the viewing distance and size of image).

Fig. 2. Point-spread functions of some of the filters used in our
simulation. The filters were designed after Young25 by summing
Gaussian functions G(xo, yo, ax, ay) - 1/2raxay exp-(x - o/ax)2 +
(y - y0/y)2]j and have zero-mean value. a, Linear combination of
three circular concentric Gaussian functions, DOG2(a) - a G(O, 0,
ai, a) + b G(O, 0, a, a) + c G(O, 0, o-, a) with variance a:a:ao in a
ratio of 0.62:1:1.6 and a:b:c in a ratio of 1:-2:1. b, Linear combina-
tion of two circular concentric Gaussian functions, DOGl(a) -
a -G(0, 0, a, a) + b G(0, 0, ao, a), with variance ai: a:a, in a ratio of
0.71:1:1.14 and coefficients a:b in a ratio of 1:-i. c, Linear combina-
tion of three offset identical Gaussian functions DOOG2(a, r, ) -
a * G(O,y., a., ay) + b .G(O,yb, ax, ay) + c G(O,yc, ax, ry). Variances
are ay = a, a = r * a, offsets are Ya = Yc = a, Yb = 0, and coefficients
are a:b:c in a ratio of -1:2:-i for the filter with an axis of symmetry
along the x direction ( = 0). The other DOOG2( ) filters are
obtained by rotation about the center of the middle Gaussian. The
scaling coefficients aDOG1:aDOG2:aDOOG2 were in a ratio of 3:4.15:2,
which was designed to equalize the dynamic range of the respective
responses.
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Fig. 1. Simplified schematics of our model for texture perception.
The image (bottom) is filtered using the kernels F ... Fm and is
half-wave rectified to give the set of simple-cell responses R1 ... R0 .
The postinhibition responses PIR1 ... PIRn are computed by
thresholding the Ri and taking the maximum of the result over small
neighborhoods. The thresholds depend on the activity of all chan-
nels. The texture gradient is computed by taking the maximum of
the responses of wide odd-symmetric filters acting on the postinhi-
bition responses PIRi.

3. MOTIVATION FOR THE STAGES OF THE
MODEL

The general structure of our model follows the findings of
Julesz,1-3 Beck,4 -6 and Treisman2 2 that state that in preat-
tentive vision, precise positional relationships between tex-
tons are not important; only densities matter. These find-
ings suggest that when two textures T and T2 are discrimi-
nable, they are distinguished by different spatial averages 
ST 1 R(x, y) and S ST2 R(x, y) of some locally computed
neural response R. A discussion of how earlier models fit
into this framework may be found in Ref. 23.

Within this framework, a set of appropriate neural mecha-
nisms that produce responses R and a pooling mechanism
utilizing these responses to compute the texture gradient
have to be chosen. Our guiding principles for these two
choices are biological plausibility and parsimony. The final
test for the model is, of course, whether it reproduces human
performance.

A. Choice of the Filters
Several models have been proposed for the point-spread
function of simple cells and subunits of complex cells.
These include Gabor functions,24 differences of offset Gaus-
sians2 5 (DOOG), and differences of offset differences of
Gaussians.2 6 We have chosen to use DOOG (Fig. 2) for our
simulations, given their good fit with the physiological mea-
surements and their computational simplicity. We believe
that this is not a critical choice. Any of the families of
functions mentioned above could have been used instead.

The radially symmetric filter classes DOG1(o-) and

DOG2(a) (Figs. 2a and 2b) model nonoriented simple cells.
Directionally tuned filters DOOG2 (a, r, 0) with even-sym-
metric cross sections perpendicular to their axes (Fig. 2c)
model bar-sensitive simple cells. In our simulations we used
six equally spaced orientations 0 and a constant aspect ratio
r = 3.

Implicit in the DOOG model is the assumption that recep-
tive field profiles in the direction that is perpendicular to the
axes are either odd-symmetric or even-symmetric and not of
an intermediate phase. This model is suggested by psycho-
physical studies on phase discrimination.27 28 One has to be
aware that electrophysiological mapping of the impulse-re-
sponse function of single-cortical simple cells does not sup-
port this view.26 At the cell level there seems to be not a
sharp dichotomy but rather a continuum between even and
odd symmetry. One explanation of this discrepancy could
be that the responses of different cells are pooled together in
such a way that one effectively gets strictly odd- or even-
symmetric mechanisms. We hypothesize (Subsection 3.H)
that information from odd-symmetric mechanisms is not
used for texture perception and therefore exclude from our
model odd-symmetric mechanisms, which respond optimal-
ly to appropriately oriented edges.

The a parameter of the three filter classes that were used
corresponds to a nominal spatial frequency in cycles per
degree (c/deg) (given the viewing distance and size of image).

Fig. 2. Point-spread functions of some of the filters used in our
simulation. The filters were designed after Young25 by summing
Gaussian functions G(xo, yo, ax, ay) - 1/2raxay exp-(x - o/ax)2 +
(y - y0/y)2]j and have zero-mean value. a, Linear combination of
three circular concentric Gaussian functions, DOG2(a) - a G(O, 0,
ai, a) + b G(O, 0, a, a) + c G(O, 0, o-, a) with variance a:a:ao in a
ratio of 0.62:1:1.6 and a:b:c in a ratio of 1:-2:1. b, Linear combina-
tion of two circular concentric Gaussian functions, DOGl(a) -
a -G(0, 0, a, a) + b G(0, 0, ao, a), with variance ai: a:a, in a ratio of
0.71:1:1.14 and coefficients a:b in a ratio of 1:-i. c, Linear combina-
tion of three offset identical Gaussian functions DOOG2(a, r, ) -
a * G(O,y., a., ay) + b .G(O,yb, ax, ay) + c G(O,yc, ax, ry). Variances
are ay = a, a = r * a, offsets are Ya = Yc = a, Yb = 0, and coefficients
are a:b:c in a ratio of -1:2:-i for the filter with an axis of symmetry
along the x direction ( = 0). The other DOOG2( ) filters are
obtained by rotation about the center of the middle Gaussian. The
scaling coefficients aDOG1:aDOG2:aDOOG2 were in a ratio of 3:4.15:2,
which was designed to equalize the dynamic range of the respective
responses.

J. Malik and P. Perona

Malik & Perona ’90

normalization / gain control



Texture boundaries
924 J. Opt. Soc. Am. A/Vol. 7, No. 5/May 1990

Texture gradient (x,y)

I (x,y)

Fig. 1. Simplified schematics of our model for texture perception.
The image (bottom) is filtered using the kernels F ... Fm and is
half-wave rectified to give the set of simple-cell responses R1 ... R0 .
The postinhibition responses PIR1 ... PIRn are computed by
thresholding the Ri and taking the maximum of the result over small
neighborhoods. The thresholds depend on the activity of all chan-
nels. The texture gradient is computed by taking the maximum of
the responses of wide odd-symmetric filters acting on the postinhi-
bition responses PIRi.
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The general structure of our model follows the findings of
Julesz,1-3 Beck,4 -6 and Treisman2 2 that state that in preat-
tentive vision, precise positional relationships between tex-
tons are not important; only densities matter. These find-
ings suggest that when two textures T and T2 are discrimi-
nable, they are distinguished by different spatial averages 
ST 1 R(x, y) and S ST2 R(x, y) of some locally computed
neural response R. A discussion of how earlier models fit
into this framework may be found in Ref. 23.

Within this framework, a set of appropriate neural mecha-
nisms that produce responses R and a pooling mechanism
utilizing these responses to compute the texture gradient
have to be chosen. Our guiding principles for these two
choices are biological plausibility and parsimony. The final
test for the model is, of course, whether it reproduces human
performance.

A. Choice of the Filters
Several models have been proposed for the point-spread
function of simple cells and subunits of complex cells.
These include Gabor functions,24 differences of offset Gaus-
sians2 5 (DOOG), and differences of offset differences of
Gaussians.2 6 We have chosen to use DOOG (Fig. 2) for our
simulations, given their good fit with the physiological mea-
surements and their computational simplicity. We believe
that this is not a critical choice. Any of the families of
functions mentioned above could have been used instead.

The radially symmetric filter classes DOG1(o-) and

DOG2(a) (Figs. 2a and 2b) model nonoriented simple cells.
Directionally tuned filters DOOG2 (a, r, 0) with even-sym-
metric cross sections perpendicular to their axes (Fig. 2c)
model bar-sensitive simple cells. In our simulations we used
six equally spaced orientations 0 and a constant aspect ratio
r = 3.

Implicit in the DOOG model is the assumption that recep-
tive field profiles in the direction that is perpendicular to the
axes are either odd-symmetric or even-symmetric and not of
an intermediate phase. This model is suggested by psycho-
physical studies on phase discrimination.27 28 One has to be
aware that electrophysiological mapping of the impulse-re-
sponse function of single-cortical simple cells does not sup-
port this view.26 At the cell level there seems to be not a
sharp dichotomy but rather a continuum between even and
odd symmetry. One explanation of this discrepancy could
be that the responses of different cells are pooled together in
such a way that one effectively gets strictly odd- or even-
symmetric mechanisms. We hypothesize (Subsection 3.H)
that information from odd-symmetric mechanisms is not
used for texture perception and therefore exclude from our
model odd-symmetric mechanisms, which respond optimal-
ly to appropriately oriented edges.

The a parameter of the three filter classes that were used
corresponds to a nominal spatial frequency in cycles per
degree (c/deg) (given the viewing distance and size of image).

Fig. 2. Point-spread functions of some of the filters used in our
simulation. The filters were designed after Young25 by summing
Gaussian functions G(xo, yo, ax, ay) - 1/2raxay exp-(x - o/ax)2 +
(y - y0/y)2]j and have zero-mean value. a, Linear combination of
three circular concentric Gaussian functions, DOG2(a) - a G(O, 0,
ai, a) + b G(O, 0, a, a) + c G(O, 0, o-, a) with variance a:a:ao in a
ratio of 0.62:1:1.6 and a:b:c in a ratio of 1:-2:1. b, Linear combina-
tion of two circular concentric Gaussian functions, DOGl(a) -
a -G(0, 0, a, a) + b G(0, 0, ao, a), with variance ai: a:a, in a ratio of
0.71:1:1.14 and coefficients a:b in a ratio of 1:-i. c, Linear combina-
tion of three offset identical Gaussian functions DOOG2(a, r, ) -
a * G(O,y., a., ay) + b .G(O,yb, ax, ay) + c G(O,yc, ax, ry). Variances
are ay = a, a = r * a, offsets are Ya = Yc = a, Yb = 0, and coefficients
are a:b:c in a ratio of -1:2:-i for the filter with an axis of symmetry
along the x direction ( = 0). The other DOOG2( ) filters are
obtained by rotation about the center of the middle Gaussian. The
scaling coefficients aDOG1:aDOG2:aDOOG2 were in a ratio of 3:4.15:2,
which was designed to equalize the dynamic range of the respective
responses.
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= 0, which eliminates the threshold but keeps the stage of
computing local, strong responses in a neighborhood S.
One could relate this model to outputs of complex cells that
do not show a significant modulation in their response when
a stimulus is moved across the receptive field. Finally, mod-
el D served as a control with PIRi = Ri.

G. Computation of the Texture Gradient
Nothdurft 2 l has shown two characteristics of texture per-
ception that any model must explain. Texture discrimina-
bility depends on (a) the density of micropatterns in the
image, with higher densities leading to easier discrimination,
and (b) local differences rather than global differences.
This naturally suggests the idea of computing the gradient of
the smoothed postinhibition responses in each channel.

The texture gradient that we use is defined as maxiv
(PIRj * Gr)(x, y). Biologically, the computation of the gra-
dient of the smoothed postinhibition response in each chan-
nel can be done by using odd-symmetric oriented mecha-
nisms similar to the edge-sensitive cells in V1. Of course,
the mechanisms responsible for computing the texture gra-
dient have large receptive fields ( is a measure of the size)
and presumably occur in some extrastriate area. The maxi-
mum operation seems a natural way of combining the out-
puts of the different channels. Texture boundaries may be
defined as corresponding to local peaks of the texture gradi-
ent magnitude (Fig. 5).

H. Nonuse of Odd-Symmetric Mechanisms
Our model used only channels corresponding to even-sym-
metric filters. This choice was based on an interpretation of
some experimental results of Rentschler et al.,4 0 who found
that textures composed of mirror-image, compound Gabor
signals were indistinguishable even when the individual mi-
cropatterns were easily discriminated. There was no diffi-
culty in discriminating textures composed of nonmirror-
image, compound Gabor signals. A simplified version of the
phenomenon can be seen by comparing Fig. 4a (easily seg-
mentable) and Fig. 6 (not preattentively segmentable). We
will show that this phenomenon implies that odd-symmetric
and even-symmetric filters are not treated identically in
texture discrimination. Specifically, the signs of responses
of odd-symmetric filters are ignored, while the signs of the
responses of even-symmetric filters are used (for example, to
distinguish dark-bar and bright-bar textures as in Fig. 4).

First we supply some definitions: micropatterns M1 and
M2 are said to be y mirror symmetric (y-ms) if Ml(x) =
M 2 (-x) and xy mirror symmetric (xy-ms) if Ml(x) =

Fig. 5. Detail of the portrait of Adele Bloch-Bauer by Gustav
Klimt (left) and the texture boundaries that were found (right).
The essential boundaries of the five perceived groups have been
detected.

Fig. 6. Texture pair composed of y mirror-symmetric micropat-
terns. Segmentation is not preattentive. Compare with Fig. 4.

-M 2(-x). Examples of y-ms pairs are found in Ref. 40
(Figs. 2a and 2c) and in the two micropatterns in Fig. 6; Fig. 4
contains an xy-ms pair. Consider any two y-ms patterns
M1 , M2. Now, the following operations (or any composition
thereof) preserve y-ms: (a) half-wave rectification, (b) con-
volution with any even-symmetric filter, and (c) nonlinear
scaling I - g(I). Consequently, responses Ri(M1), Ri(M2) in
any channel i corresponding to an even-symmetric filter are
also y-ms. In fact, so also are postinhibition responses
PIRi(M), PIRi(M2 ) if only inhibition from channels j corre-
sponding to even-symmetric filters is considered [for any
such j, Rj(Ml), Rj(M2) are y-ms, resulting in Ti(Ml), Ti(M 2),
the respective thresholds being a y-ms pair]. Now any two
patterns that are a y-ms pair have identical spatial averages,
and from the preceding argument so must postinhibition
responses in even-symmetric channels. In other words, to
segment a texture composed of M1 from one composed of M2
by using spatially averaged responses, we must rely on the
channels corresponding to odd-symmetric filters. Interest-
ingly, for an xy-ms pair, the situation is reversed; only even-
symmetric filters are useful. To establish this, note that
convolving an xy-ms pair with an odd filter makes it a y-ms
pair.

To find the texture boundary in Fig. 6, the visual system
must rely on the differential activation of channels corre-
sponding to odd-symmetric filters; the detection of texture
boundary in Fig. 4a relies on even-symmetric channels. The
latter is easily discriminable; the one in Fig. 6 is not. One
could conclude from this result that odd-symmetric mecha-
nisms are not utilized in texture perception but that even-
symmetric are. This could be because (a) odd-symmetric
mechanisms are not part of the texture processing pathway
or (b) inhibitory interactions between odd-symmetric cells
are such that their activity is greatly reduced when they are
stimulated by repetitive texture patterns.

An alternative hypothesis is that the outputs of odd-sym-
metric cells of opposite polarities are pooled together in the
texture-processing pathway, and therefore the information
necessary for segmenting y-ms textures is lost.

We are not in a position to discriminate precisely among
these hypotheses. Since we have not found any textures for
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Figure 6. Each image at different lighting and viewing directions is filtered using the filter bank. The response vectors are concatenated together
to form data vectors of length Nf il Nvl . These data vectors are clustered using the K-means algorithm. The resulting centers are the 3D textons
and the associated filter response vectors are called the appearance vectors.

grooves of some width, etc.. Similarly, the K-means
centers will also encode albedo change vs. geometric
3D features, as well as reflectance properties (e.g. shiny
vs. dull). The appearances of different features and dif-
ferent materials at various lighting and viewing angles
are captured by the filter responses. Thus, we call these
K-means centers 3D textons, and the corresponding
Nf il Nvl filter response vectors, the appearance vectors.
A schematic diagram illustrating the steps of filtering,
concatenating filter responses, and K-means clustering
is shown in Fig. 6.

4. Constructing the Vocabulary of 3D Textons

Our goal in this paper is to use images from a set of
training materials to learn a vocabulary which can char-
acterize all natural materials. This is a realistic goal
because, as we have noted, the textons in the vocabu-
lary are going to encode the appearances of local geo-
metric and photometric features, e.g. grooves, ridges,
bumps, reflectance boundaries etc. All natural materi-
als are made up of these features. In this section, we
will describe the exact steps taken to construct this uni-
versal 3D texton vocabulary.

All the images used in this paper are taken from
the Columbia-Utrecht dataset (Dana et al., 1999)
(http://www.cs.columbia.edu/CAVE/curet/).
There are 60 different materials, each with 205 images

at different viewing and lighting angles.1 20 materi-
als are taken randomly as the training set. For each
material, 20 images of different lighting and viewing
directions are used to build the texton vocabulary. The
20 images for each material are registered using the
standard area-based sum-of-square-differences (SSD)
algorithm.

To compute the universal vocabulary, the following
steps are taken:

1. For each of the 20 training materials, the filter bank
is applied to each of the Nvl = 20 images under
different viewing and lighting conditions. The re-
sponse vectors at every pixel are concatenated to-
gether to form a Nf il Nvl vector.

2. For each of the 20 materials individually, the K-
means clustering algorithm is applied to the data
vectors. The number of centers, denoted by K , is
400. The K-means algorithm finds a local minimum
of the following sum-of-square distance error:

Err =
N∑

i=1

K∑
k=1

qik∥xi − ck∥2

where

qik = 1 if ∥xi − ck∥2 < ∥xi − c j∥2

∀ j = 1, . . . , K and j ̸= k

qik = 0 otherwise
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Figure 5. Illustration of K-means clustering and reconstruction from filter responses with K = 20. (a) Original image. (b) the K-means centers
reconstructed as local filters. These centers correspond to the dominant features in the image: bars and edges at various orientations and phases;
(c) Reconstruction of the quantized image. Close resemblance between (a) and (c) suggests that quantization does not introduce much error
perceptually.

are referred to Malik et al. (1999), where we applied the
idea of textons to the problem of image segmentation.

3. 3D Textons

For painted textures with Lambertian material, charac-
terizing one image is equivalent to characterizing all
the images under all lighting and viewing directions.
However, for 3D textures, this is not the case. The ef-
fects of masking, shadowing, specularity, and mutual
illumination will make the appearance of the texture
look drastically different according to the lighting and
viewing directions (Fig. 2). The presence of albedo
variations on a lot of natural textures only makes the
problem more difficult.

Let us first consider what the problems are if we try
to characterize a 3D texture with only 1 image using
the K -means clustering algorithm on filter outputs de-
scribed in Section 2. Suppose the image of the texture
consists of thin dark-light bars arising from 3 causes:
(1) albedo change; (2) shadows; and (3) a deep groove.
Despite the different underlying causes, all these events
produce the same appearance in this particular lighting
and viewing setting. Quite naturally, the K-means al-
gorithm will cluster them together. What this means is
that pixels with the same label will look different under
different lighting and viewing conditions: (1) the
albedo change varies according to the cosine of the
lighting angle (assuming a Lambertian surface); (2) the
location of the shadow boundary changes according to
the direction of the light; and (3) the deep groove re-
mains the same for a wide range of lighting and view-
ing conditions (Haddon and Forsyth, 1998; Koenderink
and van Doorn, 1980). Thus, we will pay a significant
price for quantizing these events to the same texton.

To characterize 3D textures, many images at differ-
ent lighting and viewing directions will be needed. Let
the number of images be Nvl , with Nvl ≫ 1 (Nvl = 20
in our experiments). The argument is that if any two
local texture structures are equivalent under Nvl

different lighting and viewing conditions, we can safely
assume that the two structures will look the same under
all lighting and viewing conditions. Notice that work
in the literature have attempted to show that 3–6 im-
ages will be able to completely characterize a struc-
ture in all lighting and viewing conditions (Belhumeur
and Kriegman, 1998; Shashua, 1997). These results are
not applicable because of the very restrictive assump-
tions they made: Lambertian surface model and the ab-
sence of occlusion, shadows, mutual illumination, and
specularity. Indeed, deviations from these assumptions
are the defining properties of most, if not all, natural
3D textures.

What this means is that the co-occurrence of filter
responses across different lighting and viewing con-
ditions specifies the local geometric and photometric
properties of the surface. If we concatenate the filter
responses of the Nvl images together and cluster these
long Nf il Nvl data vectors, the resulting textons will en-
code the appearances of dominant features in the image
under all lighting and viewing conditions. Let us first
understand what these textons correspond to. Consider
the following two geometric features: a groove and a
ridge. In one image, they may look the same, however,
at many lighting and viewing angles, their appearances
are going to differ considerably. With the filter response
vectors from all the images, we can tell the difference
between these two features. In other words, each of the
K -means centers encodes geometric features such as
ridges at particular orientations, bumps of certain sizes,
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Figure 1. Some natural 3D textures from the Columbia-Utrecht database (Dana et al., 1999). Left to right: “Pebbles”, “Aluminum Foil”,
“Sponge”, “Rabbit Fur”, “Concrete” and “Painted Spheres”. These textures illustrate the effects caused by the 3D nature of the material:
specularities, shadows, and occlusions.

Figure 2. The same patch of the material “Crumpled Paper” imaged under three different lighting and viewing conditions. The aspect ratio
of the figure is determined by the slant of the surface. Even though the three images are corresponding patches from the same material, the
appearances are drastically different.

problems: two regions will have the same brightness
under one illumination; while the shadowed region will
be darker in another. These two problem cases are il-
lustrated in Fig. 3.

The complexity in the relationship between the im-
age intensity values to the viewing/lighting settings
and the properties of 3D textures led to recent interest
in building explicit models for 3D textures (Chantler,
1994; Chantler and McGunnigle, 1995; Dana and
Nayar, 1998; Dana and Nayar, 1999b; Dana et al., 1999;
Koenderink and van Doorn, 1996; Koenderink et al.,
1999; Leung and Malik, 1997; van Ginneken et al.,
1998). From these analytical models, such as Gaussian
distributed height variation, or cylindrical models, low-
order statistical quantities, e.g. brightness distribution
or correlation length, are derived. However, these mod-
els are rather simple and they lack the expressiveness
to solve the general problems of natural material rep-

resentation, recognition, and synthesis under varying
lighting and viewing conditions.

The main idea of this paper is the following—at the
local scale, there are only a small number of percep-
tually distinguishable micro-structures on the surface.
For example, the local surface relief n̂(x, y) might cor-
respond to ridges, grooves, bumps, hollows, etc. These
could occur at a continuum of orientations and heights,
but perceptually we can only distinguish them up to an
equivalence class. Similarly, reflectance variations fall
into prototypes like stripes, spots, etc. Of course one
can have the product of these two sources of variation.

Our goal is to build a small, finite vocabulary of
micro-structures, which we call 3D textons. This term
is by analogy to 2D textons, the putative units of preat-
tentive human texture perception proposed by Julesz
nearly 20 years ago. Julesz’s textons (Julesz, 1981)—
orientation elements, crossings and terminators—fell
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Figure 2. The same patch of the material “Crumpled Paper” imaged under three different lighting and viewing conditions. The aspect ratio
of the figure is determined by the slant of the surface. Even though the three images are corresponding patches from the same material, the
appearances are drastically different.

problems: two regions will have the same brightness
under one illumination; while the shadowed region will
be darker in another. These two problem cases are il-
lustrated in Fig. 3.

The complexity in the relationship between the im-
age intensity values to the viewing/lighting settings
and the properties of 3D textures led to recent interest
in building explicit models for 3D textures (Chantler,
1994; Chantler and McGunnigle, 1995; Dana and
Nayar, 1998; Dana and Nayar, 1999b; Dana et al., 1999;
Koenderink and van Doorn, 1996; Koenderink et al.,
1999; Leung and Malik, 1997; van Ginneken et al.,
1998). From these analytical models, such as Gaussian
distributed height variation, or cylindrical models, low-
order statistical quantities, e.g. brightness distribution
or correlation length, are derived. However, these mod-
els are rather simple and they lack the expressiveness
to solve the general problems of natural material rep-

resentation, recognition, and synthesis under varying
lighting and viewing conditions.

The main idea of this paper is the following—at the
local scale, there are only a small number of percep-
tually distinguishable micro-structures on the surface.
For example, the local surface relief n̂(x, y) might cor-
respond to ridges, grooves, bumps, hollows, etc. These
could occur at a continuum of orientations and heights,
but perceptually we can only distinguish them up to an
equivalence class. Similarly, reflectance variations fall
into prototypes like stripes, spots, etc. Of course one
can have the product of these two sources of variation.

Our goal is to build a small, finite vocabulary of
micro-structures, which we call 3D textons. This term
is by analogy to 2D textons, the putative units of preat-
tentive human texture perception proposed by Julesz
nearly 20 years ago. Julesz’s textons (Julesz, 1981)—
orientation elements, crossings and terminators—fell
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and chrominance in each disc half. The binning was done
by sampling each Gaussian kernel out to 2! at a rate
ensuring at least two samples per bin. For the texture
gradient, we compute histograms of vector quantized filter
outputs in each disc half. In all three cases, the half-disc
regions are described by histograms, which we compare
with the "2 histogram difference operator [22]:

"2ðg; hÞ ¼ 1

2

X ðgi $ hiÞ2

gi þ hi
: ð2Þ

The brightness, color, and texture gradient features there-
fore encode, respectively, changes in the local distributions
of luminance, chrominance, and filter responses.

Each gradient computation shares the step of comput-
ing a histogram difference at eight orientations and three
half-octave scales at each pixel.1 In the following sections,
we discuss in detail the possible design choices for
representing and comparing color, brightness, and texture.

2.2.1 Brightness and Color Gradients

There are two common approaches to characterizing the
difference between the color distributions of sets of pixels.
The first is based on density estimation using histograms.

Both QBIC and Blobworld use fully three-dimensional color
histograms as region features and compare histograms
using a similarity measure such as L1 norm, "2 difference,
or some quadratic form. Blobworld smooths the histograms
to prevent the aliasing of similar colors, while QBIC models
the perceptual distance between bins explicitly.2 A second
common approach avoids quantization artifacts by using
the Mallows [23] or Earth Mover’s distance (EMD) [24] to
compare color distributions. In addition, the EMD explicitly
accounts for the “ground distance” between points in the
color space. This is a desirable property for data living in a
perceptual color space where nearby points appear percep-
tually similar. However, once colors in such a space are
further apart than some degree of separation, they tend to
appear “equally distant” to a human observer. Ruzon and
Tomasi use an attenuated EMD to model this perceptual
roll-off, but the EMD remains computationally expensive.
For one-dimensional data, efficient computation is possible
using sorting. In higher dimensions, however, one must
explicitly solve an assignment problem, resulting in a
considerable increase in computational complexity.

We would like a way to model the color distribution
accurately with respect to human perception, while retain-
ing computationally feasibility. Our approach is based on
binning kernel density estimates of the color distribution in
CIELAB using a Gaussian kernel, and comparing histo-
grams with the "2 difference. The "2 histogram difference
does not make use of the perceptual distance between bin
centers. Therefore, without smoothing, perceptually similar
colors can produce disproportionately large "2 differences.
Because the distance between points in CIELAB space is
perceptually meaningful in a local neighborhood, binning a
kernel density estimate whose kernel bandwidth ! matches
the scale of this neighborhood means that perceptually
similar colors will have similar histogram contributions.
Beyond this scale, where color differences are perceptually
incommensurate, "2 will regard them as equally different.
We believe this combination of a kernel density estimate in
CIELAB with the "2 histogram difference is a good match to
the structure of human color perception.

For the brightness gradient we compute histograms of
L* values. The color gradient presents additional challenges
for density estimation because the pixel values are in
the 2D space (a* and b*). When using 2D kernels and
2D histograms one typically reduces both the number of
kernel samples and the number of bins in order to keep the
computational cost reasonable. However, this compromises
the quality of the density estimate.

Rather than compute the joint gradient CGab, we
compute marginal color gradients for a* and b* and take
the full color gradient to be the sum of the corresponding
marginal gradients: CGaþb ¼ CGa þ CGb. This is motivated
by the fact that the a* and b* channels correspond to the
perceptually orthogonal red-green and yellow-blue color
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Fig. 3. Two Decades of Boundary Detection. The performance of our
boundary detector compared to classical boundary detection methods
and to the human subjects’ performance. A precision-recall curve is
shown for each of five boundary detectors: 1) Gaussian derivative (GD),
2) Gaussian derivative with hysteresis thresholding (GD+H), the Canny
detector, 3) A detector based on the secondmomentmatrix (2MM), 4) our
gray-scale detector that combines brightness and texture (BG+TG), and
5) our color detector that combines brightness, color, and texture
(BG+CG+TG). Each detector is represented by its precision-recall curve,
which measures the trade off between accuracy and noise as the
detector’s threshold varies. Shown in the caption is each curve’s
F-measure, valued from zero to one. The F-measure is a summary
statistic for a precision-recall curve. The pointsmarked by a “+” on the plot
show the precision and recall of each ground truth human segmentation
when compared to the other humans. The median F-measure for the
human subjects is 0.80. The solid curve shows the F=0.80 curve,
representing the frontier of human performance for this task.

1. A naive implementation would involve much redundant computation.
Appendix A presents efficient algorithms for computing the gradient
features.

2. The quadratic form distance function used in QBIC is dðg; hÞ ¼
ðg$ hÞTAðg$ hÞ, where g and h are the histograms to compare, and A is a
matrix giving the similarity Aij between two bins i and j. The QBIC authors
indicate that this measure is superior for their task. We will not consider
this histogram similarity function because it is computationally expensive,
difficult to define A, and similar in spirit to the Earth Mover’s distance.

chi-square distance
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chi-square distance between the sample histogram and
the model histogram. In this experiment, 20 training
materials are used to construct the texton vocabulary of
size 100. 40 different materials are to be classified. The
models are obtained from random 100 × 100 patches
from the images. For each material, 3 novel samples of
size 100 × 100 are to be classified. The overall recog-
nition rate is 95.6%.4

Another way to demonstrate the result is to use the
similarity matrix in Fig. 9. Each element in the ma-
trix ei j is given by the chi-square probability function

Figure 9. Similarity matrix for 14 materials. Each entry eij is given by the chi-square probability function (Eq. (2)) that samples of material j
will be classified as material i . As shown in this figure, for example, “Leather” and “Rough Plastic” are likely to be classified correctly; while
“Plaster-a” and “Plaster-b” are likely to be mistaken between them. Sample images from these four materials are shown as well.

(Eq. (2)) that samples of material j will be classified
as material i . Here, we only show the probability for
14 materials because of space limitations. As shown in
the figure, for example, “Leather” and “Rough Plastic”
are likely to be classified correctly; while “Plaster-a”
and “Plaster-b” are likely to be mistaken between each
other. This is reasonable because the two different types
of plaster indeed look very similar, as shown from the
images in the bottom of the figure.

“Receiver Operation Characteristics” (ROC) curves
are also good indications of the preformance. The ROC
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opponents found in the human visual system (see Palmer
[25]). The comparison of CGab to CGaþb is presented in
Section 4.

2.2.2 Texture Gradient

In a manner analogous to the brightness and color gradient
operators, we formulate a directional operator that mea-
sures the degree to which texture of scale r varies at an
image location ðx; yÞ in direction !. We compute the texture
dissimilarity in the two halves of a disk of centered on a
point and divided in two along a diameter. Oriented texture
processing along these lines has been pursued by Rubner
and Tomasi [6].

Fig. 4a shows the filter bank that we use for texture
processing. It contains six pairs of elongated, oriented
filters, as well as a center-surround filter. The oriented
filters are in even/odd quadrature pairs, and are the same
filters we used to compute oriented energy. The even-
symmetric filter is a Gaussian second derivative, and the
odd-symmetric filter is its Hilbert transform. The center-
surround filter is a difference of Gaussians. The even and
odd filter responses are not combined as they are in
computing oriented energy. Instead, each filter produces a
separate feature. To each pixel, we associate the vector of
13 filter responses centered at the pixel. Note that unlike [2],
we do not contrast-normalize the filter responses for texture
processing. Our experiments indicate that this type of
normalization does not improve performance, as it appears
to amplify noise more than signal.

Each disc half contains a set of filter response vectors
which we can visualize as a cloud of points in a feature
space with dimensionality equal to the number of filters.
One can use the empirical distributions of these two point
clouds as texture descriptors, and then compare the
descriptors to get the value of the texture gradient.

Many questions arise regarding the details of this
approach. Should the filter bank contain multiple scales,
and what should the scales be? How should we compare
the distributions of filter responses? Should we use the
Earth Mover’s distance, or should we estimate the distribu-
tions? If the latter, should we estimate marginal or joint

distributions and with fixed or adaptive bins? How should
we compare distributions—some Lp-norm or the "2 differ-
ence? Puzicha et al. [21] evaluate a wide range of texture
descriptors in this framework and examine many of these
questions. We choose the approach developed in [2], which
is based on the idea of textons.

The texton approach estimates the joint distribution of
filter responses using adaptive bins. The filter response
vectors are clustered using k-means. Each cluster defines a
Voronoi cell in the space of joint filter responses, and the
cluster centers define texture primitives. These texture
primitives—the textons—are simply linear combinations of
the filters. Fig. 4b shows example textons for k ¼ 64
computed over the 200 images in the training set. After
the textons have been identified, each pixel is assigned to
the nearest texton. The texture dissimilarities can then be
computed by comparing the histograms of texton labels in
the two disc halves. Figs. 4c and 4d shows an image and the
associated texton map, where each pixel has been labeled
with the nearest texton. Some questions remain, namely,
what images to use to compute the textons, the choice of k,
the procedure for computing the histograms, and the
histogram comparison measure.

For computing textons, we can use a large, diverse
collection of images in order to discover a set of universal
textons. Alternately, one can compute image-specific textons
by separately clustering filter responses in each test image.
The optimal number of textons, k, depends on this choice
between universal and image-specific as well as the scale r
of the texture gradient operator and the size of the image.
Experiments exploring both of these issues are presented in
Section 4.

To compute the texton histograms, we use hard binning
without smoothing. It is possible to do soft binning in the
texton framework by considering a pixel’s distance to each
bin center. However, this type of soft binning is
computationally expensive and, in our experiments, it
has not proved worthwhile. It seems likely that hard
binning is not a problem because adjacent pixels have
correlated filter responses due to the spatial extent of the
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Fig. 4. Computing Textons. (a) Filter Bank: The 13-element filter bank used for computing textons. (b) Universal Textons: Example universal textons
computed from the 200 training images, sorted by L1 norm for display purposes. (c) Image and (d) Texton Map: An image and its associated texton
map. Texton quality is best with a single scale filter bank containing small filters. Each pixel produces a 13-element response to the filter bank, and
these responses are clustered with k-means. In this example, using 200 images with k = 64 yields 64 universal textons. The textons identify basic
structures such as steps, bars, and corners at various levels of contrast. If each pixel in the image shown in (c) is assigned to the nearest texton and
each texton is assigned a color, we obtain the texton map shown in (d). The elongated filters have 3:1 aspect, and the longer # was set to 0.7 percent
of the image diagonal (about 2 pixels).
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some neighborhood. Distributions of color in perceptual
color spaces have been used successfully as region
descriptors in the QBIC [15] and Blobworld [8] image
retrieval systems. In addition, the compass operator of
Ruzon and Tomasi [16], [17] uses color histogram compar-
isons to find corners and edges in color images. For texture
analysis, there is an emerging consensus that an image

should first be convolved with a bank of filters tuned to
various orientations and spatial frequencies [18], [19]. The
empirical distribution of filter responses has been demon-
strated to be a powerful feature in both texture synthesis
[20] and texture discrimination [21].

For brightness and color gradient features, we bin kernel

density estimates of the distributions of pixel luminance

532 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 5, MAY 2004

Fig. 2. Local Image Features. In each row, the first panel shows an image patch. The following panels show feature profiles along the patch’s
horizontal diameter. The features are raw image intensity, oriented energy OE, brightness gradient BG, color gradient CG, raw texture gradient TG,
and localized texture gradient dTGTG. The vertical line in each profile marks the patch center. The scale of each feature has been chosen to maximize
performance on the set of training images—2 percent of the image diagonal (5.7 pixels) for OE, CG, and TG, and 1 percent of the image diagonal
(3 pixels) for BG. The challenge is to combine these features in order to detect and localize boundaries.

some neighborhood. Distributions of color in perceptual
color spaces have been used successfully as region
descriptors in the QBIC [15] and Blobworld [8] image
retrieval systems. In addition, the compass operator of
Ruzon and Tomasi [16], [17] uses color histogram compar-
isons to find corners and edges in color images. For texture
analysis, there is an emerging consensus that an image

should first be convolved with a bank of filters tuned to
various orientations and spatial frequencies [18], [19]. The
empirical distribution of filter responses has been demon-
strated to be a powerful feature in both texture synthesis
[20] and texture discrimination [21].

For brightness and color gradient features, we bin kernel

density estimates of the distributions of pixel luminance
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Fig. 2. Local Image Features. In each row, the first panel shows an image patch. The following panels show feature profiles along the patch’s
horizontal diameter. The features are raw image intensity, oriented energy OE, brightness gradient BG, color gradient CG, raw texture gradient TG,
and localized texture gradient dTGTG. The vertical line in each profile marks the patch center. The scale of each feature has been chosen to maximize
performance on the set of training images—2 percent of the image diagonal (5.7 pixels) for OE, CG, and TG, and 1 percent of the image diagonal
(3 pixels) for BG. The challenge is to combine these features in order to detect and localize boundaries.

and chrominance in each disc half. The binning was done
by sampling each Gaussian kernel out to 2! at a rate
ensuring at least two samples per bin. For the texture
gradient, we compute histograms of vector quantized filter
outputs in each disc half. In all three cases, the half-disc
regions are described by histograms, which we compare
with the "2 histogram difference operator [22]:

"2ðg; hÞ ¼ 1

2

X ðgi $ hiÞ2
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The brightness, color, and texture gradient features there-
fore encode, respectively, changes in the local distributions
of luminance, chrominance, and filter responses.

Each gradient computation shares the step of comput-
ing a histogram difference at eight orientations and three
half-octave scales at each pixel.1 In the following sections,
we discuss in detail the possible design choices for
representing and comparing color, brightness, and texture.

2.2.1 Brightness and Color Gradients

There are two common approaches to characterizing the
difference between the color distributions of sets of pixels.
The first is based on density estimation using histograms.

Both QBIC and Blobworld use fully three-dimensional color
histograms as region features and compare histograms
using a similarity measure such as L1 norm, "2 difference,
or some quadratic form. Blobworld smooths the histograms
to prevent the aliasing of similar colors, while QBIC models
the perceptual distance between bins explicitly.2 A second
common approach avoids quantization artifacts by using
the Mallows [23] or Earth Mover’s distance (EMD) [24] to
compare color distributions. In addition, the EMD explicitly
accounts for the “ground distance” between points in the
color space. This is a desirable property for data living in a
perceptual color space where nearby points appear percep-
tually similar. However, once colors in such a space are
further apart than some degree of separation, they tend to
appear “equally distant” to a human observer. Ruzon and
Tomasi use an attenuated EMD to model this perceptual
roll-off, but the EMD remains computationally expensive.
For one-dimensional data, efficient computation is possible
using sorting. In higher dimensions, however, one must
explicitly solve an assignment problem, resulting in a
considerable increase in computational complexity.

We would like a way to model the color distribution
accurately with respect to human perception, while retain-
ing computationally feasibility. Our approach is based on
binning kernel density estimates of the color distribution in
CIELAB using a Gaussian kernel, and comparing histo-
grams with the "2 difference. The "2 histogram difference
does not make use of the perceptual distance between bin
centers. Therefore, without smoothing, perceptually similar
colors can produce disproportionately large "2 differences.
Because the distance between points in CIELAB space is
perceptually meaningful in a local neighborhood, binning a
kernel density estimate whose kernel bandwidth ! matches
the scale of this neighborhood means that perceptually
similar colors will have similar histogram contributions.
Beyond this scale, where color differences are perceptually
incommensurate, "2 will regard them as equally different.
We believe this combination of a kernel density estimate in
CIELAB with the "2 histogram difference is a good match to
the structure of human color perception.

For the brightness gradient we compute histograms of
L* values. The color gradient presents additional challenges
for density estimation because the pixel values are in
the 2D space (a* and b*). When using 2D kernels and
2D histograms one typically reduces both the number of
kernel samples and the number of bins in order to keep the
computational cost reasonable. However, this compromises
the quality of the density estimate.

Rather than compute the joint gradient CGab, we
compute marginal color gradients for a* and b* and take
the full color gradient to be the sum of the corresponding
marginal gradients: CGaþb ¼ CGa þ CGb. This is motivated
by the fact that the a* and b* channels correspond to the
perceptually orthogonal red-green and yellow-blue color
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Fig. 3. Two Decades of Boundary Detection. The performance of our
boundary detector compared to classical boundary detection methods
and to the human subjects’ performance. A precision-recall curve is
shown for each of five boundary detectors: 1) Gaussian derivative (GD),
2) Gaussian derivative with hysteresis thresholding (GD+H), the Canny
detector, 3) A detector based on the secondmomentmatrix (2MM), 4) our
gray-scale detector that combines brightness and texture (BG+TG), and
5) our color detector that combines brightness, color, and texture
(BG+CG+TG). Each detector is represented by its precision-recall curve,
which measures the trade off between accuracy and noise as the
detector’s threshold varies. Shown in the caption is each curve’s
F-measure, valued from zero to one. The F-measure is a summary
statistic for a precision-recall curve. The pointsmarked by a “+” on the plot
show the precision and recall of each ground truth human segmentation
when compared to the other humans. The median F-measure for the
human subjects is 0.80. The solid curve shows the F=0.80 curve,
representing the frontier of human performance for this task.

1. A naive implementation would involve much redundant computation.
Appendix A presents efficient algorithms for computing the gradient
features.

2. The quadratic form distance function used in QBIC is dðg; hÞ ¼
ðg$ hÞTAðg$ hÞ, where g and h are the histograms to compare, and A is a
matrix giving the similarity Aij between two bins i and j. The QBIC authors
indicate that this measure is superior for their task. We will not consider
this histogram similarity function because it is computationally expensive,
difficult to define A, and similar in spirit to the Earth Mover’s distance.

chi-square distance
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h



3.2.2. Comparing histograms
For each new image, we can develop a description of

its texture by creating a universal texton histogram. To
find the closest match, this histogram is compared to
stored histograms for the training images using the v2

similarity measure

v2ðhi; hjÞ ¼
1

2

XK

k¼1

½hiðkÞ % hjðkÞ&2

hiðkÞ þ hjðkÞ
;

where hi and hj are the two histograms and K is the total
number of bins (universal textons). If v2 is small, the two

images are similar in their texture content (Fig. 4(b) and
(c)). The model is tested with the same 2AFC task as our
subjects, and the target scene is assigned the label of its
closest match.

4. Data analysis

Subjects were not allowed to see the same image more
than once to prevent recognition and learning effects on
the data, therefore we do not have data for one subject
across the time conditions. We are also interested in how

Fig. 4. (a) The 100 texture features found across the training images (sorted by increasing norm). These ‘‘universal textons’’ correspond to edges and
bars of varying curvature and contrast. (b) Each pixel in an image is assigned to a texton channel based on its corresponding vector of filter responses.
The total activity across texton channels for a given image is represented as a histogram. (c) Test images are identified by matching their texton
histograms against stored examples. The v2 similarity measure indicates our test image is more similar to a bedroom than a beach scene in this case.
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exposure duration on scene identification. Four con-
ditions were tested in which the target was displayed
for 37, 50, 62 or 69 ms. There were 11, 15, 8 and 14
participants for the respective conditions. On a given
trial, the target image was presented followed by
its corresponding category label and one of the other
nine category labels. To explore all 10 categories,
an experimental block consisted of 90 trials. Most
subjects completed two experimental blocks during the
session.

2.5. Apparatus

Stimuli were presented on a PC running Windows
2000 and the BitmapTools presentation software for
Matlab (developed by Payam Saisan, under the super-
vision of Martin Banks). The display was set at
800 · 600 pixels and 256 colors with a refresh rate of 160
Hz. Subjects did not use a chinrest, but were instead
instructed to sit with their back against the chair to
maintain a viewing distance of approximately 2.5 m.
Responses were collected on a BTC Wireless Multi-
media Keyboard 5113RF. The images were displayed on
a mid-gray background and presented foveally. Abso-
lute image dimensions varied, but were scaled to a height
of 380 pixels (7.6 in. displayed) to subtend a visual angle
of approximately 5.3!.

3. Texture model

Several researchers have constructed algorithms that
extract low-level features from images in order to clas-
sify them into two categories, for example indoor ver-
sus outdoor (Szummer & Picard, 1998), city/suburb
versus other (Gorkani & Picard, 1994) and city/suburb
versus landscape (Vailaya, Jain, & Zhang, 1998). They
achieve reasonable classification performance by weight-
ing particular discriminating features, for example, cities
will have more vertical edge energy than flat landscapes
(see also Oliva & Torralba, 2001).

The classification schemes mentioned above apply
high-level or top-down knowledge in the form of a class-
specific template or feature weighting. Because subjects
are quick to identify scenes in a glance without prior
cues, we avoid learning class-specific features and in-
stead examine the ability of early vision mechanisms to
delineate scene categories in a purely bottom-up fashion.

Our model learns what local texture features occur
across all scene categories by first filtering the set of 250
training images with V1-like filters, then remembering
their prototypical response distributions. The number of
occurrences of each feature within a particular image is
stored as a histogram, creating a holistic texture
descriptor for that image. When identifying a new
image, its histogram is matched against stored examples.

Fig. 2. Subjects were shown grayscale scenes for 37, 50, 62 or 69 ms followed by a jumbled scene mask and two word choices. The 2AFC task was to
select the word that best described the target.
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a uniform gray field was displayed for 500 ms, fol-
lowed by two word choices for 2.5 s. One word choice
corresponded to the grayscale image presented and
the other was chosen randomly from the remaining
nine scene labels. Subjects responded in this two-
alternative forced choice task by selecting the word on
the left or right that best described the target image
(Fig. 2).

2.4. Design

A preliminary study in which subjects viewed the
scenes for 150 ms was conducted to validate the
experimental setup. Performance was near perfect,
confirming that the task is reasonable given the label-
ing of the dataset, choice of mask and viewing dis-
tance. With this setup we can study the effects of target

Fig. 1. Pictured here are some example images from the ten scene categories used in this paper. Each row is labeled with its basic-level (left) and
superordinate-level (right) category. The dataset is available at http://www.cs.berkeley.edu/projects/vision/shape/.
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exposure duration on scene identification. Four con-
ditions were tested in which the target was displayed
for 37, 50, 62 or 69 ms. There were 11, 15, 8 and 14
participants for the respective conditions. On a given
trial, the target image was presented followed by
its corresponding category label and one of the other
nine category labels. To explore all 10 categories,
an experimental block consisted of 90 trials. Most
subjects completed two experimental blocks during the
session.

2.5. Apparatus
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Hz. Subjects did not use a chinrest, but were instead
instructed to sit with their back against the chair to
maintain a viewing distance of approximately 2.5 m.
Responses were collected on a BTC Wireless Multi-
media Keyboard 5113RF. The images were displayed on
a mid-gray background and presented foveally. Abso-
lute image dimensions varied, but were scaled to a height
of 380 pixels (7.6 in. displayed) to subtend a visual angle
of approximately 5.3!.

3. Texture model

Several researchers have constructed algorithms that
extract low-level features from images in order to clas-
sify them into two categories, for example indoor ver-
sus outdoor (Szummer & Picard, 1998), city/suburb
versus other (Gorkani & Picard, 1994) and city/suburb
versus landscape (Vailaya, Jain, & Zhang, 1998). They
achieve reasonable classification performance by weight-
ing particular discriminating features, for example, cities
will have more vertical edge energy than flat landscapes
(see also Oliva & Torralba, 2001).

The classification schemes mentioned above apply
high-level or top-down knowledge in the form of a class-
specific template or feature weighting. Because subjects
are quick to identify scenes in a glance without prior
cues, we avoid learning class-specific features and in-
stead examine the ability of early vision mechanisms to
delineate scene categories in a purely bottom-up fashion.

Our model learns what local texture features occur
across all scene categories by first filtering the set of 250
training images with V1-like filters, then remembering
their prototypical response distributions. The number of
occurrences of each feature within a particular image is
stored as a histogram, creating a holistic texture
descriptor for that image. When identifying a new
image, its histogram is matched against stored examples.

Fig. 2. Subjects were shown grayscale scenes for 37, 50, 62 or 69 ms followed by a jumbled scene mask and two word choices. The 2AFC task was to
select the word that best described the target.
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the model compares to typical subject performance. For
these reasons, we collapse data across subjects within a
single time condition. We measure statistics from the
consolidated data using bootstrapping techniques (Efron
& Tibshirani, 1993). The datasets for each time condition
are resampled with replacement at least 1000 times.
From each resampling, the statistic of interest is calcu-
lated. The central limit effect causes the resulting distri-
bution over the statistic to tend toward normality as the
number of samples increases. The mean and standard
deviation of this distribution provide the best estimate of
the statistic and the standard error of the estimate. The
95% confidence intervals are also taken from this distri-
bution and used to determine statistical significance.

Bootstrapping techniques assume that the observed
data is representative of the underlying population. This
is a valid assumption given that we collapse data across
48 subjects and trials were fully randomized. When we
break the analysis down to examine specific error types,
the number of samples available for bootstrapping is
drastically reduced. For the error analysis, we discard
the 62 ms time condition. This condition had the fewest
number of subjects and is somewhat redundant with the
69 ms time condition. It also simplifies our presentation
of the confusion analysis.

5. Results and discussion

5.1. 2AFC scene identification

Subjects and the model performed well above chance
on the 2AFC task for all time conditions. Performance
is similar for the model and the subject at 37 ms, but the
subjects outperform the model overall at longer dura-
tions (Fig. 5). With 69 ms, subjects are performing
above 90% correct, confirming that the gist of a scene
can be processed within one fixation. The model per-
formance could differ at the four time conditions be-
cause it is presented with whatever images the subjects
saw for that condition, however, performance stayed
nearly constant at 76% correct.

Subjects made comments during the experiments that
they saw ‘‘the kitchen’’ or ‘‘the forest’’ when referring to
the stimuli, indicating that they often perceived only one
instance of each scene, when in fact, there were many
examples of each scene class presented to them during
the experiment. This is consistent with previous experi-
ments that suggest we get the gist of a scene quickly, but
it takes longer to retain the specific details of those
scenes in memory (Loftus et al., 1983; Potter, 1976).

5.2. Correct identification of basic-level categories

The proportion of correct responses for the model is
most similar to human responses at 37 ms across the 10

basic-level scene categories (Fig. 6). Identical perfor-
mance occurs along the diagonal line in this figure.
Significant correlation occurs between the model and
humans at both 37 and 50 ms. At 37 ms, the model is
doing a better job on beach and kitchen scenes, but
humans are far superior on mountain scenes. Subjects
reported that mountains just seemed to ‘‘pop out’’ at
them. In this case, subjects seem to be able to make use
of large-scale shape information (the triangle of the
mountain against the sky). As time progresses to 50 ms,
the performance is still correlated, but humans are doing
a better job on categorizing 9 of the 10 basic-level scene
categories. With longer exposures, subjects are clearly
outperforming the texture model.

5.3. Identification errors

With the briefest exposures, we might expect human
errors to be noisy and unpredictable, given the difficulty
of the scene identification task. As exposure durations
are increased, however, we would expect these errors to
become more systematic. Can the pattern of these errors
be explained by our texture model?

Both humans and the model can identify a scene as a
member of its superordinate category before its basic-
level category is identified. When we group error rates at
the superordinate-level, we see stronger correlation at 50
ms for both beach and mountain scenes (Fig. 7). Sig-
nificant positive correlation for basic-level identification
does not occur until 69 ms. Correlations at one category

Fig. 5. Subject accuracy in the 2AFC scene discrimination task im-
proves with increased presentation time. The percent correct is plotted
with its 95% confidence intervals for 48 subjects (11, 15, 8 and 14
subjects at 37, 50, 62 and 69 ms). Chance performance is 50% correct.
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- Texture synthesis
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Texture synthesis

noise



Texture synthesis
62 Portilla and Simoncelli

Figure 12. Synthesis results on artificial textures. For each pair of
textures, the upper image is the original texture, and the lower image
is the synthesized texture.

Figure 13. Synthesis of classic counterexamples to the Julesz con-
jecture (Julesz et al., 1978; Yellot, 1993) (see text). Top row: original
artificial textures. Bottom row: Synthesized textures.

complex structures. Although the synthesis quality is
not as good as in previous examples, we find the abil-
ity of our model to capture salient visual features of
these textures quite remarkable. Especially notable are
those examples in all three figures for which shading
produces a strong impression of three-dimensionality.
Finally, it is instructive to apply the algorithm to

images that are structured and highly inhomogeneous.

Figure 14. Synthesis results on photographic pseudo-periodic tex-
tures. See caption of Fig. 12.

Figure 15. Synthesis results on photographic aperiodic textures.
See caption of Fig. 12.
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Heeger & Bergen ’96; Portilla & Simoncelli ’00



1. Multi-scale image decomposition 

12

Input texture

Steerable pyramid

1-The steerable pyramid

Overview of the algorithm

Two main tools:

1- steerable pyramid

2- matching histograms



2. Histogram matching

13

2-Matching histograms

There are many ways of changing the histograms of two signals.

2-Matching histograms

9% of pixels have an intensity value
within the range[0.37, 0.41]

75% of pixels have an intensity value
smaller than 0.5

5% of pixels have an intensity value
within the range[0.37, 0.41]

Cumulative histogram



2. Histogram matching

14

2-Matching histograms

?

Z(x,y)

Y(x,y)

We look for a transformation 
of the image Y

Y’ = f (Y)

Such that
Hist(Y) = Hist(f(Z))

2-Matching histograms

Y’= 0.5Y= 0.8

Y’ = f (Y)

The function f is just a look up table: it says, change all the pixels of
value Y into a value f(Y).

Original
intensity

New
intensity

Y(x,y)
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2-Matching histograms

?

Z(x,y)

Y(x,y)

We look for a transformation 
of the image Y

Y’ = f (Y)

Such that
Hist(Y) = Hist(f(Z))

2-Matching histograms

Y’= 0.5Y= 0.8

Y’ = f (Y)

The function f is just a look up table: it says, change all the pixels of
value Y into a value f(Y).

Original
intensity

New
intensity

Y(x,y)



2. Histogram matching

15

2-Matching histograms

Y’ = f (Y)

Another example: Matching histograms

10% of pixels are black
and 90% are white

5% of pixels have an intensity value
within the range[0.37, 0.41]

? ?

(1) pixels



2. Histogram matching

(2) each subband

17

Input texture

Steerable pyramid

Goal: Match histogram of each subband

Matching histograms of a subband

17

Input texture

Steerable pyramid

Goal: Match histogram of each subband

Matching histograms of a subband
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Texture analysis and synthesis

Original

Marginal
Histograms
(Heeger-Bergen)

Higher order
statistics

Portilla & Simoncelli, 00

Four statistics

Portilla & Simoncelli ‘00

Marginal histograms 
(Heeger-Bergen)

Features of higher complexity 
(filter correlations across 
orientations and scales)



Contours statistics

• Remember what we said about 
image statistics of neighboring 
orientations and contours 
grouping....

6

Rules of Contour grouping from natural 
image statistics

• Geisler measured the contour formation 
properties of images. Each image was 
displayed on a computer screen and 
people moved a cursor to select all the 
oriented elements that belonged 
together in a single shared contour.

• They computed the orientation and 
position differences among all pairs of 
segments belonging to a same contour. 

• Result: Adjacent segments of any 
single natural contour tend to have 
very similar orientations, but 
segments of the same contour that are 
further apart tend to have orientations 
disparate. 

Geisler et al (2001). Edges co-occurrence in natural images predicts contour grouping performances. Vision Research, 41, 711-724.

Range Image Statistics
An important task for visual systems is estimating distance and three-
dimensional shape from the two-dimensional images formed on each retina. A 
relevant statistic is the distribution of distances (ranges) in natural 
environments. 

Here is a range image (over an extent of 259ƕ horizontal and 80ƕ vertical) 
measured in a forest environment with a laser range finder. In this image, 
lighter pixels denote greater distances. 

Geisler ‘01Demo
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Computational Vision

• Finish texture analysis


- Texture synthesis

- Structure-from-texture


• Start motion processing

Scenes, textures & surfaces



Vertical or ground surface?

source: Aude Oliva

9

Local Texture Gradient

Frontal or Ground Surface?



9

Local Texture Gradient

Frontal or Ground Surface?

Local texture gradients

source: Aude Oliva



Representing texture 
elements: Texels



Surface orientation from texture gradient

8

The Statistics of Textural Gradient
• Gibson argued that perception is based primarily on the 

structure of the environment (ecological perception).
• Order is in the visual texture of the material world
• We perceive “surface” through the visual textures of 

which materials are made

surfaces

A flat frontal surface
Gradient is constant

A flat longitudinal surface
Gradient decreases

A flat slanting surface
Gradient decreases

A rounded surface
Gradient changes from small to large to small 

as the surface curves from a longitudinal
to a frontal

Texture gradient describes the correspondence between the pattern of a 
surface and the structure of the 3 D world. 

source: Aude Oliva



Cues to surface 
orientation

• Texture ‘gradients’


- Texture density
more stones

fewer stones



Assumptions: Textures are homogenous
Next door beach Mars

Surface orientation = f(# texture elements)



Finding p and q:  
An algorithm

Finding p (rotation 
around vertical axis)

Finding q (rotation 
around horizontal axis)

Source: Seeing: The computational approach to biological vision. Frisby & Stone. MIT Press.



Beyond the homogeneity constraint

vs.

Texture shape: 
ellipses = slanted circles

Texture gradients:  
no shape information



Cues to surface 
orientation

• Texture ‘gradients’


- Texture density

- Texture scale/area/spatial 

frequencies

smaller stones

larger stones



Assumptions: Textures are isotropic
Next door beach Mars

Surface orientation = f(Shape of the elements)



Cues to surface 
orientation

• Texture ‘gradients’


- Texture density

- Texture scale/area/spatial 

frequencies 

- Perspective projection

less vertical edges

more vertical edges



Which strategy is being used?



Texture gradient vs. shape

• Short answer: Both



Computational Vision

• Finish texture analysis


- Texture synthesis

- Structure-from-texture


• Start motion processing

Scenes, textures & surfaces



Motion as the most primitive form of vision



Motion perception in humans



Motion perception in humans

http://psych.hanover.edu/krantz/motionparallax/motionparallax.html

http://psych.hanover.edu/krantz/motionparallax/motionparallax.html


Seeing without motion

• Patient LM: 43 yr old, stroke with bilateral posterior parietal and 
occipital regions 


• Complete loss of motion perception


• Comment from the scientists who have been working with her for 
years [Zihl et al ’83]:


- She had difficulty for example, in pouring tea or coffee because the fluid 
appeared to be  frozen like a glacier [...] 


- In a room where more than two people were walking [...] she usually left the 
room because:


- “people were suddenly here or there but I have not seen them moving”



Computational problem of motion processing

• How to get from the dynamic optical event on the retina (2D) to the veridical 
perception of moving objects (3D) within a generally stationary environment


- Ill-posed problem! (not enough constraints for the solution to be unique)


• Hard problem because motion measured by photoreceptors on the retina can 
come from 2 sources:


- moving objects


- moving retinas (heads, eyes, body)


- Moving objects can also appear static on the retina (think about smooth pursuit – object 
tracking by the eye of a moving object!)



Motion as a correspondence problem

• Matlab demo


• see also: http://www.michaelbach.de/ot/mot_Ternus/index.html

http://www.michaelbach.de/ot/mot_Ternus/index.html


Motion as a correspondence problem

1

2



Another correspondence problem: stereo



Optic flow
Int J Comput Vis (2011) 92: 1–31 11

Fig. 2 Hidden Texture Data. Army contains several independently
moving objects. Mequon contains nonrigid motion and texture-
less regions. Schefflera contains thin structures, shadows, and fore-
ground/background transitions with little contrast. Wooden contains
rigidly moving objects with little texture in the presence of shadows.

In the right-most column, we include a visualization of the color-
coding of the optical flow. The “ticks” on the axes denote a flow unit
of one pixel; note that the flow magnitudes are fairly low in Army
(<4 pixels), but higher in the other three scenes (up to 10 pixels)

with a window size of 15×15, corresponding to a window
radius of less than 1.5 pixels in the downsampled images.
We perform a local brute-force search, using each frame to
initialize the next. We also crosscheck the results by track-
ing each pixel both forwards and backwards through the
sequence and require perfect correspondence. The chances
that this check would yield false positives after tracking for
40 frames are very low. Crosschecking identifies the oc-
cluded regions, whose motion we mark as “unknown.” Af-
ter the initial integer-based motion tracking and crosscheck-
ing, we estimate the subpixel motion of each window using
Lucas-Kanade (1981) with a precision of about 1/10 pixels
(i.e., 1/60 pixels in the downsampled images). In order to
downsample the motion field by a factor of 6, we find the
modes among the 36 different motion vectors in each 6 × 6

window using sequential clustering. We assign the average
motion of the dominant cluster as the motion estimate for
the resulting pixel in the low-resolution motion field. The
test images taken under visible light are downsampled using
a binomial filter.

Using the combination of fluorescent paint, downsam-
pling high-resolution images, and sequential tracking of
small motions, we are able to obtain dense, subpixel accu-
rate ground truth for a nonrigid scene.

We include four sequences in the evaluation set (Fig. 2).
Army contains several independently moving objects.
Mequon contains nonrigid motion and large areas with lit-
tle texture. Schefflera contains thin structures, shadows,
and foreground/background transitions with little contrast.
Wooden contains rigidly moving objects with little texture



Computational models of motion detection

Reichardt models (correlation models / delay-and-compare networks)

Marr-Ulllman (temporal derivatives / edge-based models)

Adelson-Bergen (spatial-frequency-based models)




Basic motion detector
2 mm

photoreceptors



Basic motion detector

• Selective to:


- speed


- direction


• Very sensitive to noise in practice


• One way to reduce the influence of noise is to use opponent pairs of such 
detectors



Reichardt motion detector (1961)

• Initially a model of the optomotor response of the beetle

comparator unit (average out signals 
between CL and CR)



Beyond the Reichardt motion detector

Joint excitation method Inhibitory veto

Barlow & Levick ’65 (model of the rabbit retina)


