Computational Vision

Learning invariances

- Complex cells
- Learning simple and complex cells

RF organization in V1

Hubel & Wiesel

Complex cell

RF organization in V1

Hubel & Wiesel

Computational models of complex cells

Hubel & Wiesel

Max pooling

Motivation: Superposition problem and robustness to clutter

Increase in tolerance to position

Increase in tolerance to scale

Max-like computation in the visual cortex

Max-like in V1

Gawne & Martin '02

Max-like in V4

RF organization in V1

Complex cell

Hubel & Wiesel

Computational models of complex cells

THE ASSOCIATION FIELD

Contour integration only occurs when:-

Other Variables:-The phase of the Gabor patch was found to be inelevant Detection improves as the number of elements increases lowards 12

Changing phase has little effect

source: Field et al 1993

source: Hansen et al 2006

Adelson & Bergen 1985; Heeger 1991

Touryan et al '05

Touryan et al '05

Rust et al '05

Computational diversity

9638 • The Journal of Neuroscience, September 5, 2007 • 27(36):9638 –9648

Behavioral/Systems/Cognitive

Computational Diversity in Complex Cells of Cat Primary Visual Cortex

Ian M. Finn and David Ferster

Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208

Cortical mechanisms of invariant recognition

C1 complex units

(1) half-rectification and summing over phases at each location for tolerance to contrast reversal

(2) gain control / divisive normalization

(3) selective max-like pooling over nearby positions and scales for tolerance to 2D transformations

Increase in tolerance to position

Increase in tolerance to scale

Heeger & Carandini '94; Lampl et al '01; Touryan et al '02; Rust et al '05; Finn & Ferster '07

Computational Vision

Learning invariances

- Complex cells
- Learning simple and complex cells

Hebbian learning

- Neurons as coincidence detectors
- 'What fires together, wires together'

$$\Delta w_i = \eta x_i y$$
$$\Delta w_i = \eta (x_i - w_i) y$$

Fregnac et al. 1988; McLean & Palmer 1998; Fregnac & Shulz 1999

Hebbian learning

• Empirical evidence for 'supervised Hebbian learning' ocular dominance, orientation selectivity and orientation preference, interocular orientation disparity, and the relative dominance of ON and OFF responses

Learning transformation sequences

movie courtesy Wolfgang Einhauser

Hypothesis

- Simple cells correspond to learning correlations in space
- Complex cells correspond to learning correlations in time

Learning invariances from temporal continuity

Masquelier et al 2007 (see also Foldiak 1991)

Learning the invariance from temporal continuity

(a) S_1 units (n=73) that remain connected to C_1 unit # 1 after learning

(c) S_1 units (n=59) that remain connected to C_1 unit # 3 after learning

(b) S_1 units (n=35) that remain connected to C_1 unit # 2 after learning

(d) S_1 units (n=38) that remain connected to C_1 unit # 4 after learning

Slow feature analysis

$$\Delta_j := \Delta(y_j) := \langle \dot{y}_j^2 \rangle \quad is \ minimal \tag{1}$$

under the constraints

$$\langle y_j \rangle = 0 \qquad (zero mean) , \qquad (2)$$

$$\langle y_j^2 \rangle = 1 \qquad (unit \ variance) , \qquad (3)$$

$$\forall j' < j: \langle y_{j'} y_j \rangle = 0 \quad (decorrelation) , \qquad (4)$$

where the angle brackets indicate temporal averaging, i.e. $\langle f \rangle := \frac{1}{t_1 - t_0} \int_{t_0}^{t_1} f(t) dt$.

$$y_j(t) = g_j(\mathbf{x}(t)) = \mathbf{w}_j^T \mathbf{h}(\mathbf{x}(t)) = \mathbf{w}_j^T \mathbf{z}(t)$$
$$\Delta(y_j) = \langle \dot{y}_j^2 \rangle = \mathbf{w}_j^T \langle \dot{\mathbf{z}} \dot{\mathbf{z}}^T \rangle \mathbf{w}_j$$

Slow feature analysis

Effects of temporal associations on learning and memory

Wallis & Bulthoff '01

Effects of temporal associations on learning and memory

Effects of temporal associations on learning and memory

Discrimination worst for prototypes that are part of the same training sequence

Wallis & Bulthoff '01

Learning in IT

Learning in IT

Learning in IT

