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caused by higher-order correlations in natural images
(Thomson, 2001) that are not corrected for in the modi-
fied STC method (see Figure S2).

While the STC analysis identifies the visual features
that contribute to the neuronal response, it does not
reveal the quantitative relationship between these fea-
tures and the response. To address this issue, we com-
puted the contrast-response function of each signifi-
cant eigenvector (Chichilnisky, 2001; Touryan et al.,
2002). First, we measured the contrast of the eigenvec-
tor in each natural image as the dot product of the
eigenvector and the image (see Experimental Pro-
cedures), referred to as “feature contrast.” Second, we
measured the instantaneous firing rate in responseFigure 1. Illustration of Experimental Protocol
to each natural image (at a delay of 41.8 ms) and(Upper panel) Segment of a natural image ensemble, updated every

41.8 ms. White boxes (12 × 12 pixels) indicate area presented in computed the feature contrast-response function as
experiments. (Lower panel) Spike train response. The spike-trig- the average firing rate at each feature contrast (Figure
gered stimulus ensemble was generated by collecting the natural 3B). For all cells, the firing rate was found to increase
image preceding each spike by one frame (arrows).

with feature contrast at both positive and negative
polarities, consistent with the known polarity invariance
of complex cells (Hubel and Wiesel, 1962). To furtherensemble (Experimental Procedures; also see Figure
quantify this function, we fit the data with r (x)=b|x|g +S1 in the Supplemental Data available with this article
r0 for positive and negative contrasts separately (be-online). Briefly, the natural image preceding each spike
cause the measured contrast-response function is notby one frame (41.8 ms; Figure 1, arrows) was collected
completely symmetric), where r is the neuronal re-to form the spike-triggered stimulus ensemble. This en-
sponse, x is feature contrast, and b, g, and ro are freesemble was normalized by the average power spectrum
parameters. For these complex cells, the mean expo-of natural images to correct for their spatial correla-
nent (g) was 1.65 ± 0.35, comparable to the exponenttions. The correlation matrix of the spike-triggered en-
of contrast-response functions of simple cells (Anzai etsemble was then computed. Eigenvectors of this matrix
al., 1999). Such bimodal contrast-response functionswith “significant eigenvalues” represent visual features
(Figure 3B), together with the spatial phase relationshipthat directly affect the neuronal response. The signifi-
between the two significant eigenvectors (Figure 3A),cant eigenvalues were identified as those that were sig-
are consistent with the energy model (Adelson and Ber-nificantly different from (1) the control eigenvalues cal-
gen, 1985), which combines a quadrature pair of nonlin-culated on the basis of random spike trains (Figure 2A)
ear functional subunits to produce an orientation- andand (2) their neighboring eigenvalues (Figure 2B and
spatial frequency-selective but phase-invariant com-Experimental Procedures). Figure 2C shows the two
plex cell RF (see Discussion). We thus refer to the sig-significant eigenvectors of an example complex cell.
nificant eigenvectors identified with the modified STCThese eigenvectors exhibit oriented ON and OFF sub-
analysis as the subunits of the complex cell RF.regions, resembling the RFs of simple cells (Hubel and

Wiesel, 1962; Jones and Palmer, 1987; DeAngelis et al.,
1993). As shown below, the spatial structure of these Prediction of Tuning Properties and Responses

to Natural Imageseigenvectors largely predicts the tuning properties of
the neuron. In contrast, the linear RF measured with a The spatial structure of these subunits (Figures 2C and

3A) clearly suggests selectivity for orientation. We nextmodified STA analysis (Theunissen et al., 2000) failed
to reveal the spatial structure of the complex cell RF quantified the degree to which the orientation tuning

curve predicted by the subunits (derived tuning)(Figure 2D).
matched the tuning curve measured experimentally
with drifting gratings (measured tuning). To constructSubunits of Complex Cell RFs

The majority of the complex cells that we analyzed (18/ the tuning curve of each subunit, we calculated the dot
products of the eigenvector and sinusoidal gratings at25) had two significant eigenvectors (Figure 2E). For

these cells we further examined the spatial profiles of a range of orientations at the optimal spatial frequency
of the subunit (Figure 4A). These dot products werethe significant eigenvectors along the axis perpendicu-

lar to the preferred orientation and found them to be then converted to the response of the subunit accord-
ing to the measured contrast-response function (Figurewell approximated by Gabor functions (Figure 3A). In all

cases, the Gabor fits for the two significant eigenvec- 3B). For cells with two or more significant eigenvectors,
we added the tuning curves of the first two eigenvec-tors exhibited similar spatial frequencies, but a phase

difference of approximately 90° (89.5° ± 5.8°, mean ± tors to derive the tuning curve of the cell. As shown
in Figure 4A, the derived tuning agreed well with theSD). For a few complex cells (4/25), we found only one

significant eigenvector, which also resembled a simple measured tuning of the cell. To quantify this compari-
son, we fit each tuning curve with a Gaussian functioncell RF. For the cells with more than two significant ei-

genvectors (3/25), the additional eigenvectors exhibited to determine the preferred orientation (peak position)
and the tuning bandwidth (width at half height). For themore complex spatial structures. However, simulation

studies suggest that these eigenvectors are artifacts population of cells analyzed, the derived tuning closely
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Figure 3. Relationship between the Two Significant Eigenvectors

(A) Significant eigenvectors of an example complex cell. Scale bar,
2°. Solid line, spatial profiles of each eigenvector along the axis
perpendicular to the preferred orientation (see Figure 4). Dashed
line, Gabor fit. The Gabor fits of the two eigenvectors had a phase
difference of 85°.
(B) Feature contrast-response functions. Average firing rate is plot-
ted against feature contrast for the two significant eigenvectors
shown in (A). Error bar represents ±SEM. Dashed lines, fits of the
data with power functions.

matched the measured tuning in both the preferred ori-
entation (Figure 4B: upper plot, r = 0.996; mean abso-
lute difference = 3.6°) and the tuning bandwidth (Figure
4B: lower plot, r = 0.71; mean absolute difference =
6.3°). The dot product between the derived and the
measured tuning curves for each cell was 0.95 ± 0.04
(mean ± SD, n = 25). Thus, unlike the linear RF (Figure
2D), the significant eigenvectors can accurately predict
the selectivity of cortical complex cells for a key stimu-
lus feature.

The significant eigenvectors can also be used to de-

Figure 2. Nonlinear RF of an Example Complex Cell

(A) The 40 largest eigenvalues of the spike-triggered correlation
matrix. Dashed lines, control confidence intervals (mean ± 10 SD)
(see Experimental Procedures).
(B) Difference between neighboring eigenvalues. Dashed lines,
confidence intervals for the difference (mean ± 10 SD). If a point is
found beyond the confidence intervals (i.e., second point, repre-
senting difference between the second and third eigenvalues), all
the eigenvalues preceding this point are considered significant by
this criterion. Filled circles, significant eigenvalues based on cri-
teria in both (A) and (B).
(C) The two significant eigenvectors (red, ON; blue, OFF) corre-
sponding to the significant eigenvalues shown in (A) and (B). Scale
bar, 2°.
(D) The linear RF of the complex cell computed by modified STA.
(E) Distribution of the number of significant eigenvectors found for
each cell. Cells with no significant eigenvectors were not included.

Touryan et al ’05

Complex Cell Receptive Fields and Natural Images
783

Figure 3. Relationship between the Two Significant Eigenvectors

(A) Significant eigenvectors of an example complex cell. Scale bar,
2°. Solid line, spatial profiles of each eigenvector along the axis
perpendicular to the preferred orientation (see Figure 4). Dashed
line, Gabor fit. The Gabor fits of the two eigenvectors had a phase
difference of 85°.
(B) Feature contrast-response functions. Average firing rate is plot-
ted against feature contrast for the two significant eigenvectors
shown in (A). Error bar represents ±SEM. Dashed lines, fits of the
data with power functions.

matched the measured tuning in both the preferred ori-
entation (Figure 4B: upper plot, r = 0.996; mean abso-
lute difference = 3.6°) and the tuning bandwidth (Figure
4B: lower plot, r = 0.71; mean absolute difference =
6.3°). The dot product between the derived and the
measured tuning curves for each cell was 0.95 ± 0.04
(mean ± SD, n = 25). Thus, unlike the linear RF (Figure
2D), the significant eigenvectors can accurately predict
the selectivity of cortical complex cells for a key stimu-
lus feature.

The significant eigenvectors can also be used to de-

Figure 2. Nonlinear RF of an Example Complex Cell

(A) The 40 largest eigenvalues of the spike-triggered correlation
matrix. Dashed lines, control confidence intervals (mean ± 10 SD)
(see Experimental Procedures).
(B) Difference between neighboring eigenvalues. Dashed lines,
confidence intervals for the difference (mean ± 10 SD). If a point is
found beyond the confidence intervals (i.e., second point, repre-
senting difference between the second and third eigenvalues), all
the eigenvalues preceding this point are considered significant by
this criterion. Filled circles, significant eigenvalues based on cri-
teria in both (A) and (B).
(C) The two significant eigenvectors (red, ON; blue, OFF) corre-
sponding to the significant eigenvalues shown in (A) and (B). Scale
bar, 2°.
(D) The linear RF of the complex cell computed by modified STA.
(E) Distribution of the number of significant eigenvectors found for
each cell. Cells with no significant eigenvectors were not included.



Energy mechanisms and divisive normalizationComplex Cell Receptive Fields and Natural Images
783

Figure 3. Relationship between the Two Significant Eigenvectors

(A) Significant eigenvectors of an example complex cell. Scale bar,
2°. Solid line, spatial profiles of each eigenvector along the axis
perpendicular to the preferred orientation (see Figure 4). Dashed
line, Gabor fit. The Gabor fits of the two eigenvectors had a phase
difference of 85°.
(B) Feature contrast-response functions. Average firing rate is plot-
ted against feature contrast for the two significant eigenvectors
shown in (A). Error bar represents ±SEM. Dashed lines, fits of the
data with power functions.

matched the measured tuning in both the preferred ori-
entation (Figure 4B: upper plot, r = 0.996; mean abso-
lute difference = 3.6°) and the tuning bandwidth (Figure
4B: lower plot, r = 0.71; mean absolute difference =
6.3°). The dot product between the derived and the
measured tuning curves for each cell was 0.95 ± 0.04
(mean ± SD, n = 25). Thus, unlike the linear RF (Figure
2D), the significant eigenvectors can accurately predict
the selectivity of cortical complex cells for a key stimu-
lus feature.

The significant eigenvectors can also be used to de-

Figure 2. Nonlinear RF of an Example Complex Cell

(A) The 40 largest eigenvalues of the spike-triggered correlation
matrix. Dashed lines, control confidence intervals (mean ± 10 SD)
(see Experimental Procedures).
(B) Difference between neighboring eigenvalues. Dashed lines,
confidence intervals for the difference (mean ± 10 SD). If a point is
found beyond the confidence intervals (i.e., second point, repre-
senting difference between the second and third eigenvalues), all
the eigenvalues preceding this point are considered significant by
this criterion. Filled circles, significant eigenvalues based on cri-
teria in both (A) and (B).
(C) The two significant eigenvectors (red, ON; blue, OFF) corre-
sponding to the significant eigenvalues shown in (A) and (B). Scale
bar, 2°.
(D) The linear RF of the complex cell computed by modified STA.
(E) Distribution of the number of significant eigenvectors found for
each cell. Cells with no significant eigenvectors were not included.

Touryan et al ’05

Neuron
784

Figure 4. Comparison of Derived and Mea-
sured Orientation Tuning Curves

(A) Orientation tuning of a complex cell de-
rived from the significant eigenvectors (solid
line) and measured experimentally with drift-
ing gratings (dashed line). Top panel, the first
significant eigenvector (upper row) and the
grating stimuli (lower row), whose dot prod-
uct is used to compute the derived orienta-
tion tuning curve.
(B) Derived versus measured preferred ori-
entation (upper plot) and tuning bandwidth
(lower plot) for all cells (n = 25).

rive the spatial frequency tuning of the neuron. The ac- a reasonable compromise between the corruption of ei-
genvectors by high-frequency noise and the bias in de-curacy of the prediction, however, depends on a free

parameter used in the modified STC analysis. As de- rived spatial frequency tuning. Since there is no unique
criterion for determining the optimal cutoff value forscribed in detail in Experimental Procedures, the stimu-

lus ensemble must be normalized by the average each cell, the modified STC method is more suited for
comparing spatial frequency tuning among a popula-power spectrum of natural images before significant ei-

genvectors can be identified by STC analysis (Figure tion of neurons than for predicting the exact tuning
curve of a particular cell.S1). Since the stimulus power at high spatial fre-

quencies is relatively low (Field, 1987; Dong and Atick, Finally, to further validate the significant eigenvec-
tors, we predicted the responses of each neuron to the1995; Simoncelli and Olshausen, 2001), this normaliza-

tion procedure tends to amplify noise in the high-fre- natural images based on its significant eigenvectors
and contrast-response functions, and we computed thequency range (Theunissen et al., 2000, 2001). To reduce

noise amplification, we have limited the normalization correlation coefficient between the predicted and the
measured responses. The prediction was made fol-to spatial frequencies below a cutoff point (see Experi-

mental Procedures), which is a critical free parameter lowing the same procedure as that used for predicting
orientation and spatial frequency tuning, but the signifi-in the modified STC analysis. Figure 5B shows the sig-

nificant eigenvectors of an example cell computed with cant eigenvectors and their contrast-response func-
tions were recomputed using a fraction of the naturaldifferent cutoff values (indicated in Figure 5A). While the

orientations of the eigenvectors remained constant, the image ensemble (23,000 of the 24,000 frames) separate
from that used for the validation (1000 frames). Notewidths of the ON and OFF subregions and the size of

the RF envelope increased systematically with the that an important factor limiting the correlation coeffi-
cient is the variability in the measured responses, duedecreasing cutoff value. To quantify these effects, we

derived both the orientation and spatial frequency tun- to the small number of repeats (two to four) in our mea-
surements. We estimated the upper bound of the corre-ing curves from the eigenvectors computed at different

cutoff values and compared them to the experimentally lation coefficient for each neuron (Hsu et al., 2004; see
Experimental Procedures) and plotted the correlationmeasured tuning curves (Figures 5C and 5D). We found

that while the derived orientation tuning varied only coefficient between the predicted and the measured re-
sponses against this estimated upper bound (Figureslightly, spatial frequency tuning was more sensitive to

the cutoff parameter. At low cutoff values, the eigen- 6A). For most cells the prediction based on the eigen-
vectors did not reach the upper bound, indicating thatvectors appeared less noisy (Figure 5B) due to reduced

noise amplification, but the derived spatial frequency the significant eigenvectors did not account for all of
the signals in the responses. This may be due to addi-tuning was biased toward low frequencies (Figure 5D),

because signals at spatial frequencies above the cutoff tional subunits that were not identified in the present
study (see Discussion) and/or the inaccuracy of the ei-point were attenuated. For the population of cells

studied, we found that a cutoff point of 35% provided genvectors and contrast-response functions, which
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energy in diagonally opposite quadrants of the spectrum,
indicates a preference for the direction of a moving
stimulus. Were this simple cell adequately described by
a single linear filter (as in the standard model of Figure
1A), our analysis would reveal no other filters. However,
the STC analysis revealed three additional excitatory
filters, each with the same direction preference as the
STA, and four suppressive filters, each tuned for the
direction opposite that of the excitatory filters. To ex-
amine the structure of the excitatory and suppressive
elements of the model, we computed separate spatio-
temporal and spectral envelopes for the pooled excit-
atory and suppressive filters by taking the square root
of the sum of the squared filters and their spectra (Fig-
ures 2B and 2C). The pooled excitatory and suppres-
sive signals overlap completely in space and time; the
time courses of excitation and suppression are shown
by the traces to the left of Figure 2B. In the frequency
domain, the excitatory and suppressive spectra are
largely nonoverlapping and concentrated in opposite
quadrants, indicating their selectivity for opposite di-
rections of motion.

Now consider a typical complex cell (Figure 3). The
energy model (Figure 1B) predicts a flat STA and ex-
actly two significant STC filters. The analysis produced
a weak STA and two strong excitatory filters, along with
an additional five excitatory and seven suppressive fil-
ters. As for the simple cell, all excitatory filters had the
same direction preference, and most suppressive filters
had the opposite direction preference; the sixth sup-
pressive filter—a relatively weak one—began with the
same direction preference as the other suppressive fil-
ters, but switched its direction preference to that of the
excitation at longer time delays. The six strongest ex-
citatory and suppressive filters for the complex cell ap-
pear in pairs, with each member of a pair appearing as

Figure 2. Model Filters Recovered for an Example Cell Classified as
Simple by Its Response Modulation of 1.51 to an Optimized Drifting
Sinusoidal Grating a spatial phase-shifted replica of the other. The pooled
(A) Pairs of images representing the STA and three excitatory and spatiotemporal excitatory and suppressive envelopes
four suppressive filters recovered from the STC analysis. The left- indicate that the suppression was time delayed relative
hand image of each pair represents the filter in the x-t plane repre- to the excitation for this neuron (indicated by the green
sented by the middle panel of Figure 1D. The right-hand image is band below the yellow core of the receptive field in Fig-the filter’s spatiotemporal frequency spectrum, in the ωx-ωt plane,

ure 3B, and the adjacent time course traces). The excit-where ω indicates frequency; the origin is at the center. For display,
atory and suppressive frequency spectra were almostthe contrast of each filter and its associated amplitude spectrum
completely nonoverlapping (Figure 3C), as was theare scaled by the square root of its recovered weight (indicated

next to each filter). Weights were independently normalized for the case for the simple cell (Figure 2C).
excitatory and suppressive pools, with the largest weight in each We have illustrated the recovered filters for two direc-
pool set to 1. tion-selective neurons. For nondirectional neurons, the
(B) Pooled excitatory (green) and suppressive (red) filter spatiotem- excitatory filters generally (though not invariably) didporal envelopes computed as the L2-norm (square root of the

not have discernible space-time tilt. Suppressive filters,weighted sum of squares) of the filter values for each x-t pixel.
when found, were also typically separable, but theyRegions of overlap are indicated by yellow. The temporal profiles
often spanned a different region of the spatiotemporalof both signals at the level of the highest amplitude (eleventh) bar

are plotted to the left. frequency spectrum than the excitatory filters.
(C) Pooled excitatory (green) and suppressive (red) frequency Although the standard model for a simple cell con-
spectra as a weighted-sum of the ωx-ωt amplitude spectra for each tains only a single linear filter, we recovered between
filter. As in (B), regions of overlap are displayed in yellow. one and three additional excitatory filters for each of

the simple cells in our population (Figure 4A, dark gray).
resentation of underlying mechanisms. Nevertheless, Similarly, the energy model predicts two excitatory fil-
the subspace they span is uniquely determined, and ters for complex cells, but we recovered additional ex-
the filters in any functionally equivalent model must citatory filters in many complex cells (Figure 4A, light
span the same subspace. gray). We also found significant suppressive filters in

The spatiotemporal filters for a representative simple many cells (41/59). Suppressive filters were more nu-
cell, along with their spatiotemporal frequency spectra, merous in direction-selective complex cells than in
are shown in Figure 2A. The space-time tilt of the STA, other cells, but it might be that non-direction-selective

cells would be more powerfully suppressed by orthogo-or equivalently the concentration of its spatiotemporal
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A previous study has suggested that complex cells perform a MAX-like operation on their inputs: when two bar stimuli are presented
within the receptive field, regardless of their relative separation, the cell’s response is similar in amplitude to the larger of the responses
elicited by the individual stimuli. This description of complex cells seems at odds with the classical energy model in which complex cells
receive input from multiple simple cells with overlapping receptive fields. The energy model predicts, and experiments have confirmed,
that bar stimuli should facilitate or suppress one another depending on their relative separation. We have recorded intracellularly from
a population of complex cells and studied their responses to paired bar stimuli in detail. A wide range of behavior was observed, from the
more classical separation-dependent interactions to purely MAX-like responses. We also found that the more MAX-like a cell was, the
broader its spatial-frequency tuning as measured with drifting gratings. These observations are consistent with energy models in which
classical complex cells receive input from simple cells with similar preferred spatial frequencies, and MAX-like complex cells receive
input from simple cells with disparate preferred spatial frequencies. Generalized energy models, then, can account for diverse modes of
computation in cortical complex cells.

Key words: primary visual cortex; complex cells; MAX operation; spatial-frequency tuning; cortical energy model; spatial summation

Introduction
Simple cells in the primary visual cortex are well described by
feedforward models in which their basic response properties are
derived from the lateral geniculate nucleus (LGN) (Hubel and
Wiesel, 1962). The nature of the circuitry that gives rise to cortical
complex cells is, by comparison, much less clear. Similar to sim-
ple cells, complex cells are selective for orientation and spatial
frequency (Hubel and Wiesel, 1962; Movshon et al., 1978). Un-
like simple cells, complex cells lack obvious substructure in their
receptive fields (Hubel and Wiesel, 1962; Movshon et al., 1978;
Szulborski and Palmer, 1990), and as a group appear to be more
heterogeneous.

How can we best account for the aspects of complex cell re-
sponses that are shared with simple cells as well as those that are
disparate? Hubel and Wiesel (1962) proposed that complex cell
tuning is inherited from simple cell progenitors. In support of
their hierarchical model, extracellular experiments designed to
detect second-order structure in complex cell receptive fields
have revealed simple-cell like patterns (Movshon et al., 1978;
Emerson et al., 1987; Szulborski and Palmer, 1990; Livingstone
and Conway, 2003). In particular, it has been reported that the
spike rate response to an oriented bar flashed in the center of a
complex cell’s receptive field was modulated by the presence of a

second, simultaneously presented bar in a manner that depended
on the separation between the two bars (Movshon et al., 1978).
The dependence of this interaction effect on bar separation was
reminiscent of the subfield structure of simple cell receptive
fields, and it predicted for individual complex cells the shape of
their spatial-frequency tuning curves.

In a previous model, it was proposed that complex cells might
perform a very different computation on their inputs, one resem-
bling a MAX-like operation (Riesenhuber and Poggio, 1999,
2002; Serre et al., 2007). That is, when presented with pairs of
stimuli, the response of a complex cell would resemble the larger
of the responses to the two stimuli alone. MAX-like behavior has
been observed in extracellular recordings from primate areas V4
(Gawne and Martin, 2002) and inferotemporal cortex (Sato,
1989) and in intracellular recordings from complex cells in cat
area V1 (Lampl et al., 2004).

The MAX-like computation reported by Lampl et al. (2004) is
distinct from that measured in previous experiments (Movshon
et al., 1978; Emerson et al., 1987; Szulborski and Palmer, 1990;
Livingstone and Conway, 2003), and is not predicted by the stan-
dard hierarchical model of cortical processing. How, then, can
the rather different reports of complex cell behavior be recon-
ciled? We found in a detailed intracellular study of complex cells
that both types of response patterns exist: in some complex cells,
the interactions between stimuli in a pair clearly depended on the
separation between stimuli and their polarity; in others, stimuli
interacted in a MAX-like manner, independent of separation or
polarity. The two types of cells lay at the ends of a continuum:
quantitative indices of MAX-like behavior showed a unimodal
distribution and were inversely correlated with the spatial-
frequency tuning bandwidth of the cells.
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the model responses to such stimuli, and we found that these
equations provided good fits to the neural responses.

Portions of this work have been presented briefly elsewhere
(Carandini and Heeger, 1994, 1995).

MATERIALS AND METHODS
Experiments were performed on five cynomolgus macaque monkeys
(Macaca fascicularis) and four pigtail macaque monkeys (M. nemestrina)
ranging in weight from 1.5 to 4 kg.

Preparation and maintenance
Animals were initially anesthetized with ketamine HCl (10 mg/kg) and
premedicated with atropine sulfate (0.05 mg/kg) and acepromazine
maleate (0.1 mg/kg). Anesthesia continued on 1.5–2.0% halothane in a
98% O2–2% CO2 mixture while the initial surgery was performed.
Indwelling catheters were introduced into the saphenous veins of each
hindlimb, and a tracheotomy was performed.

The animal was then mounted in a stereotaxic instrument, and halo-
thane anesthesia was replaced by a continuous infusion of sufentanil
citrate (typically 4– 6 �gzkg ⇤1zhr ⇤1, beginning with a loading dose of 4
�g/kg). EEG, ECG, and arterial blood pressure were monitored contin-
uously, and any signs of arousal were corrected by modifying the rate of
anesthetic infusion. The monkey was artificially respirated with a mix-
ture of O2 , N2O, and CO2 adjusted so that end-tidal CO2 was maintained
at 3.8–4.0%. Rectal temperature was kept near 37°C with a heating pad.

A small craniotomy was performed, usually 9–10 mm lateral to the
midline and 3–4 mm posterior to the lunate sulcus. This location often
yielded two encounters with the primary visual cortex, with eccentricities
first at �2–5° and then at �8–15°. A small slit in the dura was made, and
a vertical hydraulic microdrive containing a glass-coated tungsten micro-
electrode (Merrill and Ainsworth, 1972) in a guide tube was positioned.
The craniotomy was covered with a chamber containing 4% agar in
sterile saline solution.

On completion of surgery, animals were paralyzed to minimize eye
movements. Paralysis was maintained with an infusion of vecuronium

bromide (Norcuron, 0.1 mgzkg ⇤1zhr ⇤1) in lactated Ringer’s solution with
dextrose (5.4 ml/hr). The pupils were dilated and accommodation par-
alyzed with topical atropine. The corneas were protected with zero
power gas-permeable contact lenses; supplementary lenses were chosen
to focus the eyes on a tangent screen plotting table set up at a distance
of 57 in. To maintain the animal in good physiological condition during
experiments (typically 72–96 hr), intravenous supplementation of 2.5%
dextrose/ lactated Ringer’s was given at 5–15 ml/hr. Animals received
daily injections of a broad-spectrum antibiotic (Bicillin) as well as an
anti-inflammatory agent (dexamethasone) to prevent cerebral edema.

Stimuli
Stimuli were generated by a Truevision ATVista board operating at a
resolution of 582 ⇥ 752 and a frame rate of 106 Hz, the output of which
was directed to a Nanao T560i monitor (mean luminance, 72 cd/m 2,
subtending 10–25° of visual angle). Nonlinearities in the relation be-
tween applied voltage and phosphor luminance were compensated by
appropriate look-up tables. Stimulus strength is measured in units of
contrast, defined as the difference between the highest and lowest inten-
sities, divided by the sum of the two.

Drifting luminance-modulated sinusoidal gratings were presented
alone or superimposed on another grating or on a noise background.
Superposition was obtained by interleaving, i.e., by presenting the two
components in alternate frames. When two gratings were presented
together they had the same temporal frequency and differed in orienta-
tion and/or spatial frequency. Their contrast could be varied indepen-
dently. The noise background was composed of square pixels, the size of
which was chosen for each cell to be approximately one-fourth of the
spatial period of the optimal grating. Occasionally we used one-
dimensional noise (bars rather than squares). The intensity of each
square was randomly refreshed at 13.4 or 26.8 Hz and assumed one of
two possible values.

All the stimuli had the same mean luminance. The grating and plaid
stimuli were vignetted by a square window, the size of which was chosen
to elicit the maximal responses. The noise masks occupied the whole
screen. In their absence the surrounding field was uniform.

Experiments. Experiments consisted of two to nine consecutive blocks
of stimuli. Each block consisted of a random permutation of 5–90 stimuli.
Randomization was adopted to minimize the effects of adaptation and
other nonstationarities. The stimuli had equal duration (generally 5–10
sec) and were separated by uniform field presentations lasting about
4 sec.

Experimental protocol. Receptive fields were initially mapped by hand
on a tangent screen. When the activity of a single neuron was isolated, we
established the dominant eye of the neuron and occluded the other eye.
We then positioned the receptive field on the face of the monitor, and
quantitative experiments proceeded under computer control.

To characterize each cell we performed the following sequence of
measurements using single gratings: (1) orientation and direction tuning;
(2) spatial frequency tuning; (3) temporal frequency tuning; and (4)
stimulus size tuning. Each of these measurements was performed at the
optimal values of the parameters as obtained from the previous measure-
ments. Cells were classified as simple or complex on the basis of the
frequency component of their response to the drifting grating eliciting
the maximum number of spikes, as classified by Skottun et al. (1991). If
the cell was simple we proceeded to the core experiments in this study.
These were of three types:

(1) Grating matrix experiments, consisting of drifting sinusoidal stimuli
having 5–10 different contrasts, two to four different temporal frequen-
cies, and two to four different orientations or spatial frequencies. A
typical experiment would involve three orientations or spatial frequen-
cies, three temporal frequencies, and five contrasts, yielding a total of 45
stimuli.

(2) Plaid experiments, consisting of sums of two gratings with contrasts
that were independently varied. Often the two directions were opposite,
and the “plaid” was a counterphase flickering grating. A typical experi-
ment would involve two orthogonal gratings with contrasts that assumed
five possible values, yielding a total of 25 different stimuli.

(3) Noise-masking experiments, in which the contrast response to
drifting gratings was measured in the presence of noise at different
contrasts. A typical experiment would involve nine grating contrasts and
two noise contrasts (0 and 0.5), yielding a total of 18 different stimuli.

Figure 1. Two models of simple cell function. A, The linear model,
composed of a linear stage (receptive field) and a rectification stage. The
linear stage performs a weighted sum of the light intensities over local
space and recent time. This sum is converted into a positive firing rate by
the rectification stage. Rectification is a nonlinearity, so the “linear
model” is not entirely linear. B, The normalization model extends the
linear model by adding a divisive stage. The linear stage feeds into a
circuit composed of a resistor and a capacitor in parallel (RC circuit). The
conductance of the resistor grows with the pooled output of a large
number of cortical cells. This effectively divides the output of the linear
stage.

8622 J. Neurosci., November 1, 1997, 17(21):8621–8644 Carandini et al. • Linearity and Normalization in Simple Cells

Heeger & Carandini ’94; Lampl et al ’01; Touryan et al ’02; Rust et al ’05; Finn & Ferster ’07�15



Computational Vision

• Complex cells

• Learning simple and 

complex cells

Learning invariances



Hebbian learning

• Neurons as coincidence detectors

• ‘What fires together, wires together’

Fregnac et al. 1988; McLean & Palmer 1998; Fregnac & Shulz 1999

�wi = ⌘xiy

�wi = ⌘(xi � wi)y



Hebbian learning

• Empirical evidence for ‘supervised Hebbian learning’ 
ocular dominance, orientation selectivity and orientation 
preference, interocular orientation disparity, and the 
relative dominance of ON and OFF responses

Fregnac & Shulz 1999

tion of a significant bias in the cortical representation
in favor of the orientation to which kittens had been
exposed. Two different interpretations concerning the
processes involved in these effects were proposed:
namely, selective versus instructive mechanisms.
However, in view of the inherent limitations of anal-
ysis based on the comparison of populations of neu-
rons recorded in different animals, no definitive an-
swer could be given. We applied our protocol of
associative conditioning to demonstrate plasticity of
orientation selectivity during the time of recording of
single cortical cells (Frégnac, et al., 1988, 1992). The
response of the recorded neuron was artificially rein-

forced during the presentation of a given orientation
(S!) and suppressed while presenting a different (but
fixed) orientation (S") through the same eye [Fig.
2(A1)]. The quantification of the modifications in
orientation tuning produced by pairing was used to
measure the generalization of the effects to stimuli
other than those used during the conditioning [Fig.
2(A2)]. A significant polar asymmetry favoring the
S! region or even a displacement of the peak of
preferred response toward the reinforced orientation
was observed. These changes in tuning selectivity
appear to be linked to the competitive imbalance
imposed between the two orientations presented dur-

Figure 1 Supervised learning procedures applied to a local network involving mono- and polysyn-
aptic connections. (A) Top: Passive mode of transmission. The functional coupling of two neurons,
A and B, results from monosynaptic excitatory contacts and polysynaptic circuits [involving both
excitatory (E) and inhibitory (I) interneurons]. Right: Intracellular voltage deflection Vm recorded
in cell B in response to the visual or electrical stimulation of cell A (Stim). Bar density is
proportional to the firing frequency of the considered pathway. Middle and lower: Adaptive mode
of transmission. The temporal correlation between the afferent message and the postsynaptic state
of the target cell (B) are directly controlled by the experimenter either by depolarizing (S! pairing,
first row) or hyperpolarizing (S" pairing, second row) the postsynaptic cell concomitantly with the
activation of the input neuron (A). (B) Differential pairing protocols (C # control; PP # pseu-
dopairing; FDP # fixed delay pairing; P # contiguous pairing). Left column: S! protocols. Right
column: S" protocols. For each condition, four repetitions of the test afferent stimulation (upper
line) at a low temporal frequency ($0.3 Hz) are associated or not with iontophoretic or intracellular
current pulses of a given polarity (%, filled rectangles on bottom line). The same elementary
sequences for both current polarities are interleaved 5–50 times
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Figure 3: Overview of the specific implementation of the
Hubel & Wiesel V1 model used. LGN-like ON- and OFF-cen-
ter units are modeled by Difference-of-Gaussian (DoG) filters.
Simple units (denoted S1) sample their inputs from a 7�7 grid
of LGN-type afferent units. Simple S1 units are organized in
cortical hypercolumns (4 � 4 grid, 3 pixels apart, 16 S1 units
per hypercolumn). At the next stage, 4 complex units C1 cells
receive inputs from these 4�4�16 S1 cells. This paper focuses
on the learning of the S1 to C1 connectivity.

and Sejnowski, 1998; Stringer and Rolls, 2000; Rolls and
Milward, 2000; Wiskott and Sejnowski, 2002; Einhäuser
et al., 2002; Spratling, 2005).

However, as pointed out by Spratling (2005), the trace
rule by itself is inappropriate when multiple objects
are present in a scene: it cannot distinguish which in-
put corresponds to which object, and it may end-up
combining multiple objects in the same representation.
Hence most trace-rule based algorithm require stimuli
to be presented in isolation (Földiák, 1991; Oram and
Földiák, 1996; Wallis, 1996; Stringer and Rolls, 2000),
and would fail to learn from cluttered natural input se-
quences.

To solve this problem, Spratling made the hypothe-
sis that the same object could not activate two distinct
inputs, hence co-active units necessarily correspond to
distinct objects. He proposed a learning rule that can
exploit this information, and successfully applied it on
drifting bar sequences (Spratling, 2005).

However the ‘one object activates one input’ hypoth-
esis is a strong one. It seems incompatible with the re-
dundancy observed in the mammalian brain and repro-
duced in our model. Instead we propose another hy-
pothesis: from one frame to another the most active
inputs are likely to represent the same object. If the
hypothesis is true, by restraining the reinforcement to
the most active inputs we usually avoid to combine dif-
ferent objects in the same representation (note that this
idea was already present in (Einhäuser et al., 2002), al-
though not formulated in those terms).

In this work we focus on the learning of simple S1

Figure 4: Reconstructed S1 preferred stimuli for each one of
the 4 � 4 cortical hypercolumns (on this figure the position
of the reconstructions within a cortical column is arbitrary).
Most units show a Gabor-like selectivity similar to what has
been previously reported in the literature (see text).

and complex C1 units (see Fig. 3), which constitutes a
direct implementation of the Hubel and Wiesel (1962)
model of striate cortex (see Box 1). The goal of a C1 unit
is to pool over S1 units with the same preferred orien-
tation, but with shifted receptive fields. In this context
our hypothesis becomes: ‘in a given neighborhood, the
dominant orientation is likely to be the same from one
frame to another’. As our results suggests (see later),
this constitutes a reasonable hypothesis, which leads to
appropriate pooling.

2 Results
We tested the proposed learning mechanisms in a
3 layer feedforward network mimicking the Lateral
Geniculate Nucleus (LGN) and V1 (see Fig. 3). Details
of the implementation can be found in Section 4.

The stimuli we used were provided by Betsch et al.
(2004). The videos were captured by CCD cameras at-
tached to a cat’s head, while the animal was exploring
several outdoor environments. Theses videos approxi-
mate the input to which the visual system is naturally
exposed, although eye movements are not taken into
account.

To simplify the computations, learning was done
in two phases: First S1 units learned their selectivity
through competitive Hebbian learning. After conver-
gence, plasticity at the S1 stage was switched off and
learning at the complex C1 unit level started. In a more
realistic scenario, this two-phase learning scheme could
be approximated with a slow time constant for learning
at the S1 stage and a faster time constant at the C1 stage.
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and Sejnowski, 1998; Stringer and Rolls, 2000; Rolls and
Milward, 2000; Wiskott and Sejnowski, 2002; Einhäuser
et al., 2002; Spratling, 2005).

However, as pointed out by Spratling (2005), the trace
rule by itself is inappropriate when multiple objects
are present in a scene: it cannot distinguish which in-
put corresponds to which object, and it may end-up
combining multiple objects in the same representation.
Hence most trace-rule based algorithm require stimuli
to be presented in isolation (Földiák, 1991; Oram and
Földiák, 1996; Wallis, 1996; Stringer and Rolls, 2000),
and would fail to learn from cluttered natural input se-
quences.

To solve this problem, Spratling made the hypothe-
sis that the same object could not activate two distinct
inputs, hence co-active units necessarily correspond to
distinct objects. He proposed a learning rule that can
exploit this information, and successfully applied it on
drifting bar sequences (Spratling, 2005).

However the ‘one object activates one input’ hypoth-
esis is a strong one. It seems incompatible with the re-
dundancy observed in the mammalian brain and repro-
duced in our model. Instead we propose another hy-
pothesis: from one frame to another the most active
inputs are likely to represent the same object. If the
hypothesis is true, by restraining the reinforcement to
the most active inputs we usually avoid to combine dif-
ferent objects in the same representation (note that this
idea was already present in (Einhäuser et al., 2002), al-
though not formulated in those terms).

In this work we focus on the learning of simple S1

Figure 4: Reconstructed S1 preferred stimuli for each one of
the 4 � 4 cortical hypercolumns (on this figure the position
of the reconstructions within a cortical column is arbitrary).
Most units show a Gabor-like selectivity similar to what has
been previously reported in the literature (see text).

and complex C1 units (see Fig. 3), which constitutes a
direct implementation of the Hubel and Wiesel (1962)
model of striate cortex (see Box 1). The goal of a C1 unit
is to pool over S1 units with the same preferred orien-
tation, but with shifted receptive fields. In this context
our hypothesis becomes: ‘in a given neighborhood, the
dominant orientation is likely to be the same from one
frame to another’. As our results suggests (see later),
this constitutes a reasonable hypothesis, which leads to
appropriate pooling.

2 Results
We tested the proposed learning mechanisms in a
3 layer feedforward network mimicking the Lateral
Geniculate Nucleus (LGN) and V1 (see Fig. 3). Details
of the implementation can be found in Section 4.

The stimuli we used were provided by Betsch et al.
(2004). The videos were captured by CCD cameras at-
tached to a cat’s head, while the animal was exploring
several outdoor environments. Theses videos approxi-
mate the input to which the visual system is naturally
exposed, although eye movements are not taken into
account.

To simplify the computations, learning was done
in two phases: First S1 units learned their selectivity
through competitive Hebbian learning. After conver-
gence, plasticity at the S1 stage was switched off and
learning at the complex C1 unit level started. In a more
realistic scenario, this two-phase learning scheme could
be approximated with a slow time constant for learning
at the S1 stage and a faster time constant at the C1 stage.
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However, as pointed out by Spratling (2005), the trace
rule by itself is inappropriate when multiple objects
are present in a scene: it cannot distinguish which in-
put corresponds to which object, and it may end-up
combining multiple objects in the same representation.
Hence most trace-rule based algorithm require stimuli
to be presented in isolation (Földiák, 1991; Oram and
Földiák, 1996; Wallis, 1996; Stringer and Rolls, 2000),
and would fail to learn from cluttered natural input se-
quences.

To solve this problem, Spratling made the hypothe-
sis that the same object could not activate two distinct
inputs, hence co-active units necessarily correspond to
distinct objects. He proposed a learning rule that can
exploit this information, and successfully applied it on
drifting bar sequences (Spratling, 2005).

However the ‘one object activates one input’ hypoth-
esis is a strong one. It seems incompatible with the re-
dundancy observed in the mammalian brain and repro-
duced in our model. Instead we propose another hy-
pothesis: from one frame to another the most active
inputs are likely to represent the same object. If the
hypothesis is true, by restraining the reinforcement to
the most active inputs we usually avoid to combine dif-
ferent objects in the same representation (note that this
idea was already present in (Einhäuser et al., 2002), al-
though not formulated in those terms).

In this work we focus on the learning of simple S1
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the 4 � 4 cortical hypercolumns (on this figure the position
of the reconstructions within a cortical column is arbitrary).
Most units show a Gabor-like selectivity similar to what has
been previously reported in the literature (see text).

and complex C1 units (see Fig. 3), which constitutes a
direct implementation of the Hubel and Wiesel (1962)
model of striate cortex (see Box 1). The goal of a C1 unit
is to pool over S1 units with the same preferred orien-
tation, but with shifted receptive fields. In this context
our hypothesis becomes: ‘in a given neighborhood, the
dominant orientation is likely to be the same from one
frame to another’. As our results suggests (see later),
this constitutes a reasonable hypothesis, which leads to
appropriate pooling.

2 Results
We tested the proposed learning mechanisms in a
3 layer feedforward network mimicking the Lateral
Geniculate Nucleus (LGN) and V1 (see Fig. 3). Details
of the implementation can be found in Section 4.

The stimuli we used were provided by Betsch et al.
(2004). The videos were captured by CCD cameras at-
tached to a cat’s head, while the animal was exploring
several outdoor environments. Theses videos approxi-
mate the input to which the visual system is naturally
exposed, although eye movements are not taken into
account.

To simplify the computations, learning was done
in two phases: First S1 units learned their selectivity
through competitive Hebbian learning. After conver-
gence, plasticity at the S1 stage was switched off and
learning at the complex C1 unit level started. In a more
realistic scenario, this two-phase learning scheme could
be approximated with a slow time constant for learning
at the S1 stage and a faster time constant at the C1 stage.
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(a) S1 units (n=73) that remain connected to C1 unit
# 1 after learning

(b) S1 units (n=35) that remain connected to C1

unit # 2 after learning

(c) S1 units (n=59) that remain connected to C1

unit # 3 after learning
(d) S1 units (n=38) that remain connected to C1

unit # 4 after learning

Figure 5: Pools of S1 units connected to each C1 unit. For e.g., C1 unit # 1 became selective for horizontal bars: After learning
only 73 S1 units (out of 256) remain connected to the C1 unit, and they are all tuned to an horizontal bar, but at different positions
(corresponding to different cortical columns; on this figure the positions of the reconstructions correspond to their positions in
Fig. 4).

2.1 Simple cells

After about 9 hours of simulated time S1 units have
learned a Gabor-like selectivity (see Fig. 4) similar to
what has been previously reported for cortical cells
(Hubel and Wiesel, 1959, 1962, 1965, 1968; Schiller et al.,
1976a,b,c; DeValois et al., 1982a,b; Jones and Palmer,
1987; Ringach, 2002). In particular, receptive fields are
localized, tuned to specific spatial frequencies in a given
orientation. In this experiment, only four dominant ori-
entations emerged spanning the full range of orienta-
tions with 45� increment: 0� , 45� , 90� and 135� . In-
terestingly, in an another experiment using S1 receptive

fields larger than the 7�7 receptive field sizes used here,
we found instead a continuum of orientations. The fact
that we obtain only four orientations here is likely to be
a discretization artifact. With this caveat in mind, in the
following we used the 7�7 RF sizes (see Table 1), which
match the receptive field sizes of cat LGN cells.

Our results are in line with previous studies that have
shown that competitive Hebbian learning with DoG in-
puts leads to Gabor-like selectivity (see for instance (De-
lorme et al., 2001; Einhäuser et al., 2002; Guyonneau,
2006) and (Olshausen and Field, 1996) for a more so-
phisticated model).
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Effects of temporal associations on learning and 
memory

Wallis & Bulthoff ’01

number of match and nonmatch trials was the same. The number
of between-group and within-group nonmatches was also bal-
anced with 96 of each. Test images always depicted a face either
directly from the front or in profile; i.e., no morphed images were
tested (Fig. 3).

Subjects were made aware of the layout of the experiment and,
more specifically, that they would be performing a speeded
discrimination task after the training. To help motivate them to
attend to the images during training, they were told that their
performance in the discrimination task would be affected by
what they learned in the training phase. They were, however, not
told that learning might actually lead to worse performance!

Results. Overall performance was good: on average, 74.7% of the
face pairs were correctly categorized as being the same or
different. In a study with the same face database, subjects with
no prior exposure to the faces managed only 65.4% correct (10).
This figure is lower than the worst performance of 72.6%
recorded in the first block of the experiment, confirming that

exposure to the morph sequences had not impaired overall
performance in the task.

To analyze the effects of the training, signal detection tech-
niques were used. The value of d! was calculated for each subject
and a within-subject ANOVA constructed with the block num-
ber and group membership of each pair (WG or BG) as factors.
Analysis revealed a significant effect of block F(3,27) " 4.327,
MSe " 0.2605, P " 0.013, indicating a differentiation in overall
performance across blocks. A Page’s L analysis (12) of the
ranked average d! values revealed a strong trend L(10,4) " 274,
P # 0.01, indicating that overall discrimination performance
rose as a function of block.§

ANOVA also revealed a significant effect of group member-
ship. Discrimination performance on pairs of faces chosen from
WG was significantly worse than for faces chosen from BG,
F(1,9) " 8.854, MSe " 0.2782, P " 0.016. A Page’s L analysis
on the ranked d! values for the WG condition revealed a small
but significant trend across blocks: L(10,4) " 269.5, P # 0.05.
The BG condition revealed a similar but stronger trend:
L(10,4) " 276.5, P # 0.01. As can be seen from the graph (Fig.
4A), although performance rose under both conditions, perfor-
mance on BG faces appears to increase more rapidly than on WG
faces. A best-fit straight line revealed an increase in d! of 0.14 per
block for WG versus 0.21 for BG face pairs. However, despite
this apparent difference in what is effectively learning rate, the
group $ block interaction fell well short of significance
F(3,27) " 0.867, MSe " 0.0563, P " 0.470.

Although signal-detection analysis gives the best overall im-
pression of performance changes, it is worth pointing out that the
temporal association hypothesis actually predicts three quite
specific effects rather than just one. First, the observers’ ability
to distinguish faces on nonmatch trials for WG stimuli should
become worse, because the views have been erroneously asso-
ciated during training. Second, their ability to recognize faces as
the same during match trials should also become worse, because
each face has been seen with views of other faces from within its
group, but never in its veridical form. Third, performance on
nonmatch trials for BG stimuli should improve, because BG

§Page’s L is a nonparametric trend analysis based, in this case, on the rankings of d! in each
block.

Fig. 1. (A) Twelve three-dimensional head models were generated by scan-
ning the heads of 12 female volunteers. These scans, which contained both
textural and shape information, were then cropped to remove extraneous
cues such as hair. (B) The heads were split into three groups (!, ", and #), each
containing four individuals (1, 2, 3, and 4). The figure shows the grouping used
for one of the 10 observers.

Fig. 3. (A) During training, subjects were exposed to the morph sequences
such that for each sequence, a single head appeared to rotate twice from left
profile to right and back. Examples of the training sequences can be viewed
at the following web sites: http:!!www.kyb.tuebingen.mpg.de!bu!people!
guy!morph.html and http:!!www.kyb.tuebingen.mpg.de!bu!people!guy!
webexpt!index.html. (B) After training, individual faces were tested in a
delayed match-to-sample task, in which observers were asked to indicate
whether the two faces were different views of the same head. Test images
always depicted a face either directly from the front or in profile, i.e., no
morphed images were tested.

Fig. 2. (A) The heads were used to render two-dimensional (2D) facial images
in the frontal (0°) and both profile views (%90°). A new set of head models was
then generated by morphing both the shape and textural information of pairs
of heads selected from a single training group. These new heads were then
rendered to 2D facial images in left and right %45° views. The images were
then organized into sequences of five views. (B) The complementary sequence
was also prepared in which the second head was seen in profile and the first
head from the front, resulting in a total of 12 such sequences per training
group.
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transforming) object. As we turn a box in our hand, for
example, it produces a stream of reproducible, temporally
correlated views. Associating views in this way has the
advantage that it is useful for invariance learning across all
manner of naturally occurring transformations including
rotation in depth, spatial shifts and in-plane rotations, size
changes, illumination changes, non-rigid motion, and so on.
The literature on object recognition in humans contains

evidence both for and against the importance of sequential
association during learning. For objects that rotate in
depth, sequential views do come to be associated with one
another in a manner that aids recognition (Liu, 2007;
Stone, 1998; Vuong & Tarr, 2004; Wallis & Bülthoff,
2001). However, there have also been counter examples,
suggesting that temporal association is neither necessary
for view generalization (Wang, Obama, Yamashita,
Sugihara, & Tanaka, 2005), nor even beneficial (Harman
& Humphrey, 1999). One way of reconciling these results
might be to suggest that sequential association is important
for sequences in which the majority of object parts change
(as is true of rotation in depth), but not in cases where
views can be easily associated on the basis of shared
features. Indeed it makes intuitive sense. However, we do
not believe that temporal association is therefore limited to
helping observers cope with rotation in depth. In this paper
we report face recognition studies looking at image-plane
rotation and changes of illumination, in which object
(face) parts were neither gained nor lost. We conclude that
the manner in which recognition is generalized across
views reflects a process by which object representations
are built up, in part, from associated sequential views.

General methods

Background

The temporal association hypothesis predicts that views
of objects are associated as examples of a single object

simply on the basis of their being temporally proximate.
In order to test this, subjects were exposed to sequences of
images which altered the temporal presentation order of
certain views of a person’s head. The basic methodology
involved displaying a head undergoing a natural change in
appearance, while simultaneously undergoing a change in
identity from person A to person BVsee Figures 1 and 2.
According to the temporal association hypothesis, expo-
sure to the consistent association of two different people
across two different viewing conditions should cause the
views of their heads to be regarded as belonging to the
same person.

Observers

Twenty-four participants with corrected to normal
vision were tested in three separate experiments. All 24
were naive as to the purpose of the experiment and were
tested in accordance with the rules and regulations of the
University of Queensland’s Behavioural and Social
Sciences Ethical Review Committee.

Procedure

In each experiment the participants sat 60 cm from a
24” Sony Trinitron monitor observing the projection of a
3D head model displayed centrally, and subtending an
angle of approximately.
Each experiment consisted of three interleaved blocks

of sequence presentation and testing. During the exposure
phase, participants were presented with a total of ten heads.
Each presentation consisted of the head being displayed in
seven different poses at 200 ms per imageVsee Figure 1.
By presenting the images in rapid sequential order the
head appeared to undergo a smooth transformation.
The sequence was played back and forth for a total of
8.4 seconds. During each exposure phase, the faces were
presented in pseudo-random order twice. Each subject

Figure 1. The faces presented during the experiment are rendered views of a three-dimensional head model. Each head consists of a) a
textured surface and b) a surface mesh. c) Examples of the face pairs used in the three experiments. Each experiment used a unique set
of twenty heads of this type.

Journal of Vision (2009) 9(7):6, 1–8 Wallis et al. 2
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number of match and nonmatch trials was the same. The number
of between-group and within-group nonmatches was also bal-
anced with 96 of each. Test images always depicted a face either
directly from the front or in profile; i.e., no morphed images were
tested (Fig. 3).

Subjects were made aware of the layout of the experiment and,
more specifically, that they would be performing a speeded
discrimination task after the training. To help motivate them to
attend to the images during training, they were told that their
performance in the discrimination task would be affected by
what they learned in the training phase. They were, however, not
told that learning might actually lead to worse performance!

Results. Overall performance was good: on average, 74.7% of the
face pairs were correctly categorized as being the same or
different. In a study with the same face database, subjects with
no prior exposure to the faces managed only 65.4% correct (10).
This figure is lower than the worst performance of 72.6%
recorded in the first block of the experiment, confirming that

exposure to the morph sequences had not impaired overall
performance in the task.

To analyze the effects of the training, signal detection tech-
niques were used. The value of d! was calculated for each subject
and a within-subject ANOVA constructed with the block num-
ber and group membership of each pair (WG or BG) as factors.
Analysis revealed a significant effect of block F(3,27) " 4.327,
MSe " 0.2605, P " 0.013, indicating a differentiation in overall
performance across blocks. A Page’s L analysis (12) of the
ranked average d! values revealed a strong trend L(10,4) " 274,
P # 0.01, indicating that overall discrimination performance
rose as a function of block.§

ANOVA also revealed a significant effect of group member-
ship. Discrimination performance on pairs of faces chosen from
WG was significantly worse than for faces chosen from BG,
F(1,9) " 8.854, MSe " 0.2782, P " 0.016. A Page’s L analysis
on the ranked d! values for the WG condition revealed a small
but significant trend across blocks: L(10,4) " 269.5, P # 0.05.
The BG condition revealed a similar but stronger trend:
L(10,4) " 276.5, P # 0.01. As can be seen from the graph (Fig.
4A), although performance rose under both conditions, perfor-
mance on BG faces appears to increase more rapidly than on WG
faces. A best-fit straight line revealed an increase in d! of 0.14 per
block for WG versus 0.21 for BG face pairs. However, despite
this apparent difference in what is effectively learning rate, the
group $ block interaction fell well short of significance
F(3,27) " 0.867, MSe " 0.0563, P " 0.470.

Although signal-detection analysis gives the best overall im-
pression of performance changes, it is worth pointing out that the
temporal association hypothesis actually predicts three quite
specific effects rather than just one. First, the observers’ ability
to distinguish faces on nonmatch trials for WG stimuli should
become worse, because the views have been erroneously asso-
ciated during training. Second, their ability to recognize faces as
the same during match trials should also become worse, because
each face has been seen with views of other faces from within its
group, but never in its veridical form. Third, performance on
nonmatch trials for BG stimuli should improve, because BG

§Page’s L is a nonparametric trend analysis based, in this case, on the rankings of d! in each
block.

Fig. 1. (A) Twelve three-dimensional head models were generated by scan-
ning the heads of 12 female volunteers. These scans, which contained both
textural and shape information, were then cropped to remove extraneous
cues such as hair. (B) The heads were split into three groups (!, ", and #), each
containing four individuals (1, 2, 3, and 4). The figure shows the grouping used
for one of the 10 observers.

Fig. 3. (A) During training, subjects were exposed to the morph sequences
such that for each sequence, a single head appeared to rotate twice from left
profile to right and back. Examples of the training sequences can be viewed
at the following web sites: http:!!www.kyb.tuebingen.mpg.de!bu!people!
guy!morph.html and http:!!www.kyb.tuebingen.mpg.de!bu!people!guy!
webexpt!index.html. (B) After training, individual faces were tested in a
delayed match-to-sample task, in which observers were asked to indicate
whether the two faces were different views of the same head. Test images
always depicted a face either directly from the front or in profile, i.e., no
morphed images were tested.

Fig. 2. (A) The heads were used to render two-dimensional (2D) facial images
in the frontal (0°) and both profile views (%90°). A new set of head models was
then generated by morphing both the shape and textural information of pairs
of heads selected from a single training group. These new heads were then
rendered to 2D facial images in left and right %45° views. The images were
then organized into sequences of five views. (B) The complementary sequence
was also prepared in which the second head was seen in profile and the first
head from the front, resulting in a total of 12 such sequences per training
group.
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views have never been seen together, whereas other associations
have been forged.

As a primary indicator of different levels of performance in
the various categories, it is interesting to note that the average
hit rate across all trials was around 5% more than the overall WG
correct rejection rate and around 5% less than the overall BG
correct rejection rate, suggesting that training had differentially
affected the three types of trial in the manner described in the
preceding paragraph. Concentrating on the most straightfor-
wardly comparable nonmatch trials, a new ANOVA was con-
structed, once again with training type and block as conditions,
but now based on the Fisher Z-transformed BG and WG correct
rejection rates. Here, we expect a significantly higher correct
rejection rate on BG than on WG trials, which is indeed what the
ANOVA revealed: F(1,9) ! 6.492, MSe ! 0.3243, P ! 0.031.

Overall, predictions of the temporal association hypothesis
appear to have been borne out in these experiments. There are,
however, various issues that must be addressed and that form the
basis for the following two experiments.

Experiment II
One question raised by the first experiment is whether the use of
morph faces affected recognition, in other words, whether seeing
intermediate views of the faces was decisive in confusing the

identity of the WG faces, rather than their being seen in smooth
temporal order. To test this theory, we devised a second
experiment in which the same morph sequences were presented,
but now simultaneously, rather than in temporal order. If seeing
the morph images was in and of itself sufficient to produce the
erroneous association of views reported in experiment I, one
would predict a similar effect of training under these new
conditions.

Methods. Ten observers took part in the experiments. The overall
design was the same as for the previous experiment, with the
exception that the five views of each training sequence were
presented simultaneously. The images were presented along the
circumference of a circle centered at the point of fixation.
Presentation time was equal in length to the total viewing time
of the sequences used in the first experiment (6,000 ms).

Results. The results of the experiment were analyzed by using the
same within-subject design of experiment I. Analysis revealed a
significant effect of block F(3,27) ! 5.857, MSe ! 0.2485, P !
0.003, but no effect of having seen morphed versions of the faces
or not, F(1,9) ! 0.133, MSe ! 0.0619, P ! 0.724, (Fig. 4B).
Unlike in the previous experiment, average performance hit
rates differed by less than 2% from both WG and BG correct

Fig. 4. The variation in d" for the first three experiments, in which the effect of viewing sequences of morphed face pairs on later discrimination performance
was measured. (A) Discrimination performance in experiment I separated into stimuli chosen from WG that had been morphed and those from BG that had not.
Note the more rapid rise in d" for BG trials. (B) The same analysis for experiment II. Note BG and WG performance levels are indistinguishable. (C) The same analysis
for experiment III. Note BG and WG performance levels are once again indistinguishable.

Fig. 5. Percent correct performance for the three experiments. Squares represent the median and circles the mean for correct rejections; diamonds indicate the
mean hit rate. Error bars represent upper and lower quartiles. (A) Results from experiment I. Note that BG correct rejection rate is consistently higher than both
the hit rate and WG correct rejection rate. (B) Results from experiment II. Note that with training, the hit rate rises above the two correct rejection rates, which
are themselves indistinguishable. (C) Results from experiment III. Note that, once again, the hit rate rises above the two correct rejection rates, and that they
are indistinguishable.

4802 ! www.pnas.org"cgi"doi"10.1073"pnas.071028598 Wallis and Bülthoff
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by the visual system? On the basis of theoretical
(6–11) and behavioral (12, 13) work, one pos-
sibility is that tolerance (“invariance”) is learned
from the temporal contiguity of object features
during natural visual experience, potentially in an
unsupervisedmanner. Specifically, during natural
visual experience, objects tend to remain present
for seconds or longer, while object motion or
viewer motion (e.g., eye movements) tends to
cause rapid changes in the retinal image cast by
each object over shorter time intervals (hundreds
of ms). The ventral visual stream could construct
a tolerant object representation by taking advan-
tage of this natural tendency for temporally con-
tiguous retinal images to belong to the same
object. If this hypothesis is correct, it might be
possible to uncover a neuronal signature of the
underlying learning by using targeted alteration
of those spatiotemporal statistics (12, 13).

To look for such a signature, we focused on
position tolerance. If two objects consistently
swapped identity across temporally contiguous
changes in retinal position then, after sufficient
experience in this “altered” visual world, the
visual system might incorrectly associate the
neural representations of those objects viewed at
different positions into a single object representa-
tion (12, 13). We focused on the top level of the
primate ventral visual stream, the inferior tempo-
ral cortex (IT), where many individual neurons

possess position tolerance—they respond prefer-
entially to different objects, and that selectivity is
largely maintained across changes in object ret-
inal position, even when images are simply pre-
sented to a fixating animal (14, 15).

We tested a strong, “online” form of the tem-
poral contiguity hypothesis—two monkeys visu-
ally explored an altered visual world (Fig. 1A,
“Exposure phase”), and we paused every ~15
min to test each IT neuron for any change in
position tolerance produced by that altered ex-
perience (Fig. 1A, “Test phase”). We concen-
trated on each neuron’s responses to two objects
that elicited strong (object “P”, preferred) and
moderate (object “N”, nonpreferred) responses,
and we tested the position tolerance of that object
selectivity by briefly presenting each object at 3°
above, below, or at the center of gaze (16) (fig.
S1). All neuronal data reported in this study were
obtained in these test phases: animal tasks un-
related to the test stimuli; no attentional cueing;
and completely randomized, brief presentations
of test stimuli (16). We alternated between these
two phases (test phase ~5 min; exposure phase
~15 min) until neuronal isolation was lost.

To create the altered visual world (“Exposure
phase” in Fig. 1A), each monkey freely viewed
the video monitor on which isolated objects
appeared intermittently, and its only task was to
freely look at each object. This exposure “task” is
a natural, automatic primate behavior in that it
requires no training. However, by means of real-
time eye-tracking (17), the images that played out
on the monkey’s retina during exploration of this
world were under precise experimental control
(16). The objects were placed on the video

monitor so as to (initially) cast their image at
one of two possible retinal positions (+3° or −3°).
One of these retinal positions was pre-chosen for
targeted alteration in visual experience (the
“swap” position; counterbalanced across neu-
rons) (Fig. 1B) (16); the other position acted as a
control (the “non-swap” position). The monkey
quickly saccaded to each object (mean: 108 ms
after object appearance), which rapidly brought
the object image to the center of its retina (mean
saccade duration 23 ms). When the object had
appeared at the non-swap position, its identity
remained stable as the monkey saccaded to it,
typical of real-world visual experience (“Normal
exposure”, Fig. 1A) (16). However, when the
object had appeared at the swap position, it was
always replaced by the other object (e.g., P→N)
as the monkey saccaded to it (Fig. 1A, “Swap
exposure”). This experience manipulation took
advantage of the fact that primates are effectively
blind during the brief time it takes to complete a
saccade (18). It consistently made the image of
one object at a peripheral retinal position (swap
position) temporally contiguous with the retinal
image of the other object at the center of the
retina (Fig. 1).

We recorded from 101 IT neurons while the
monkeys were exposed to this altered visual
world (isolation held for at least two test phases;
n = 50 in monkey 1; 51 in monkey 2). For each
neuron, wemeasured its object selectivity at each
position as the difference in response to the two
objects (P − N; all key effects were also found
with a contrast index of selectivity) (fig. S6). We
found that, at the swap position, IT neurons (on
average) decreased their initial object selectivity

McGovern Institute for Brain Research and Department of
Brain and Cognitive Sciences, Massachusetts Institute of
Technology, Cambridge, MA 02139, USA.

*To whom correspondence should be addressed. E-mail:
dicarlo@mit.edu

Fig. 1. Experimental
design and predictions.
(A) IT responses were
tested in “Test phase”
(green boxes, see text),
which alternated with
“Exposure phase.” Each
exposure phase con-
sisted of 100 normal
exposures (50 P→P, 50
N→N) and 100 swap
exposures (50 P→N, 50
N→P). Stimulus size was
1.5° (16). (B) Each box
shows the exposure-
phase design for a sin-
gle neuron. Arrows show
the saccade-induced tem-
poral contiguity of reti-
nal images (arrowheads
point to the retinal im-
ages occurring later in
time, i.e., at the end of
the saccade). The swap
position was strictly alternated (neuron-by-neuron) so that it was counter-
balanced across neurons. (C) Prediction for responses collected in the test phase:
If the visual system builds tolerance using temporal contiguity (here driven by
saccades), the swap exposure should cause incorrect grouping of two different

object images (here P and N). Thus, the predicted effect is a decrease in object
selectivity at the swap position that increases with increasing exposure (in the
limit, reversing object preference), and little or no change in object selectivity at
the non-swap position.

www.sciencemag.org SCIENCE VOL 321 12 SEPTEMBER 2008 1503
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those statistics can disrupt normal tolerance. Because of these
limitations, we do not know if the naive ventral stream uses
a general, temporal contiguity-driven learning mechanism to
construct its tolerance to all types of image variation.
Here, we set out to test the temporal contiguity hypothesis in

three ways. First, we reasoned that, if the ventral stream is using
temporal contiguity to drive a general tolerance-building mecha-
nism, alterations in that temporal contiguity should reshape other
types of tolerance (e.g., size tolerance, pose tolerance, illumina-
tion tolerance), and the magnitude of that reshaping should be
similar to that found for position tolerance. We decided to test
size tolerance, because normal size tolerance in IT ismuch better
described (Brincat and Connor, 2004; Ito et al., 1995; Logothetis
and Sheinberg, 1996; Vogels and Orban, 1996) than pose or
illumination tolerance. Our experimental logic follows our
previous work on position tolerance (Cox et al., 2005; Li and Di-
Carlo, 2008). Specifically, when an adult animal with a mature
(e.g., size-tolerant) object representation is exposed to an
altered visual world in which object identity is consistently swap-
ped across object size change, its visual system should learn
from those image statistics such that it predictably ‘‘breaks’’
the size tolerance of that mature object representation.
Assuming IT conveys this object representation (Afraz et al.,
2006; Hung et al., 2005; Logothetis and Sheinberg, 1996;
Tanaka, 1996), that learning should result in a specific change
in the size tolerance of mature IT neurons (Figure 1).
Second, many types of identity-preserving image transforma-

tions in natural vision do not involve intervening eye movements
(e.g., object motion producing a change in object image size). If

the ventral stream is using a general tolerance-building mecha-
nism, we should be able to find size tolerance reshaping even
without intervening eye movements, and we should also be
able to find size tolerance reshaping when the dynamics of the
image statistics mimic naturally occurring image dynamics.
Third, our previous studies (Cox et al., 2005; Li and DiCarlo,

2008) and our first two aims above use the breaking of naturally
occurring image statistics to try to break the normal tolerance
observed in IT (i.e., to weaken existing IT object selectivity in a
position- or size-specificmanner; Figure 1). Such results support
the inference that naturally occurring image statistics instruct the
‘‘building’’ of that tolerance in the naive ventral stream. However,
we also sought to test that inference more directly by looking for
evidence that temporally contiguous image statistics can build
new tolerance in IT neurons with immature tolerance (i.e., can
produce an increase in existing IT object selectivity in a position-
or size-specific manner).
Our results showed that targeted alterations in the temporal

contiguity of visual experience robustly and predictably re-
shaped IT neuronal size tolerance over a period of hours. This
change in size tolerance grew gradually stronger with increasing
visual experience, and the rate of reshaping was very similar to
previously reported position tolerance reshaping (Li and DiCarlo,
2008). Second, we found that the size tolerance reshaping
occurred without eye movements, and it occurred when the
dynamics of the image statistics mimicked naturally occurring
dynamics. Third, we found that exposure to ‘‘broken’’ temporal
contiguity image statistics could weaken and even reverse the
previously normal IT object selectivity at a specific position or
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Figure 1. Experimental Design and Prediction
(A) IT selectivity was tested in the Test Phases whereas animals received experience in the altered visual world in the Exposure Phases.

(B) The chart shows the full exposure design for a single IT site in Experiment I. Arrows show the temporal contiguity experience of retinal images (arrow heads

point to the retinal images occurring later in time, e.g., A). Each arrow shows a particular exposure event type (i.e., temporally linked images shown to the animal),

and all eight exposure event types were shown equally often (randomly interleaved) in each Exposure Phase.

(C) Prediction for IT responses collected in the Test Phase: if the visual system builds size tolerance using temporal contiguity, the swap exposure should cause

incorrect grouping of two different object images (P and N). The qualitative prediction is a decrease in object selectivity at the swap size (images and data points

outlined in red) that grows stronger with increasing exposure (in the limit, reversing object preference as illustrated schematically here), and little or no change in

object selectivity at the non-swap size. The experiment makes no quantitative prediction for the selectivity at the medium size (gray oval, see text).
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