Computational Vision

Primary visual cortex

- Color opponency
- Coding perspective
- Next week:
 - Learning invariances

Computational Vision

Primary visual cortex

- Color opponency
- Coding perspective

Gray-world assumption

- Given image with sufficient color variations, average of RGB components should be close to common gray value
- True for variations in color that are random and independent
- Given a large enough amount of samples, the average should tend to converge to the mean value (which is gray)

Long wavelengths ("red")

White-world assumption

Brightest patch is white

Long wavelengths ("red")

Medium wavelengths ("green")

Color induction

Color induction

Color induction

B Normalization model

Other color channels

Zhang & Serre in prep

Computational Vision

Primary visual cortex

- Color opponency
- Coding perspective

What is coding?

- Let $\mathbf{x} = [3, 3, 4, 4, 5, 5]^T$ be a vector in \mathbb{R}^6
- Can be represented as linear combination in the standard basis as

• where $I \in \mathbb{R}^{6 \times 6}$ is the identity matrix, also called standard basis

Many possible basis for images Algorithm selects best of many possible sensory codeshausen & Lewicki 1999

Learned

Haar

Gabor

PCA

Coding and image statistics

- Why center-surround in LGN or Gabor functions in V1?
- JJ Gibson on the need to understand the visual environment in order to understand visual processing

JJ Gibson (1904–1979)

Author's personal copy

Coding and image statistics

- Efficient coding:
 - Represent most relevant visual information with the fewest physical and metabolic resources
- Redundancy Reduction:
 - Attneave (1954): Some Informational Aspects of Visual Perception
 - Barlow (1961) Possible Principles Underlying the Transformations of Sensory Messages
 - nervous system should reduce redundancy
 - makes more efficient use of neural resources

H Barlow (1921-

What is coding?

• A more efficient code...

Coding and image statistics

- Natural images are not random
 - Exhibit specific properties that deviate from random processes

Coding and image A general approach to coding: redundancy reduction Statistics

image from Field (1994)

Correlation of adjacent pixels

Coding and image statistics

(Field 1987)

Log₁₀ spatial frequency (cycles/picture)

Reducing pixel iredug dancy statistics

Lena: a standard 8 bit 256x256 gray scale image

histogram of pixel values Entropy = 7.57 bits

source: Lewicki

Rectifing with Gased Company tions statistics

Pixel entropy = 7.57 bits

Recoding with 2D Gabor functions Coefficient entropy = 2.55 bits

source: Lewicki

Beyond efficient coding

- RR is appropriate when there is a bottleneck.
 But V1 expands dimensionality many more neurons than inputs
- The real goal of sensory representation is to model the redundancy in images, not necessarily to reduce it (Barlow 2001)

Same pairwise correlations but noise image lacks other statistical regularities of scenes...

Graham & Field 2009

Beyond efficient coding

1 mm² of cortex analyzes ca. 14 x 14 array of retinal sample nodes and contains 100,000 neurons!

source: Olshausen

Beyond efficient coding

source: Olshausen

Sparse codes

Sparse overcomplete codes

- Provides a way to group things together so that the world can be described in terms of a small number of events at any given moment
- Converts higher-order redundancy in images into a simple form of redundancy

Sparse vs. dense vs. 'grand-mother cells' code

Dense codes (ascii)

- + High combinatorial capacity (2^N)
- Difficult to read out

Sparse, distributed codes

- + Decent combinatorial capacity (~N^K)
- + Still easy to read out

Local codes (grandmother cells)

- Low combinatorial capacity (N)
- + Easy to read out

$$I(x,y) = \sum_{i} a_{i} \phi_{i}(x,y) + \epsilon(x,y)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
image neural features other activities stuff (sparse)

source: Olshausen

$$I(x,y) = \sum_{i} a_{i} \phi_{i}(x,y) + \epsilon(x,y)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
image neural features other activities stuff (sparse)

Sparse coding

• With sparsity constraint, sparse solution can be obtained:

This is a convex optimization problem and has many solvers

Sparse coding

• Given samples, \mathbf{x}_1 , \mathbf{x}_2 ,..., \mathbf{x}_N , how to learn a set of basis functions that are capable of sparsely coding all samples

$$<\mathbf{a}^*, \mathbf{\Phi}^*>=rg\min_{\mathbf{a},\mathbf{\Phi}}\sum_{i=1}^N \{\|\mathbf{x}_i - \mathbf{\Phi}\mathbf{a}_i\|_2 + \lambda \|\mathbf{a}_i\|_1\}$$

Sparsenet . e. ч. 3

Macaque

Rehn and Sommer 2006

 w| increased overcompleteness and sparsity

 w| increased overcompleteness and sparsity

Blob Ridge-like Grating

Extensions to color and disparity

80

Non-linear encoding

Solutions may be computed by a network of leaky integrators and threshold units (Rozell et al. 2008)

'Explaining away'

Feedforward response (*b_i*)

Ø

Sparsified response (*a_i*)

