Computational Vision

Primary visual cortex

- Color opponency
- Coding perspective
- Next week:
- Learning invariances

Computational Vision

Primary visual cortex

- Color opponency
- Coding perspective

Gray-world assumption

- Given image with sufficient color variations, average of RGB components should be close to common gray value
- True for variations in color that are random and independent
- Given a large enough amount of samples, the average should tend to converge to
 the mean value (which is gray)

White-world assumption

- Brightest patch is white

Gelb / Gilchrist demo

Gelb / Gilchrist demo

Color induction

Color induction

Color induction

A Linear model

B Normalization model

Other color channels

Computational Vision

Primary visual cortex

- Color opponency
- Coding perspective

What is coding?

- Let $\mathbf{x}=[3,3,4,4,5,5]^{T}$ be a vector in \mathbb{R}^{6}
- Can be represented as linear combination in the standard basis as

$$
\mathbf{x}=3 \cdot\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+3 \cdot\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+4 \cdot\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+4 \cdot\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+5 \cdot\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right]+5 \cdot\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Linear code

- where $\mathbf{I} \in \mathbb{R}^{6 \times 6}$ is the identity matrix, also called standard basis

Many possible basis for images

Gabor

Wavelet

Fourier

Haar

PCA

Coding and image statistics

- Why center-surround in LGN or Gabor functions in V1?
- JJ Gibson on the need to understand the visual environment in order to understand visual processing

Coding and image statistics

- Efficient coding:
- Represent most relevant visual information with the fewest physical and metabolic resources
- Redundancy Reduction:
- Attneave (1954): Some Informational Aspects of Visual Perception
- Barlow (1961) Possible Principles Underlying the Transformations of Sensory Messages
- nervous system should reduce redundancy
- makes more efficient use of neural resources

H Barlow (1921-

What is coding?

- Not so efficient code...

- A more efficient code...

Coding and image statistics

- Natural images are not random
- Exhibit specific properties that deviate from random
processes
Random process

Structured distribution

Coding and image statistics

image from Field (1994)

Correlation of adjacent pixels

Coding and image statistics

source: Olshausen

$\log _{10}$ spatial frequency (cycles/picture)

Coding and image
 statistics

Lena: a standard 8 bit 256×256 gray scale image

histogram of pixel values Entropy $=7.57$ bits

Coding and image statistics

Pixel entropy $=7.57$ bits

Recoding with 2D Gabor functions
Coefficient entropy $=2.55$ bits

Beyond efficient coding

- RR is appropriate when there is a bottleneck. But V1 expands dimensionality - many more neurons than inputs
- The real goal of sensory representation is to model the redundancy in images, not necessarily to reduce it (Barlow 2001)

Same pairwise correlations but noise image lacks other statistical regularities of scenes...

$1 \mathrm{~mm}^{2}$ of cortex analyzes ca. 14×14 array of

Beyond efficient coding

 retinal sample nodes and contains 100,000 neurons!

Beyond efficient coding

LGN afferents

layer 4
cortex

Sparse codes

$$
3\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right] 4\left[\begin{array}{l}
0 \\
0 \\
1 \\
1 \\
0 \\
0
\end{array}\right] 5\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
3 \\
4 \\
4 \\
5 \\
5
\end{array}\right] \mathbf{0}\left[\begin{array}{l}
? \\
? \\
? \\
? \\
? \\
?
\end{array}\right] 3\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right] \mathbf{0}\left[\begin{array}{l}
? \\
\mathbf{0} \\
? \\
? \\
? \\
? \\
?
\end{array}\right] 4\left[\begin{array}{l}
0 \\
0 \\
1 \\
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1 \\
0 \\
0
\end{array}\right] \mathbf{0}\left[\begin{array}{l}
? \\
? \\
? \\
? \\
? \\
?
\end{array}\right]=\left[\begin{array}{l}
3 \\
3 \\
4 \\
4 \\
5 \\
5
\end{array}\right]
$$

Sparse overcomplete

 codes- Provides a way to group things together so that the world can be described in terms of a small number of events at any given moment
- Converts higher-order
 redundancy in images into a simple form of redundancy

Sparse vs. dense vs. 'grand-mother cells' code

Dense codes (ascii)

+ High combinatorial capacity $\left(2^{N}\right)$
- Difficult to read out

Sparse, distributed codes

+ Decent combinatorial capacity $\left(\sim \mathrm{N}^{\mathrm{K}}\right)$
+ Still easv to read out

Local codes (grandmother cells)

- Low combinatorial capacity (N)
+ Easy to read out

Sparse code for natural images

PCA

Sparse coding

$I(x, y)=\sum a_{i} \phi_{i}(x, y)+\epsilon(x, y)$
image

neural features
activities
(sparse)

Sparse coding

- Usually, dictionary $\boldsymbol{\Phi}$ is overcomplete: Linear system has many solutions...
- To get reasonable solution, additional constraints on coefficients a are needed
$\underset{\uparrow}{I(x, y)}=\sum_{i}^{\sum_{i m}} \underset{\substack{\text { neural } \\ \text { activities } \\ \text { (sparse) }}}{ } a_{i} \phi_{i}(x, y)+\underset{\text { features }}{\epsilon(x, y)} \underset{\substack{\text { other } \\ \text { stuff }}}{ }$

Sparse coding

-With sparsity constraint, sparse solution can be obtained:

$$
\mathbf{a}^{*}=\arg \min \underbrace{\|\mathbf{x}-\mathbf{\Phi} \mathbf{a}\|_{2}}_{\substack{\text { reconstruction } \\ \text { error }}}+\underbrace{\lambda\|\mathbf{a}\|_{1}}_{\text {sparsity }}
$$

- This is a convex optimization problem and has many solvers

Sparse coding

- Given samples, $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}$, how to learn a set of basis functions that are capable of sparsely coding all samples

$$
<\mathbf{a}^{*}, \boldsymbol{\Phi}^{*}>=\arg \min _{\mathbf{a}, \boldsymbol{\Phi}} \sum_{i=1}^{N}\left\{\left\|\mathbf{x}_{i}-\boldsymbol{\Phi} \mathbf{a}_{i}\right\|_{2}+\lambda\left\|\mathbf{a}_{i}\right\|_{1}\right\}
$$

- A natural approach to solving this problem is to alternate between, a and $\boldsymbol{\Phi}$, minimizing over one while keeping the other one fixed

Sparse code for natural images

Sparsenet

Macaque

Sparse code for natural images

- w| increased overcompleteness and sparsity

Sparse code for natural images

- w| increased overcompleteness and sparsity

Blob

Ridge-like

Grating

Extensions to color and disparity

Wachtler, Lee and Sejnowski (2001), Hoyer \& Hyvarinen (2000)

Non-linear encoding

Solutions may be computed by a network of leaky integrators and threshold units
(Rozell et al. 2008)

Feedforward response (b_{i})

Sparsified response (a_{i})

