
Computational Vision

• Color opponency

• Coding perspective

• Next week:

• Learning invariances

Primary visual cortex



Computational Vision

• Color opponency

• Coding perspective

Primary visual cortex



Gray-world assumption

• Given image with sufficient 
color variations, average of 
RGB components should be 
close to common gray value


• True for variations in color 
that are random and 
independent


• Given a large enough amount 
of samples, the average 
should tend to converge to 
the mean value (which is 
gray)



White-world assumption

• Brightest patch is white
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Color induction

the model responses to such stimuli, and we found that these
equations provided good fits to the neural responses.

Portions of this work have been presented briefly elsewhere
(Carandini and Heeger, 1994, 1995).

MATERIALS AND METHODS
Experiments were performed on five cynomolgus macaque monkeys
(Macaca fascicularis) and four pigtail macaque monkeys (M. nemestrina)
ranging in weight from 1.5 to 4 kg.

Preparation and maintenance
Animals were initially anesthetized with ketamine HCl (10 mg/kg) and
premedicated with atropine sulfate (0.05 mg/kg) and acepromazine
maleate (0.1 mg/kg). Anesthesia continued on 1.5–2.0% halothane in a
98% O2–2% CO2 mixture while the initial surgery was performed.
Indwelling catheters were introduced into the saphenous veins of each
hindlimb, and a tracheotomy was performed.

The animal was then mounted in a stereotaxic instrument, and halo-
thane anesthesia was replaced by a continuous infusion of sufentanil
citrate (typically 4– 6 �gzkg ⇤1zhr ⇤1, beginning with a loading dose of 4
�g/kg). EEG, ECG, and arterial blood pressure were monitored contin-
uously, and any signs of arousal were corrected by modifying the rate of
anesthetic infusion. The monkey was artificially respirated with a mix-
ture of O2 , N2O, and CO2 adjusted so that end-tidal CO2 was maintained
at 3.8 –4.0%. Rectal temperature was kept near 37°C with a heating pad.

A small craniotomy was performed, usually 9–10 mm lateral to the
midline and 3–4 mm posterior to the lunate sulcus. This location often
yielded two encounters with the primary visual cortex, with eccentricities
first at �2–5° and then at �8–15°. A small slit in the dura was made, and
a vertical hydraulic microdrive containing a glass-coated tungsten micro-
electrode (Merrill and Ainsworth, 1972) in a guide tube was positioned.
The craniotomy was covered with a chamber containing 4% agar in
sterile saline solution.

On completion of surgery, animals were paralyzed to minimize eye
movements. Paralysis was maintained with an infusion of vecuronium

bromide (Norcuron, 0.1 mgzkg ⇤1zhr ⇤1) in lactated Ringer’s solution with
dextrose (5.4 ml/hr). The pupils were dilated and accommodation par-
alyzed with topical atropine. The corneas were protected with zero
power gas-permeable contact lenses; supplementary lenses were chosen
to focus the eyes on a tangent screen plotting table set up at a distance
of 57 in. To maintain the animal in good physiological condition during
experiments (typically 72–96 hr), intravenous supplementation of 2.5%
dextrose/ lactated Ringer’s was given at 5–15 ml/hr. Animals received
daily injections of a broad-spectrum antibiotic (Bicillin) as well as an
anti-inflammatory agent (dexamethasone) to prevent cerebral edema.

Stimuli
Stimuli were generated by a Truevision ATVista board operating at a
resolution of 582 ⇥ 752 and a frame rate of 106 Hz, the output of which
was directed to a Nanao T560i monitor (mean luminance, 72 cd/m 2,
subtending 10–25° of visual angle). Nonlinearities in the relation be-
tween applied voltage and phosphor luminance were compensated by
appropriate look-up tables. Stimulus strength is measured in units of
contrast, defined as the difference between the highest and lowest inten-
sities, divided by the sum of the two.

Drifting luminance-modulated sinusoidal gratings were presented
alone or superimposed on another grating or on a noise background.
Superposition was obtained by interleaving, i.e., by presenting the two
components in alternate frames. When two gratings were presented
together they had the same temporal frequency and differed in orienta-
tion and/or spatial frequency. Their contrast could be varied indepen-
dently. The noise background was composed of square pixels, the size of
which was chosen for each cell to be approximately one-fourth of the
spatial period of the optimal grating. Occasionally we used one-
dimensional noise (bars rather than squares). The intensity of each
square was randomly refreshed at 13.4 or 26.8 Hz and assumed one of
two possible values.

All the stimuli had the same mean luminance. The grating and plaid
stimuli were vignetted by a square window, the size of which was chosen
to elicit the maximal responses. The noise masks occupied the whole
screen. In their absence the surrounding field was uniform.

Experiments. Experiments consisted of two to nine consecutive blocks
of stimuli. Each block consisted of a random permutation of 5–90 stimuli.
Randomization was adopted to minimize the effects of adaptation and
other nonstationarities. The stimuli had equal duration (generally 5–10
sec) and were separated by uniform field presentations lasting about
4 sec.

Experimental protocol. Receptive fields were initially mapped by hand
on a tangent screen. When the activity of a single neuron was isolated, we
established the dominant eye of the neuron and occluded the other eye.
We then positioned the receptive field on the face of the monitor, and
quantitative experiments proceeded under computer control.

To characterize each cell we performed the following sequence of
measurements using single gratings: (1) orientation and direction tuning;
(2) spatial frequency tuning; (3) temporal frequency tuning; and (4)
stimulus size tuning. Each of these measurements was performed at the
optimal values of the parameters as obtained from the previous measure-
ments. Cells were classified as simple or complex on the basis of the
frequency component of their response to the drifting grating eliciting
the maximum number of spikes, as classified by Skottun et al. (1991). If
the cell was simple we proceeded to the core experiments in this study.
These were of three types:

(1) Grating matrix experiments, consisting of drifting sinusoidal stimuli
having 5–10 different contrasts, two to four different temporal frequen-
cies, and two to four different orientations or spatial frequencies. A
typical experiment would involve three orientations or spatial frequen-
cies, three temporal frequencies, and five contrasts, yielding a total of 45
stimuli.

(2) Plaid experiments, consisting of sums of two gratings with contrasts
that were independently varied. Often the two directions were opposite,
and the “plaid” was a counterphase flickering grating. A typical experi-
ment would involve two orthogonal gratings with contrasts that assumed
five possible values, yielding a total of 25 different stimuli.

(3) Noise-masking experiments, in which the contrast response to
drifting gratings was measured in the presence of noise at different
contrasts. A typical experiment would involve nine grating contrasts and
two noise contrasts (0 and 0.5), yielding a total of 18 different stimuli.

Figure 1. Two models of simple cell function. A, The linear model,
composed of a linear stage (receptive field) and a rectification stage. The
linear stage performs a weighted sum of the light intensities over local
space and recent time. This sum is converted into a positive firing rate by
the rectification stage. Rectification is a nonlinearity, so the “linear
model” is not entirely linear. B, The normalization model extends the
linear model by adding a divisive stage. The linear stage feeds into a
circuit composed of a resistor and a capacitor in parallel (RC circuit). The
conductance of the resistor grows with the pooled output of a large
number of cortical cells. This effectively divides the output of the linear
stage.

8622 J. Neurosci., November 1, 1997, 17(21):8621–8644 Carandini et al. • Linearity and Normalization in Simple Cells

Zhang & Serre in prep
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Color in V1
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Figure 8. Estimation of Stimulus Color from Population Response

(A) Perceptual effect of background color. The rows of color patches marked by asterisks are physically identical, but they are displayed on
different backgrounds and therefore look different. For example, patch (b) looks more similar to the physically different patch (a) than to the
physically identical patch (c).
(B) Four of the tuning curves of Figure 3, rotated in color space such that the respective directions of the background chromaticities (gray
circles) are aligned, to mimic the background conditions in (A). Responses to patches (a)–(c) were estimated from the data points on the
appropriate tuning curves in the 0! and 45! directions.
(C) Estimated responses to patches (a)–(c) for the four neurons in (B). Responses are scaled relative to maximum firing rate for each neuron
individually. The response pattern elicited by patch (b) is more similar to that for patch (a) than to that for (c), corresponding to the perceptual
situation.
(D) Induced color shifts estimated from 94 tuning curve pairs. For responses to six stimulus chromaticities (open dots) on bluish background
(bluish circle), those chromaticities (black dots) were determined that yielded the most similar responses when presented on a gray background.
Responses were considered as 94-dimensional vectors and similarity was measured by Euclidean distance. The dark purple curve shows,
for the 90! ("S) stimulus on bluish background, the response vector distance as function of chromatic direction. The minimum occurs at a
direction that is shifted from the 90! direction, away from the background direction. The dashed dark purple circle denotes the minimum
distance, for easier visual inspection of the distance curve. For the other directions tested, similar shifts were obtained. Thus, qualitatively,
the background has the same inducing effect as in perception.

Discussion cluded cells that respond to spatial chromatic contrast
(Michael, 1978b; Lennie et al., 1990; Johnson et al., 2001;
Conway, 2001). It is not clear whether cells that respondOur results regarding chromatic tuning of V1 neurons in

awake monkeys are largely consistent with reports of preferentially to chromatic edges and cells that prefer
homogeneous stimuli form distinct classes, or whetherprevious studies using anaesthetized animals. Chro-

matic selectivity is diverse, and most cells showed re- this just reflects different spatial frequency tuning (John-
son et al., 2001). Spatial opponency, often consideredsponses to isoluminant as well as to nonisoluminant

stimuli, in agreement with earlier studies (Lennie et al., an important property of color-selective neurons, was
largely ignored by our choice of stimuli. They were de-1990; Johnson et al., 2001).

We did not attempt to find for each cell the stimulus signed to ensure that the classical receptive field was
covered. Nevertheless, relatively strong lateral interac-parameters that would evoke the strongest responses,

as was done in most previous studies. Apart from slight tions were found. In our study, we were primarily inter-
ested in the representation of chromatic stimuli undersize changes, the stimuli were the same for all neurons

and were identical to the stimuli used in psychophysical conditions comparable to typical situations in which we
have to judge the color of an object. Spatial chromaticexperiments. This enabled us to analyze the data as

responses of a population of neurons and to compare contrast probably plays a role in the detection of object
borders and the visual segmentation of scenes (Hurlbertthem to perceptual experiments done with the same

stimuli. and Poggio, 1988), but experiments on color appear-
ance usually employ extended stimuli with dimensionsOwing to the properties of our stimuli, we preferen-

tially recorded from neurons that responded strongly to on the order of degrees of visual angle. We argue that,
likewise, we typically judge the colors of natural objectshomogeneous color patches, and we may have ex-

Wachtler et al 2003
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What is coding?

• Let                                 be a vector in    

• Can be represented as linear combination in the 

standard basis as
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Many possible basis for images
Olshausen & Lewicki 1999

Michael S. Lewicki ◇ Carnegie MellonCSH Vision Course: Visual Coding Part 2

Algorithm selects best of many possible sensory codes

15

Learned

Gabor

Wavelet

Fourier

Haar

PCA

Theoretical perspective: Not edge “detectors.” 
An efficient code for natural images.

from Lewicki and Olshausen, 1999



Coding and image 
statistics

• Why center-surround 
in LGN or Gabor 
functions in V1? 


• JJ Gibson on the need 
to understand the 
visual environment in 
order to understand 
visual processing

JJ Gibson (1904–1979)

Defining Efficiency

For those who have proposed theories of optimality
in early visual coding, much of the discussion has
centered on the metric of efficiency. The majority of
the work in the field focuses on what we will call
representational efficiency. Such studies employ the
tools of information theory, and they have explored
the properties of neurons that are involved in repre-
senting the image. These studies have focused on
issues relating to correlations and statistical indepen-
dence in the firing rates of neurons. Much of this
work has involved neural networks and computa-
tional models of visual areas. A second line of research
has focused on what we call metabolic efficiency.
Several influential reports have described investiga-
tions of the metabolic costs of generating spikes, and
others have argued that constraints that minimize
wiring are important for explaining known neuronal
properties. In this article, we propose a third form of
efficiency that we call learning efficiency. We argue
that an important consideration for any sensory sys-
tem is the challenge of learning about the relative
probability of events in the world based on a handful
of samples. To the extent that the visual system is

optimally efficient at carrying out its multitude of
tasks, these efficiency rules are likely to each contrib-
ute significantly to a description of why the visual
system is designed as it is. Visual systems may
approach optimality (in the engineering sense of the
word) across each of these three dimensions, but as
we will argue, one of these dimensions – learning
efficiency – is one that engineers rarely consider.
These dimensions are not necessarily orthogonal to
one another, nor do they currently all have well-
defined units of measurement. These dimensions are
mere sketches of the terrain over which the human
visual system appears to have been optimized through
evolution. Furthermore, we believe these dimensions
can find application in other modalities as well,
though here we focus on the visual system. Together,
these efficiency dimensions may also suggest ways to
design efficient artificial visual systems.

Representational Efficiency

Marcelja, in 1980, was the first to propose that neu-
rons found in the primary visual cortex (V1) show a
number of similarities to the mathematical functions

Figure 1 A process that chooses pixel intensity randomly will produce white noise images (top). Images resembling natural scenes
(bottom), would almost never occur in such a process.

20 Natural Images: Coding Efficiency 

Encyclopedia of Neuroscience (2009), vol. 6, pp. 19-27 
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Coding and image 
statistics

• Efficient coding:

- Represent most relevant visual information 

with the fewest physical and metabolic 
resources


• Redundancy Reduction:

- Attneave (1954): Some Informational 

Aspects of Visual Perception

- Barlow (1961) Possible Principles Underlying 

the Transformations of Sensory Messages

- nervous system should reduce redundancy

- makes more efficient use of neural resources

H Barlow (1921–

F Attneave (1919–1991)



What is coding?

• Not so efficient code…
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Coding and image 
statistics

• Natural images are not 
random

- Exhibit specific 

properties that deviate 
from random 
processes

Random process

Structured distribution

State-space of 
representable images 

in a two-pixel array



Coding and image 
statistics

Michael S. Lewicki ◇ Carnegie MellonCSH Vision Course: Visual Coding Part 2

A general approach to coding: redundancy reduction

2
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Correlation of adjacent pixels

Redundancy reduction is equivalent to efficient coding.

image from Field (1994)

source: Lewicki



Coding and image 
statisticsNatural scene statistics and visual coding

2384 J. Opt. Soc. Am. A/Vol. 4, No. 12/December 1987

IMAGE ANALYSIS

Methods
The six scenes used in this study were photographed with a
Keystone 3572 camera (35 mm) using XP1 Kodak mono-
chrome film. The scenes were taken from various places
around England and Greece. No attempt was made to se-
lect particular types of scene, but images were chosen that
had no artificial objects (buildings, roads, etc.). Although it
was hoped that these scenes were typical natural scenes, no
effort was made to ensure this, and they may therefore rep-
resent biased samples.

The negatives were digitized on a laser densitometer
(Joyce Loebel) into 256 X 256 pixels with a depth of 8 bits/
pixel (256 density levels). The images were analyzed on a
Sun Workstation computer using conventional software de-
veloped by the author.

Calibration
The modulation transfer function (MTF) of the optical sys-
tem (lens and developing process) was determined from the
response of the system to a point source. A photograph of a
point source was taken with the same camera and film, and
the negative was developed in the same manner as the six
natural scenes. The results described below were corrected
in accordance with this MTF.

IMAGE ANALYSIS: AMPLITUDE SPECTRA OF
NATURAL IMAGES
In this section we discuss a particular property of natural
images as illustrated by their amplitude or power spectra.
This topic is discussed in greater detail in another paper.
However, since the conclusions of this section play an impor-
tant part in the next section, it is discussed briefly here.

Natural images, on the whole, appear to be rather com-
plex. They are filled with objects and shadows and various
surfaces containing various patterns at a wide range of orien-
tations. Amid this complexity, it may seem surprising that
such images share any consistent statistical features. Con-
sider the six images shown in Fig. 6. Such images may seem
widely different, but as a group they can be easily distin-
guished from a variety of other classes of image. For exam-
ple, random-dot patterns are statistically different from all
six of these natural images. This difference is best de-
scribed in terms of the amplitude spectra or power spectra of
the images, where the amplitude spectrum is defined as the
square root of the power spectrum.

The two-dimensional amplitude spectra for two of the six
images are shown in Fig. 7. The spectra of these images are
quite characteristic and are quite different from that of
white noise, which is by definition flat. They show greatest
amplitude at low frequencies (i.e., at the center of the plot)
and decreasing amplitude as the frequency increases. The

f

A B C

D E F
Fig. 6. Examples of the six images (A-F) in this study. Each image consists of 256 X 256 pixels with 256 gray levels (8 bits). However, only
the central region was directly analyzed (160 X 160). See the text or details.

David J. Field

Aa:.:i

(Field 1987)

source: Olshausen



Coding and image 
statistics

source: Lewicki
Michael S. Lewicki ◇ Carnegie MellonCSH Vision Course: Visual Coding Part 2

Reducing pixel redundancy

3

Lena: a standard 8 bit 256x256 gray scale image histogram of pixel values
Entropy = 7.57 bits

from Daugman (1990)



Coding and image 
statistics

source: Lewicki
Michael S. Lewicki ◇ Carnegie MellonCSH Vision Course: Visual Coding Part 2

Reducing pixel redundancy

3

Lena: a standard 8 bit 256x256 gray scale image histogram of pixel values
Entropy = 7.57 bits

from Daugman (1990)

Michael S. Lewicki ◇ Carnegie MellonCSH Vision Course: Visual Coding Part 2

Recoding with Gabor functions

5

Pixel entropy = 7.57 bits Recoding with 2D Gabor functions
Coefficient entropy = 2.55 bits



Beyond efficient coding

• RR is appropriate when there is a bottleneck. 
But V1 expands dimensionality - many more neurons 
than inputs


• The real goal of sensory representation is to model the 
redundancy in images, not necessarily to reduce it 
(Barlow 2001)

orientation, and contrast can also be addressed using
this maximum information transfer (infomax) ap-
proach. Amore elaborate extension of infomaxmodels
combines feedback of stored predictors from higher
cortical areaswith typical natural inputs. These schemes
optimize over families of representations thatminimize
error between the input and a top-down representa-
tion. Feedback representation optimization models of
this sort effectively produce a systemwhereby primary
visual areas reduce their response as higher areas
provide better descriptions of input ‘content,’ in line
with recent imaging findings. It should be noted that
in many infomax models, optimal redundancy reduc-
tion (decorrelation) and maximum information trans-
fer strategies are equivalent.

Beyond Correlations: Sparseness and
Independence

The pairwise correlations found in natural scenes repre-
sent only one form of redundancy. Figure 2 shows two
images – a natural scene and noise – with similar 1/f
structure and therefore similar pairwise correlations.
There are a number of ways to describe the differences
between these two images. For example, they differ in
their phase spectra. But the two images can also be
described in terms of differences in their sparse struc-
ture. For the 1/f noise image, all linear representations
produce response distributions that areGaussian.How-
ever, for the natural scene, some projections of the data
are non-Gaussian. That is, when the appropriate array
of linear filters is used to represent a natural scene, the
histogram of activity will be a non-Gaussian histogram.
As noted by Field, a non-Gaussian histogram

implies low entropy in the first-order responses
and relatively high entropy in the higher order rela-
tionships between the filters for a linear transform
(i.e., more independent). In other words, a system
that produces maximally non-Gaussian histograms
produces a representation wherein the neurons are

maximally independent. This is the basic idea behind
sparse coding algorithms and independent compo-
nents analysis (ICA).

In a code with maximal independence, the firing of
each neuron provides maximal unique information
(i.e., the sharing of information with other neurons
has been minimized). If the data consist of an array of
relatively rare, sparse events, then matching the neu-
rons to those events will produce activity that is
sparse. The definitions of sparseness have varied in
the literature. In general, ‘sparse’ implies a relatively
high probability of no activity across the population,
and some proportion of relatively active neurons. In
the computational literature, in which neurons are
often modeled as linear operators, the kurtosis
(the fourth statistical moment) of the response histo-
gram can be used to describe relative sparseness.
Other metrics, such as the sparseness index, have
proved more useful for spike trains.

Field demonstrated that arrays of linear neurons
with properties like those found in primary visual
cortex appear to maximize the sparse response to
natural scenes. Olshausen and Field further demon-
strated that a neural network that attempts to repre-
sent natural scenes and maximize sparseness will
produce an array of neurons with spatial properties
like those found in cortical simple cells. That is, a
system that is forced to produce a faithful representa-
tion of the input using only a handful of neurons
(each firing near its maximum response when it is
active) gives simple-cell-like receptive fields. This sug-
gests that at least at the level of primary visual cortex,
visual system representations show evidence of being
efficiently matched to the sparseness of natural
scenes. Similar results have been found for spatio-
chromatic stimuli and spatiotemporal patterns.

It must be emphasized that sparse outputs of these
networks result from the sparse structure of the
data. It would be relatively simple to produce a

Figure 2 Noise with a spatial frequency amplitude spectrum like that of natural scenes (left) has the same pairwise correlations as does
the natural scene (right), but lacks other statistical regularities of scenes.

22 Natural Images: Coding Efficiency 

Encyclopedia of Neuroscience (2009), vol. 6, pp. 19-27 
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Same pairwise correlations but noise 
image lacks other statistical 
regularities of scenes…

Graham & Field 2009



Beyond efficient coding

source: Olshausen

1 mm2 of cortex analyzes ca. 14 x 14 array of 
retinal sample nodes and contains 100,000 
neurons!



Beyond efficient coding

source: Olshausen

V1 is highly overcomplete
Temporal reconstruction o f  the image 

The homunculus also has to face t'he problem that  the image is often nioving 

continuously, but is only represented by impulses a t  discrete moments in time. I n  

these days he often has to deal with visual images derived from cinema screens and 

television sets tha t  represent scenes sampled a t  quite long intervals, and we know 

IVb 

0 1mm
C I 

FIGURE8. A tracing of the outlines of the granule cells of area 17 in layers IVb  and IVc of 

monkey cortex, where the incoming geniculate fibres termmate (from fig. 3 c of Hubel & 

Wiesel 1972) The dots at the top lndlcate the calct~lated separation of the sample points 

coming In from the re t~na ,  allowing tmo per cycle of the higllest spatial frequency 

resolved. The misaligned vernier a t  rlght has a displac~ment corresponding to one sixth 

of the sample separation, or 5' for 60 cycle/deg optimum aclutp The 'grain' in the 

cortex appears to be much finer than In the retlna. 

that  he does a good job a t  interpreting them even when the sample rate is only 

16 s-l, as in amateur movies. One only has to watch a kitten playing, a cttt hunt- 

ing, or a bird alighting a t  dusk among the branches of a tree. to appreciate the 

importance and difficulty of the ~ ~ i s u a l  appreciation of motion. Considering this 

overwhelming importance it is surprising to find how slow are the receptors and 

how long is the latency for the message in the optic nerve, and e~-en  more surprising 

to find how well the system works in spite of this slowness. 

Recent psychophysical work has improved our understanding of these problems. 

At one time i t  was thought that image motion aided resolution (Narshall SI Talbot 

1942),but this was hard to believe because of the bll~rring effect of the eye's long 

LGN 
afferents

layer 4 
cortex

Barlow (1981)
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Sparse overcomplete 
codes

source: Olshausen

ai

I(x,y)

Sparse, distributed representation

• Provides a way to group things together so that the world 
can be described in terms of a small number of events at any 
given moment. 

• Converts higher-order redundancy in images into a simple 
form of redundancy.

• Provides a way to group 
things together so that the 
world can be described in 
terms of a small number of 
events at any given moment


• Converts higher-order 
redundancy in images into a 
simple form of redundancy



Sparse vs. dense vs. ‘grand-mother cells’ code

source: Olshausen

Dense codes
(ascii)

Sparse, distributed codes Local codes
(grandmother cells)

. . . . . .

+ High combinatorial
   capacity (2N)

-  Difficult to read out

+ Decent combinatorial
   capacity (~NK)

+ Still easy to read out

-  Low combinatorial
   capacity (N)

+ Easy to read out

Sparse vs. dense vs. 
‘grandmother cell’ codes
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PCA constrains the columns of W to be orthonormal and the
rows of H to be orthogonal to each other. This relaxes the unary
constraint of VQ, allowing a distributed representation in which
each face is approximated by a linear combination of all the basis
images, or eigenfaces6. A distributed encoding of a particular face is
shown next to the eigenfaces in Fig. 1. Although eigenfaces have a
statistical interpretation as the directions of largest variance, many
of them do not have an obvious visual interpretation. This is
because PCA allows the entries of W and H to be of arbitrary sign.
As the eigenfaces are used in linear combinations that generally
involve complex cancellations between positive and negative
numbers, many individual eigenfaces lack intuitive meaning.

NMF does not allow negative entries in the matrix factors W and
H. Unlike the unary constraint of VQ, these non-negativity con-
straints permit the combination of multiple basis images to repre-
sent a face. But only additive combinations are allowed, because the
non-zero elements of W and H are all positive. In contrast to PCA,
no subtractions can occur. For these reasons, the non-negativity
constraints are compatible with the intuitive notion of combining
parts to form a whole, which is how NMF learns a parts-based
representation.

As can be seen from Fig. 1, the NMF basis and encodings contain
a large fraction of vanishing coefficients, so both the basis images
and image encodings are sparse. The basis images are sparse because
they are non-global and contain several versions of mouths, noses
and other facial parts, where the various versions are in different
locations or forms. The variability of a whole face is generated by
combining these different parts. Although all parts are used by at

least one face, any given face does not use all the available parts. This
results in a sparsely distributed image encoding, in contrast to the
unary encoding of VQ and the fully distributed PCA encoding7–9.

We implemented NMF with the update rules for Wand H given in
Fig. 2. Iteration of these update rules converges to a local maximum
of the objective function

F ¼ !
n

i¼1
!

m

m¼1

½VimlogðWHÞim ! ðWHÞimÿ ð2Þ

subject to the non-negativity constraints described above. This
objective function can be derived by interpreting NMF as a
method for constructing a probabilistic model of image generation.
In this model, an image pixel Vim is generated by adding Poisson
noise to the product (WH)im. The objective function in equation (2)
is then related to the likelihood of generating the images in V from
the basis W and encodings H.

The exact form of the objective function is not as crucial as the
non-negativity constraints for the success of NMF in learning parts.
A squared error objective function can be optimized with update
rules for W and H different from those in Fig. 2 (refs 10, 11). These
update rules yield results similar to those shown in Fig. 1, but have
the technical disadvantage of requiring the adjustment of a parameter
controlling the learning rate. This parameter is generally adjusted
through trial and error, which can be a time-consuming process if
the matrix V is very large. Therefore, the update rules described in
Fig. 2 may be advantageous for applications involving large data-
bases.

VQ

× =

NMF

=×

PCA

=×

Original Figure 1 Non-negative matrix factorization (NMF) learns a parts-based representation of
faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn
holistic representations. The three learning methods were applied to a database of
m ¼ 2;429 facial images, each consisting of n ¼ 19 " 19 pixels, and constituting an
n " m matrix V. All three find approximate factorizations of the form V " WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 " 7 montages, each method has learned a set of
r ¼ 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 " 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.
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Sparse coding
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Sparse coding

• Usually,  dictionary    is overcomplete: Linear system has 
many solutions… 


• To get reasonable solution, additional constraints on 
coefficients    are needed

image neural
activities
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aiφi(x,y)I(x,y)
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Sparse coding 
image model�
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Sparse coding

• With sparsity constraint, sparse solution can be obtained:

!

!

!

!

• This is a convex optimization problem and has many 
solvers

a

⇤ = argmin
a

kx��ak2 + �kak1

reconstruction	

error

sparsity



Sparse coding

• Given samples,    ,    ,...,     , how to learn a set of basis 
functions that are capable of sparsely coding all samples

!

!

!

• A natural approach to solving this problem is to alternate 
between,    and   , minimizing over one while keeping the 
other one fixed

x1 x2 xN

a �

< a

⇤,�⇤ >= argmin
a,�

NX

i=1

{kxi ��aik2 + �kaik1}
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Fig. 5 Receptive fields from the efficient coding models and from
recordings in monkey V1. The models were trained on 16 × 16 patches
of natural input. Each panel shows 128 randomly selected cells, ordered
with respect to shape. Experimental results are shown as Gabor fits
(data courtesy of D. Ringach). Scale differences due to distance from
the fovea were corrected for

To assess the distributions of receptive field shapes quan-
titatively, we fitted the receptive fields from the models with
Gabor functions and compared them to the fits for the exper-
imental data. Figure 6 shows properties of the Gabor param-
eters for the entire cell populations, with the exception of
those cells from models for which the fitting procedure was
unstable, because the fields were centred outside the patch.

Ringach (2002) reported that Sparsenet was not fully suc-
cessful in reproducing the natural range in receptive field
structure; this finding is confirmed in plot (a). By contrast,
the SSC network captures the distribution of the envelopes
of the biological receptive fields remarkably well, plot (b).

The asymmetry in the polarity of the receptive fields (def-
inition in appendix C) is plotted over the aspect ratio of the
Gabor envelope in figures (c) and (d). Note that the exper-
imental data sample all values of asymmetry and that they
form clusters near perfect symmetry (Asym. = 0) and full
asymmetry (Asym. = 1). The SSC network also produces
cells at both extrema of the range of asymmetry, although
the clustering seems somewhat exaggerated compared to the
experimental data. On the other hand, the distribution of
fields made by Sparsenet is missing the cluster in the regime
of perfect symmetry. Overall, Figs. 5 and 6 suggest that the
variety of receptive fields recorded from monkey V1 was
more closely reproduced by the SSC than by the Sparsenet
model.

4 Discussion

4.1 New model for receptive field formation using hard
sparseness

Models in neuroscience can help explain the complexity and
diversity of experimental results by simple functional prin-
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Fig. 6 Spatial properties of receptive fields in the models and in
monkey V1 (data courtesy of D. Ringach). Red: 146 experimental cells
in each graph. Blue: Modelled cells; 302 Sparsenet cells in each left
graph, 447 SSC cells in each right graph. (a) and (b) display length
and width of the Gabor envelopes measured in periods of the cosine
wave (see schematic figure (e) and Appendix C). Circular shapes are
located near the origin, slim edge-detectors near the “length” axis and
geometries with multiple subfields at large “width” values. (c) and
(d) plot the asymmetry of the receptive fields, as measured by the
normalised difference between the integrals h+ and h−, see schematic
figure (e) and Appendix C. The x-axes of (c) and (d) display the log of
the ratio between length and width of the Gabor envelopes

ciples. Here we used the approach of computational mod-
elling to explore visual cortical function, with an emphasis
on explaining how the shapes of receptive fields emerge in
V1. Previous work showed that the computational princi-
ple of coding efficiency is able to explain how receptive
fields shaped like edge detectors in V1 are formed. However,
earlier computational models, the Sparsenet (Olshausen and
Field, 1996) and independent component analysis (Bell and
Sejnowski, 1997), were unable to capture the distribution of
receptive field shapes that had been quantified experimen-
tally (Ringach, 2002). To understand the reason for this gap
between theory and biology, we investigated the influence of
a central assumption in these earlier models, the choice of
soft sparseness in the neural representation.

Thus, we investigated different computational models;
Sparsenet (Olshausen and Field, 1996) and two new models
(developed in the course of this study) that employed dif-
ferent forms of sparseness. Sparsenet produced soft sparse
representations of sensory input and the new models form
hard sparse representations. One of the novel models, which
we call the sparse-set coding (SSC) network, explicitly
optimised coding efficiency. The second model served as
a control; it crudely approximated efficient hard sparse

Springer

Effect of overcompleteness and ‘hard sparsity’
(Rehn and Sommer 2006)

Rehn and Sommer 2006
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• w| increased 
overcompleteness 
and sparsity
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Extensions to color 
and disparity

Wachtler, Lee and Sejnowski (2001), Hoyer & Hyvarinen (2000)

Extensions to color, disparity
Wachtler, Lee and Sejnowski (2001), Hoyer & Hyvarinen (2000)

Fig. 5. Analysis of image patches using ICA. Top, spatiochromatic structure of the 147 learned ICA basis functions of image patches
(7 ! 7 pixels, three chromatic dimensions). The R, G, and B values of the color of each pixel correspond to the relative excitation of L,
M, and S cones, respectively. The functions are in order of decreasing L2 norm from left to right and top to bottom. The additional
column marked W on the right shows the filters for the rightmost column of basis functions (marked A). Bottom, chromaticities of the
basis functions, plotted in cone-opponent color-space coordinates. Horizontal axes, L- versus M-cone variation. Vertical axes, S-cone
variation. Each dot represents the coordinate of a pixel of the respective basis function, projected onto the isoluminant plane. Lumi-
nance can be inferred from the brightness of the dot. Note that for basis functions that vary mainly in luminance, the dots tend to lie
on top of one another.

Wachtler et al. Vol. 18, No. 1 /January 2001 /J. Opt. Soc. Am. A 71

Figure 14: ICA basis of stereo images. Each pair of patches represents one basis vector ai of the estimated
mixing matrix A. Note the similarity of these features to those obtained from standard image data. In
addition, these exhibit various degrees of binocularity and varying relative positions and phases.
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Figure 15: Ocular dominance histogram of the ICA features. For each pair, we cal-
culated the value of (∥aleft∥ − ∥aright∥)/(∥aleft∥ + ∥aright∥), and used the bin boundaries
[−0.85,−0.5,−0.15,0.15,0.5,0.85] as suggested in (Shouval et al., 1996). Although many units where
quite monocular (as can be seen from Figure 14), no units fell into bins 1 or 7. This histogram is quite
dependent on the sampling window around fi xation points, as discussed in the main text.
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Non-linear encoding
Nonlinear encoding
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‘Explaining away’
Solutions may be computed by a network 
of leaky integrators and threshold units

(Rozell et al. 2008)

source: Olshausen


