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• Orientation selectivity

• Spatial frequency

• Normalization

• Color opponency

Primary visual cortex



Color selective cells
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Conway 2001

Type Ⅰ Type Ⅱ

Double-opponency (DO)

redrawn from Conway et al. 2010
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Fig. 2. Spatio-chromatic opponent descriptor: Individual R, G, B color channels are
first convolved with either the center or surround components from an filter at ori-
entation ✓, phase ', and scale s. The corresponding color channels are combined
(see text for detail) and further rectified by half-squaring and divisive normalization
(I). This yields 8 chromatic SO channels organized in 4 pairs (e.g., R+-G� and R�-
G+, here we show R+-G� for example). At stage II, an oriented filter (with both
excitatory and inhibitory subunits) is further applied on the output of the SO channels
followed by half-wave rectification and summation over squared pairs c and multi-
ple phases ' (if any) to yield 4 spatio-chromatic DO channels that are invariant to
figure-ground reversal (e.g., R-G).
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In the example shown in Fig. 2, ! = (+1/
p
2,�1/

p
2, 0) where the “+”

indicates excitatory red component to the center, and “-” indicates inhibitory
green component to the surround.

Consistent with biology [13], this can be thought of as a 3D convolution be-
tween a color image and a non-separable (spatio-chromatic opponent) operator.
The corresponding RFs exhibit some selectivities for opponent color channels
and are typically weakly oriented due to the isolation of positive and neg-
ative subunits.

Non-linear (half-squaring) rectification and divisive normalization: At the stage
II, the response of the spatio-chromatic opponent operator is first half-squaring
rectified [24] to prevent negative firing rates. Here we suggest an extension of
the divisive normalization circuit originally used to model the contrast response
of cells in the primary visual cortex [25] to color processing. This step can be
described by the following equation:

v(x, y, c) =

s
k ⇥ u(x, y, c)

�

2 +
P

u(x, y, c)
, (2)

where u(x, y, c) here corresponds to the half-squaring response of model
units at location (x, y) and channel c. k and � are the constant scale factor
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Table 1. On the need for non-linear circuits: Recognition performance on the soc-
cer team and Pascal voc 2007 datasets with and without rectification or divisive
normalization stages for the SO (left) and DO (right) sift descriptors.

Methods Soccer team Pascal voc 2007

Full model 82.0 / 66.0 33.3 / 39.8
Without half-squaring 62.0 / 60.0 30.3 / 36.7
Without normalization 70.0 / 53.0 32.9 / 40.7

The response of the spatio-chromatic opponent operator is rectified (half-
squaring) to maintain positive firing rates [21]. We further apply an extension
of the divisive normalization circuit (originally proposed to model the contrast
response of cells in the primary visual cortex [22]) to color processing. This step
can be described by the following equation:

v(x, y, c) =

√
k × u(x, y, c)

σ2 +
∑

u(x, y, c)
, (2)

where u(x, y, c) corresponds to a half-squared filter response at position (x, y)
for the opponent channel c; k and σ are the constant scale factor and the semi-
saturation constant, respectively. The pool

∑
of unit responses considered for

the normalization corresponds to units with similar tuning parameters (i.e., ori-
entation, etc) across all color channels c.

All parameters used here are directly constrained by neuroscience data [23,24],
which turned out to perform best (i.e., k = 1 and σ = 0.225; see Sec. 4). We
found both the rectification and normalization stages to be important for good
accuracy (see Table 1).

Double-Opponent (DO) Descriptor: In stage II, DO model unit responses are
obtained by filtering SO channels with the spatial sensitivity function f(x, y).
Note that, unlike the SO stage, the convolution here is only 2D and f(x, y)
contains both center and surround (excitatory/inhibitory) subunits (in the SO
computation excitatory and inhibitory subunits are applied on separate color
components). With this difference in mind, the spatial sensitivity function f(x, y)
used at the DO stage is the same as the one used at the SO stage but in the
general case any filter with excitatory and inhibitory components could be used.

Unlike the SO channels, which are normalized by considering pools of units
across all color channels, the DO channels are normalized via pools of units at
all orientations. Such normalization stage helps sharpen the orientation tuning
of the corresponding DO descriptors. The corresponding unit responses are half-
squaring rectified and opponent pairs of unit responses further summed to yield
invariance to figure-ground reversal. When using oriented filters with multiple
phases as in the Hmax model described in Sec. 3, the responses of opponent
channels are summed over all phases to yield a phase-invariant DO response
(see stage II in Fig. 1).

c
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Parameters can be fitted to 
psychophysics data on color perception
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2 Spatio-chromatic Opponent Descriptors

Here we describe the processing pipeline necessary for the computation of the SO
(surface) and DO (boundary) descriptors. Classical opponent theories of color vi-
sion have emphasized two main (equiluminant) chromatic axes: Red-Green (R-G)
andYellow-Blue (Y-B) [18] obtained from the combination of individual (R, G and
B) color channels via antagonist center-surround receptive fields (RFs). We here
further consider a Red-Cyan (R-C) channel (C channel obtained by further com-
bining G and B channels) as well as a (luminance-based) White-Black (Wh-Bl)
channel (Wh and Bl channels are obtained by combining the R, G and B chan-
nels together). Whether the R-C channel constitutes a separate color channel in
its own right or instead corresponds to a noisy R-G channel (whereby blue cones
would mingle with green cones because of imperfect wiring) remains a matter of
controversy [19]. We found that the addition of this R-C channel consistently in-
creases the performance of the proposed approach by about 2–5%.

Single-Opponent (SO) Descriptor: Processing starts with an RGB or LMS input
image and comprises two stages. In stage I, four pairs of opponent color channels
are first created using linear combinations of filtered color channels (see Fig. 1).
The response of a model unit is obtained by considering the dot-product between
an image patch I(x, y,λ) and the spatio-chromatic sensitivity function given by:

f(x, y,λ) = ωRR(λ)fR(x, y) + ωGG(λ)fG(x, y) + ωBB(λ)fB(x, y), (1)

where R(λ), G(λ), and B(λ) correspond to the spectral response functions (in
practice we use the standard R, G, B components from color images for com-
puter vision applications but more realistic spectral response functions including
LMS could be used). fR(x, y), fG(x, y), and fB(x, y) correspond to the spatial
sensitivity distributions for each individual color component. These are obtained
by isolating the positive/negative subunits from linear oriented filters to form
excitatory/inhibitory center or surround structures. We have used three kinds
of filters depending on the application and benchmark used: gradient operator,
Gabor filters, and Gaussian derivatives (see Fig. 1 and Sec. 3 for details).

The matrix Ω below contains the weight vectors used to combine the R, G,
B channels into four pairs of opponent color channels (individual weight vectors
ω = (ωR,ωG,ωB) for each pair are stored as column vectors), s.t.:

Ω =

⎛
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In the example shown in Fig. 1, ω = (+1/
√
2,−1/

√
2, 0) such that the “+”

(resp. “-”) sign indicates an excitatory red center (reps. inhibitory green sur-
round) component. This process can be thought of as a 3D convolution between
a color image and a non-separable (spatio-chromatic opponent) operator. The
corresponding RFs exhibit some selectivities for opponent colors and are typi-
cally weakly oriented.
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Fig. 2. Spatio-chromatic opponent descriptor: Individual R, G, B color channels are
first convolved with either the center or surround components from an filter at ori-
entation ✓, phase ', and scale s. The corresponding color channels are combined
(see text for detail) and further rectified by half-squaring and divisive normalization
(I). This yields 8 chromatic SO channels organized in 4 pairs (e.g., R+-G� and R�-
G+, here we show R+-G� for example). At stage II, an oriented filter (with both
excitatory and inhibitory subunits) is further applied on the output of the SO channels
followed by half-wave rectification and summation over squared pairs c and multi-
ple phases ' (if any) to yield 4 spatio-chromatic DO channels that are invariant to
figure-ground reversal (e.g., R-G).
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In the example shown in Fig. 2, ! = (+1/
p
2,�1/

p
2, 0) where the “+”

indicates excitatory red component to the center, and “-” indicates inhibitory
green component to the surround.

Consistent with biology [13], this can be thought of as a 3D convolution be-
tween a color image and a non-separable (spatio-chromatic opponent) operator.
The corresponding RFs exhibit some selectivities for opponent color channels
and are typically weakly oriented due to the isolation of positive and neg-
ative subunits.

Non-linear (half-squaring) rectification and divisive normalization: At the stage
II, the response of the spatio-chromatic opponent operator is first half-squaring
rectified [24] to prevent negative firing rates. Here we suggest an extension of
the divisive normalization circuit originally used to model the contrast response
of cells in the primary visual cortex [25] to color processing. This step can be
described by the following equation:

v(x, y, c) =

s
k ⇥ u(x, y, c)

�

2 +
P

u(x, y, c)
, (2)

where u(x, y, c) here corresponds to the half-squaring response of model
units at location (x, y) and channel c. k and � are the constant scale factor
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Table 1. On the need for non-linear circuits: Recognition performance on the soc-
cer team and Pascal voc 2007 datasets with and without rectification or divisive
normalization stages for the SO (left) and DO (right) sift descriptors.

Methods Soccer team Pascal voc 2007

Full model 82.0 / 66.0 33.3 / 39.8
Without half-squaring 62.0 / 60.0 30.3 / 36.7
Without normalization 70.0 / 53.0 32.9 / 40.7

The response of the spatio-chromatic opponent operator is rectified (half-
squaring) to maintain positive firing rates [21]. We further apply an extension
of the divisive normalization circuit (originally proposed to model the contrast
response of cells in the primary visual cortex [22]) to color processing. This step
can be described by the following equation:

v(x, y, c) =

√
k × u(x, y, c)

σ2 +
∑

u(x, y, c)
, (2)

where u(x, y, c) corresponds to a half-squared filter response at position (x, y)
for the opponent channel c; k and σ are the constant scale factor and the semi-
saturation constant, respectively. The pool

∑
of unit responses considered for

the normalization corresponds to units with similar tuning parameters (i.e., ori-
entation, etc) across all color channels c.

All parameters used here are directly constrained by neuroscience data [23,24],
which turned out to perform best (i.e., k = 1 and σ = 0.225; see Sec. 4). We
found both the rectification and normalization stages to be important for good
accuracy (see Table 1).

Double-Opponent (DO) Descriptor: In stage II, DO model unit responses are
obtained by filtering SO channels with the spatial sensitivity function f(x, y).
Note that, unlike the SO stage, the convolution here is only 2D and f(x, y)
contains both center and surround (excitatory/inhibitory) subunits (in the SO
computation excitatory and inhibitory subunits are applied on separate color
components). With this difference in mind, the spatial sensitivity function f(x, y)
used at the DO stage is the same as the one used at the SO stage but in the
general case any filter with excitatory and inhibitory components could be used.

Unlike the SO channels, which are normalized by considering pools of units
across all color channels, the DO channels are normalized via pools of units at
all orientations. Such normalization stage helps sharpen the orientation tuning
of the corresponding DO descriptors. The corresponding unit responses are half-
squaring rectified and opponent pairs of unit responses further summed to yield
invariance to figure-ground reversal. When using oriented filters with multiple
phases as in the Hmax model described in Sec. 3, the responses of opponent
channels are summed over all phases to yield a phase-invariant DO response
(see stage II in Fig. 1).

c
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SO

DO

Fig. 3. Schematic description of spatio-chromatic opponent representation. The orange
panel shows the response obtained from the 8 chromatic SO channels for the image
shown on the top. The green panel shows how DO units are obtained by combination
of the SO units (best viewed in colors). Note that on the image the light intensity is
highest for the magenta region, which leads to highest model SO responses at that
location.

the processing of surfaces unlike the DO stage that captures shape/boundary
information.

3 System extensions

sift descriptor: We follow the sift and the standard bag-of-words im-
plementation used in [14] without a spatial pyramid. The descriptors
are computed over a 16⇥ 16 pixel image patch over a dense grid with
a spacing of 8 pixels. This type of dense sampling is known to work
better than a sparse sampling for object and scene recognition [28, 14].
K-means is used to cluster the descriptors to form visual words. Code-
book (hard assign) sizes are determined by cross-validation (leading to
600-2000 centers depending on the specific system and/or dataset).
For comparison, in addition to a grayscale sift descriptor we also implement
two other color descriptors proposed by [10], where weighted hue and opponent
angle histograms were generated to represent the image. We also consider the
Opponentsift descriptor that was shown to be the best color descriptor without
prior knowledge about the type of light source variation, and Csift descriptor
that was the best choice for Pascal voc 2007 [6]. Here we compute two new
descriptors based on the proposed color processing pipeline: The SO and DO
representations are incorporated into the sift computation. That is,
the color tuned SOsift and shape tuned DOsift use Gaussian deriva-
tives as done in the standard sift (see Fig. 4A), and then construct

Zhang Barhomi & Serre ’12
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Color descriptors in computer vision

source: David Lowe
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C. Gaussian derivatives used in segmentationB. Gabor filters used in HMAXA. Gradient used in SIFT

Fig. 4. Filters and their components used in the spatio-chromatic opponent operator.
(A) Gradient in the y directions used in sift computation [14]. (B) Gabor filters used
in Hmax [15]. (C) Gaussian derivatives used in segmentation [19]. From left to right
are: the original filter and the individual center and surround components used to
process the input color channels. Note that additional filters (not shown) at multiple
orientations, scales and phases are also used in Hmax and segmentation.

On these two datasets, unlike the Pascal voc dataset, color cues are
highly diagnostic of object category. Individual color descriptors perform better
than their grayscale counterparts on both datasets, and SO- and DO- (sift
and Hmax) descriptors significantly boost the performance compar-
ing to other color descriptors (compare the performance under Color vs.
Shape in Table 2). The hue and opponent angle color descriptors (Huesift and
Oppsift in Table 2) have shown to be the best descriptors for use in combina-
tion within a bag-of-words scheme [31]. For a fair comparison, we use the same
dense sift sampling strategy across all descriptors. The dictionary sizes of
grayscale/Hue/Opp/SO/DOsift are 1000, 800, 800, 600, and 800, re-
spectively on soccer team dataset, and 800, 800, 800, 600, and 800 on
flower dataset. We also report (in parenthesis) the performance reported in
[10, 31] for the Huesift and Oppsift descriptors based on a sparse sift sampling
strategy (using the Harris-Laplace detector). The performance of the dense and
sparse strategies are comparable on soccer team dataset. The dense approach
exhibits better performance when shape and color descriptors are evaluated in-
dividually whereas the sparse strategy seems to perform slightly better when the
two types of descriptors are combined on flower dataset (Both in Table 23).

We report on the performance of a bag-of-words scheme that uses a com-
bination of the sift descriptors with our SO (Color) and DO (Shape) repre-
sentations. Both descriptors outperform baseline systems both in isolation and
combination. Interestingly, we found that the Hmax model performs better than
the sift-based bag-of-words approaches both when used in conjunction with the
SO and DO descriptors. Additional, the original grayscale Hmax model per-
forms rather poorly on soccer team dataset with 42% accuracy. It should be
noted that for a fair comparison, we only compare the performance of bottom-up

3 Experientially, a late fusion scheme is used here for combining color and
shape cues (i.e. color (SO) and shape (DO) cues are concatenated to
form a compact representation. However we did try an early fusion of
SO- and DO- (sift and Hmax) features and found the performance to
be inferior to those of a late fusion scheme. The reason we guess could
be DO descriptors bind both color and shape cues, so the combination
at local feature level will not introduce more feature information. This
fusion strategy is the main method used here throughout this paper.
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Table 2. Recognition performance on soccer team and 17-category flower dataset.
The data in each feature type are percentage of classification accuracy (Data inside
the parentheses are the initial performance reported by [10, 31] using the same features
in a bag-of-words scheme.)

Soccer team Flower
Method Color Shape Both Color Shape Both
Hue/sift 69 (67) 43 (43) 73 (73) 58 (40) 65 (65) 77 (79)
Opp/sift 69 (65) 43 (43) 74 (72) 57 (39) 65 (65) 74 (79)
SOsift/DOsift 82 66 83 68 69 79
SOHmax/DOHmax 87 76 89 77 73 83

approaches that do not rely on any prior knowledge about object categories. It
was shown, however, that the performance of various color descriptors could be
further improved on this dataset (up to 96% performance) when used in con-
junction with semantic color features (i.e., Color Names) and bottom-up
and top-down attentional mechanisms [32]. Whether such an approach would
similarly boost the performance of the SO and DO descriptors should be further
studied.

The results obtained on the flower dataset are qualitatively very similar (see
Table 2). One small di↵erence is that most shape-based descriptors tend to
perform on par or better than their color counterparts. Note, the superiority
of the SO channels is over the DO channels on soccer team dataset,
which is a color predominant dataset. As illustrated in Fig. 3, hue is
the main cue extracted by the SO channels. However, as reported in
the paper (also see Table 2), we found the DO channels to perform
better as well as the following experiments on other datasets. This
can be explained by the relatively large intra-class (hue) variations
for these datasets and the fact that the DO channels contribute to
better edge information (as opposed to chrominance information per
se). On flower dataset, it has been suggested that the performance of various
descriptors could be further improved with top-down attentional mechanisms
with state-of-the-art performance reaching 73% [33] for sift descriptors alone
and 95% when combined with Color Names, hue descriptors and sift
descriptors in the bottom-up and top-down attention framework [32].
Similarly, pre-segmentation and multiple kernel learning methods were shown to
further improve performance [34–36].

Pascal voc 2007 challenge: Here we compare the SODOsift descriptor (com-
bination of SOsift and DOsift) on the Pascal voc 2007 dataset with other
color-based sift descriptors as evaluated in [37, 6]. Table 3 shows a compari-
son between the proposed descriptor (i.e. SO/DOsift with 800 and 1000
words) and other descriptors (i.e. grayscale/Hue/Opponent/Csift with
2000, 1000, 1000, and 800 words) using the same bag-of-words implemen-
tation as well as published results with the same descriptors (in parenthesis).

• SO/DO approach improves on 
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as compared to existing color 
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C. Gaussian derivatives used in segmentationB. Gabor filters used in HMAXA. Gradient used in SIFT

Fig. 4. Filters and their components used in the spatio-chromatic opponent operator.
(A) Gradient in the y directions used in sift computation [14]. (B) Gabor filters used
in Hmax [15]. (C) Gaussian derivatives used in segmentation [19]. From left to right
are: the original filter and the individual center and surround components used to
process the input color channels. Note that additional filters (not shown) at multiple
orientations, scales and phases are also used in Hmax and segmentation.

On these two datasets, unlike the Pascal voc dataset, color cues are
highly diagnostic of object category. Individual color descriptors perform better
than their grayscale counterparts on both datasets, and SO- and DO- (sift
and Hmax) descriptors significantly boost the performance compar-
ing to other color descriptors (compare the performance under Color vs.
Shape in Table 2). The hue and opponent angle color descriptors (Huesift and
Oppsift in Table 2) have shown to be the best descriptors for use in combina-
tion within a bag-of-words scheme [31]. For a fair comparison, we use the same
dense sift sampling strategy across all descriptors. The dictionary sizes of
grayscale/Hue/Opp/SO/DOsift are 1000, 800, 800, 600, and 800, re-
spectively on soccer team dataset, and 800, 800, 800, 600, and 800 on
flower dataset. We also report (in parenthesis) the performance reported in
[10, 31] for the Huesift and Oppsift descriptors based on a sparse sift sampling
strategy (using the Harris-Laplace detector). The performance of the dense and
sparse strategies are comparable on soccer team dataset. The dense approach
exhibits better performance when shape and color descriptors are evaluated in-
dividually whereas the sparse strategy seems to perform slightly better when the
two types of descriptors are combined on flower dataset (Both in Table 23).

We report on the performance of a bag-of-words scheme that uses a com-
bination of the sift descriptors with our SO (Color) and DO (Shape) repre-
sentations. Both descriptors outperform baseline systems both in isolation and
combination. Interestingly, we found that the Hmax model performs better than
the sift-based bag-of-words approaches both when used in conjunction with the
SO and DO descriptors. Additional, the original grayscale Hmax model per-
forms rather poorly on soccer team dataset with 42% accuracy. It should be
noted that for a fair comparison, we only compare the performance of bottom-up

3 Experientially, a late fusion scheme is used here for combining color and
shape cues (i.e. color (SO) and shape (DO) cues are concatenated to
form a compact representation. However we did try an early fusion of
SO- and DO- (sift and Hmax) features and found the performance to
be inferior to those of a late fusion scheme. The reason we guess could
be DO descriptors bind both color and shape cues, so the combination
at local feature level will not introduce more feature information. This
fusion strategy is the main method used here throughout this paper.
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C. Gaussian derivatives used in segmentationB. Gabor filters used in HMAXA. Gradient used in SIFT

Fig. 4. Filters and their components used in the spatio-chromatic opponent operator.
(A) Gradient in the y directions used in sift computation [14]. (B) Gabor filters used
in Hmax [15]. (C) Gaussian derivatives used in segmentation [19]. From left to right
are: the original filter and the individual center and surround components used to
process the input color channels. Note that additional filters (not shown) at multiple
orientations, scales and phases are also used in Hmax and segmentation.

On these two datasets, unlike the Pascal voc dataset, color cues are
highly diagnostic of object category. Individual color descriptors perform better
than their grayscale counterparts on both datasets, and SO- and DO- (sift
and Hmax) descriptors significantly boost the performance compar-
ing to other color descriptors (compare the performance under Color vs.
Shape in Table 2). The hue and opponent angle color descriptors (Huesift and
Oppsift in Table 2) have shown to be the best descriptors for use in combina-
tion within a bag-of-words scheme [31]. For a fair comparison, we use the same
dense sift sampling strategy across all descriptors. The dictionary sizes of
grayscale/Hue/Opp/SO/DOsift are 1000, 800, 800, 600, and 800, re-
spectively on soccer team dataset, and 800, 800, 800, 600, and 800 on
flower dataset. We also report (in parenthesis) the performance reported in
[10, 31] for the Huesift and Oppsift descriptors based on a sparse sift sampling
strategy (using the Harris-Laplace detector). The performance of the dense and
sparse strategies are comparable on soccer team dataset. The dense approach
exhibits better performance when shape and color descriptors are evaluated in-
dividually whereas the sparse strategy seems to perform slightly better when the
two types of descriptors are combined on flower dataset (Both in Table 23).

We report on the performance of a bag-of-words scheme that uses a com-
bination of the sift descriptors with our SO (Color) and DO (Shape) repre-
sentations. Both descriptors outperform baseline systems both in isolation and
combination. Interestingly, we found that the Hmax model performs better than
the sift-based bag-of-words approaches both when used in conjunction with the
SO and DO descriptors. Additional, the original grayscale Hmax model per-
forms rather poorly on soccer team dataset with 42% accuracy. It should be
noted that for a fair comparison, we only compare the performance of bottom-up

3 Experientially, a late fusion scheme is used here for combining color and
shape cues (i.e. color (SO) and shape (DO) cues are concatenated to
form a compact representation. However we did try an early fusion of
SO- and DO- (sift and Hmax) features and found the performance to
be inferior to those of a late fusion scheme. The reason we guess could
be DO descriptors bind both color and shape cues, so the combination
at local feature level will not introduce more feature information. This
fusion strategy is the main method used here throughout this paper.
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C. Gaussian derivatives used in segmentationB. Gabor filters used in HMAXA. Gradient used in SIFT

Fig. 4. Filters and their components used in the spatio-chromatic opponent operator.
(A) Gradient in the y directions used in sift computation [14]. (B) Gabor filters used
in Hmax [15]. (C) Gaussian derivatives used in segmentation [19]. From left to right
are: the original filter and the individual center and surround components used to
process the input color channels. Note that additional filters (not shown) at multiple
orientations, scales and phases are also used in Hmax and segmentation.

On these two datasets, unlike the Pascal voc dataset, color cues are
highly diagnostic of object category. Individual color descriptors perform better
than their grayscale counterparts on both datasets, and SO- and DO- (sift
and Hmax) descriptors significantly boost the performance compar-
ing to other color descriptors (compare the performance under Color vs.
Shape in Table 2). The hue and opponent angle color descriptors (Huesift and
Oppsift in Table 2) have shown to be the best descriptors for use in combina-
tion within a bag-of-words scheme [31]. For a fair comparison, we use the same
dense sift sampling strategy across all descriptors. The dictionary sizes of
grayscale/Hue/Opp/SO/DOsift are 1000, 800, 800, 600, and 800, re-
spectively on soccer team dataset, and 800, 800, 800, 600, and 800 on
flower dataset. We also report (in parenthesis) the performance reported in
[10, 31] for the Huesift and Oppsift descriptors based on a sparse sift sampling
strategy (using the Harris-Laplace detector). The performance of the dense and
sparse strategies are comparable on soccer team dataset. The dense approach
exhibits better performance when shape and color descriptors are evaluated in-
dividually whereas the sparse strategy seems to perform slightly better when the
two types of descriptors are combined on flower dataset (Both in Table 23).

We report on the performance of a bag-of-words scheme that uses a com-
bination of the sift descriptors with our SO (Color) and DO (Shape) repre-
sentations. Both descriptors outperform baseline systems both in isolation and
combination. Interestingly, we found that the Hmax model performs better than
the sift-based bag-of-words approaches both when used in conjunction with the
SO and DO descriptors. Additional, the original grayscale Hmax model per-
forms rather poorly on soccer team dataset with 42% accuracy. It should be
noted that for a fair comparison, we only compare the performance of bottom-up

3 Experientially, a late fusion scheme is used here for combining color and
shape cues (i.e. color (SO) and shape (DO) cues are concatenated to
form a compact representation. However we did try an early fusion of
SO- and DO- (sift and Hmax) features and found the performance to
be inferior to those of a late fusion scheme. The reason we guess could
be DO descriptors bind both color and shape cues, so the combination
at local feature level will not introduce more feature information. This
fusion strategy is the main method used here throughout this paper.
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Table 3. Recognition performance on Pascal voc 2007 dataset. Performance corre-
sponds to the mean average precision (AP) over all 20 classes. Performance (in paren-
thesis) corresponds to the best performance reported in [37, 6]

Method sift Huesift Opponentsift Csift SODOsift SODOHmax

AP 40 (38.4) 41 43 (42.5) 43 (44.0) 46.5 (33.3/39.8) 46.8 (30.1/36.4)

Table 4. Recognition performance on scene categorization

Method gist RGBgist SOgist DOgist SODOgist

Accuracy 83.5 84.1 70.5 85.9 87.1

We also obtain the similar performance when incorporating SO and DO into
Hmax model. The performance of SO- and DO- (sift and Hmax) are
also given on the right of the combination for comparision.

4.2 Scene classification

To test our extension of the gist algorithm to color, we use the 8 category
scene dataset [18]. Table 4 shows a comparison between the proposed SOgist
and DOgist descriptors and their combination SODOgist. We report the av-
erage performance over 10 random splits of the data. Unlike the RGBgist and
DOgist that extracts shape information defined by color cues, the SOgist en-
codes mostly surface properties. The somewhat lower performance of the SOgist
on the scene dataset compared to RGBgist and DOgist suggests that color cues
may not be diagnostic for the task and that most of the improvement for the
RGBgist and DOgist is due to better edge and boundary information.

4.3 Contour detection

The BSDS500 dataset [19] is an image dataset with human annotations for the
evaluation of contour detection and segmentation algorithms. This is a newly
extended segmentation dataset and benchmark from the BSDS300 [38]. Fol-
lowing the BSDS500 guidelines, precision-recall curves are generated. The best
F-measure and the average precision are reported as an overall performance
measure for contour detection. We build on earlier work focusing on tex-
ture gradient because of the formation of Gaussian derivatives and
center-surround filter [29, 19].

Here we show that simply extending the texton-based (grayscale) texture
representation in the approach by [19] leads to a very significant gain in perfor-
mance (compare TG and its extension SOTG in Fig. 5B). The performance of
the extended texture channel alone is already higher than the performance of

• SO/DO approach improves on 
all recognition and 
segmentation datasets tested 
as compared to existing color 
representations

• Pascal challenge
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C. Gaussian derivatives used in segmentationB. Gabor filters used in HMAXA. Gradient used in SIFT

Fig. 4. Filters and their components used in the spatio-chromatic opponent operator.
(A) Gradient in the y directions used in sift computation [14]. (B) Gabor filters used
in Hmax [15]. (C) Gaussian derivatives used in segmentation [19]. From left to right
are: the original filter and the individual center and surround components used to
process the input color channels. Note that additional filters (not shown) at multiple
orientations, scales and phases are also used in Hmax and segmentation.

On these two datasets, unlike the Pascal voc dataset, color cues are
highly diagnostic of object category. Individual color descriptors perform better
than their grayscale counterparts on both datasets, and SO- and DO- (sift
and Hmax) descriptors significantly boost the performance compar-
ing to other color descriptors (compare the performance under Color vs.
Shape in Table 2). The hue and opponent angle color descriptors (Huesift and
Oppsift in Table 2) have shown to be the best descriptors for use in combina-
tion within a bag-of-words scheme [31]. For a fair comparison, we use the same
dense sift sampling strategy across all descriptors. The dictionary sizes of
grayscale/Hue/Opp/SO/DOsift are 1000, 800, 800, 600, and 800, re-
spectively on soccer team dataset, and 800, 800, 800, 600, and 800 on
flower dataset. We also report (in parenthesis) the performance reported in
[10, 31] for the Huesift and Oppsift descriptors based on a sparse sift sampling
strategy (using the Harris-Laplace detector). The performance of the dense and
sparse strategies are comparable on soccer team dataset. The dense approach
exhibits better performance when shape and color descriptors are evaluated in-
dividually whereas the sparse strategy seems to perform slightly better when the
two types of descriptors are combined on flower dataset (Both in Table 23).

We report on the performance of a bag-of-words scheme that uses a com-
bination of the sift descriptors with our SO (Color) and DO (Shape) repre-
sentations. Both descriptors outperform baseline systems both in isolation and
combination. Interestingly, we found that the Hmax model performs better than
the sift-based bag-of-words approaches both when used in conjunction with the
SO and DO descriptors. Additional, the original grayscale Hmax model per-
forms rather poorly on soccer team dataset with 42% accuracy. It should be
noted that for a fair comparison, we only compare the performance of bottom-up

3 Experientially, a late fusion scheme is used here for combining color and
shape cues (i.e. color (SO) and shape (DO) cues are concatenated to
form a compact representation. However we did try an early fusion of
SO- and DO- (sift and Hmax) features and found the performance to
be inferior to those of a late fusion scheme. The reason we guess could
be DO descriptors bind both color and shape cues, so the combination
at local feature level will not introduce more feature information. This
fusion strategy is the main method used here throughout this paper.
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C. Gaussian derivatives used in segmentationB. Gabor filters used in HMAXA. Gradient used in SIFT

Fig. 4. Filters and their components used in the spatio-chromatic opponent operator.
(A) Gradient in the y directions used in sift computation [14]. (B) Gabor filters used
in Hmax [15]. (C) Gaussian derivatives used in segmentation [19]. From left to right
are: the original filter and the individual center and surround components used to
process the input color channels. Note that additional filters (not shown) at multiple
orientations, scales and phases are also used in Hmax and segmentation.

On these two datasets, unlike the Pascal voc dataset, color cues are
highly diagnostic of object category. Individual color descriptors perform better
than their grayscale counterparts on both datasets, and SO- and DO- (sift
and Hmax) descriptors significantly boost the performance compar-
ing to other color descriptors (compare the performance under Color vs.
Shape in Table 2). The hue and opponent angle color descriptors (Huesift and
Oppsift in Table 2) have shown to be the best descriptors for use in combina-
tion within a bag-of-words scheme [31]. For a fair comparison, we use the same
dense sift sampling strategy across all descriptors. The dictionary sizes of
grayscale/Hue/Opp/SO/DOsift are 1000, 800, 800, 600, and 800, re-
spectively on soccer team dataset, and 800, 800, 800, 600, and 800 on
flower dataset. We also report (in parenthesis) the performance reported in
[10, 31] for the Huesift and Oppsift descriptors based on a sparse sift sampling
strategy (using the Harris-Laplace detector). The performance of the dense and
sparse strategies are comparable on soccer team dataset. The dense approach
exhibits better performance when shape and color descriptors are evaluated in-
dividually whereas the sparse strategy seems to perform slightly better when the
two types of descriptors are combined on flower dataset (Both in Table 23).

We report on the performance of a bag-of-words scheme that uses a com-
bination of the sift descriptors with our SO (Color) and DO (Shape) repre-
sentations. Both descriptors outperform baseline systems both in isolation and
combination. Interestingly, we found that the Hmax model performs better than
the sift-based bag-of-words approaches both when used in conjunction with the
SO and DO descriptors. Additional, the original grayscale Hmax model per-
forms rather poorly on soccer team dataset with 42% accuracy. It should be
noted that for a fair comparison, we only compare the performance of bottom-up

3 Experientially, a late fusion scheme is used here for combining color and
shape cues (i.e. color (SO) and shape (DO) cues are concatenated to
form a compact representation. However we did try an early fusion of
SO- and DO- (sift and Hmax) features and found the performance to
be inferior to those of a late fusion scheme. The reason we guess could
be DO descriptors bind both color and shape cues, so the combination
at local feature level will not introduce more feature information. This
fusion strategy is the main method used here throughout this paper.
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C. Gaussian derivatives used in segmentationB. Gabor filters used in HMAXA. Gradient used in SIFT

Fig. 4. Filters and their components used in the spatio-chromatic opponent operator.
(A) Gradient in the y directions used in sift computation [14]. (B) Gabor filters used
in Hmax [15]. (C) Gaussian derivatives used in segmentation [19]. From left to right
are: the original filter and the individual center and surround components used to
process the input color channels. Note that additional filters (not shown) at multiple
orientations, scales and phases are also used in Hmax and segmentation.

On these two datasets, unlike the Pascal voc dataset, color cues are
highly diagnostic of object category. Individual color descriptors perform better
than their grayscale counterparts on both datasets, and SO- and DO- (sift
and Hmax) descriptors significantly boost the performance compar-
ing to other color descriptors (compare the performance under Color vs.
Shape in Table 2). The hue and opponent angle color descriptors (Huesift and
Oppsift in Table 2) have shown to be the best descriptors for use in combina-
tion within a bag-of-words scheme [31]. For a fair comparison, we use the same
dense sift sampling strategy across all descriptors. The dictionary sizes of
grayscale/Hue/Opp/SO/DOsift are 1000, 800, 800, 600, and 800, re-
spectively on soccer team dataset, and 800, 800, 800, 600, and 800 on
flower dataset. We also report (in parenthesis) the performance reported in
[10, 31] for the Huesift and Oppsift descriptors based on a sparse sift sampling
strategy (using the Harris-Laplace detector). The performance of the dense and
sparse strategies are comparable on soccer team dataset. The dense approach
exhibits better performance when shape and color descriptors are evaluated in-
dividually whereas the sparse strategy seems to perform slightly better when the
two types of descriptors are combined on flower dataset (Both in Table 23).

We report on the performance of a bag-of-words scheme that uses a com-
bination of the sift descriptors with our SO (Color) and DO (Shape) repre-
sentations. Both descriptors outperform baseline systems both in isolation and
combination. Interestingly, we found that the Hmax model performs better than
the sift-based bag-of-words approaches both when used in conjunction with the
SO and DO descriptors. Additional, the original grayscale Hmax model per-
forms rather poorly on soccer team dataset with 42% accuracy. It should be
noted that for a fair comparison, we only compare the performance of bottom-up

3 Experientially, a late fusion scheme is used here for combining color and
shape cues (i.e. color (SO) and shape (DO) cues are concatenated to
form a compact representation. However we did try an early fusion of
SO- and DO- (sift and Hmax) features and found the performance to
be inferior to those of a late fusion scheme. The reason we guess could
be DO descriptors bind both color and shape cues, so the combination
at local feature level will not introduce more feature information. This
fusion strategy is the main method used here throughout this paper.
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[F = 0.79] Human
[F = 0.70] gPb
[F = 0.68] Multiscale − Ren (2008)
[F = 0.66] BEL − Dollar, Tu, Belongie (2006)
[F = 0.66] Mairal, Leordeanu, Bach, Herbert, Ponce (2008)
[F = 0.65] Min Cover − Felzenszwalb, McAllester (2006)
[F = 0.65] Pb − Martin, Fowlkes, Malik  (2004)
[F = 0.64] Untangling Cycles − Zhu, Song, Shi (2007)
[F = 0.64] CRF − Ren, Fowlkes, Malik (2005)
[F = 0.58] Canny (1986)
[F = 0.56] Perona, Malik (1990)
[F = 0.50] Hildreth, Marr (1980)
[F = 0.48] Prewitt (1970)
[F = 0.48] Sobel (1968)
[F = 0.47] Roberts (1965)

Fig. 1. Evaluation of contour detectors on the Berke-
ley Segmentation Dataset (BSDS300) Benchmark [2].
Leading contour detection approaches are ranked ac-
cording to their maximum F-measure (

2·Precision·Recall

Precision+Recall

)

with respect to human ground-truth boundaries. Iso-F
curves are shown in green. Our gPb detector [3] performs
significantly better than other algorithms [2], [17], [18],
[19], [20], [21], [22], [23], [24], [25], [26], [27], [28] across
almost the entire operating regime. Average agreement
between human subjects is indicated by the green dot.

to sources of top-down knowledge. In Section 5, this
knowledge source is a human. Our hierarchical region
trees serve as a natural starting point for interactive
segmentation. With minimal annotation, a user can cor-
rect errors in the automatic segmentation and pull out
objects of interest from the image. In Section 6, we target
top-down object detection algorithms and show how to
create multiscale contour and region output tailored to
match the scales of interest to the object detector.

Though much remains to be done to take full advan-
tage of segmentation as an intermediate processing layer,
recent work has produced payoffs from this endeavor
[9], [10], [11], [12], [13]. In particular, our gPb-owt-ucm
segmentation algorithm has found use in optical flow
[14] and object recognition [15], [16] applications.

2 PREVIOUS WORK
The problems of contour detection and segmentation are
related, but not identical. In general, contour detectors
offer no guarantee that they will produce closed contours
and hence do not necessarily provide a partition of the
image into regions. But, one can always recover closed
contours from regions in the form of their boundaries.
As an accomplishment here, Section 4 shows how to do
the reverse and recover regions from a contour detector.
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[F = 0.79] Human
[F = 0.71] gPb−owt−ucm
[F = 0.67] UCM − Arbelaez (2006)
[F = 0.63] Mean Shift − Comaniciu, Meer (2002)
[F = 0.62] Normalized Cuts − Cour, Benezit, Shi (2005)
[F = 0.58] Canny−owt−ucm
[F = 0.58] Felzenszwalb, Huttenlocher (2004)
[F = 0.58] Av. Diss. − Bertelli, Sumengen, Manjunath, Gibou (2008)
[F = 0.56] SWA − Sharon, Galun, Sharon, Basri, Brandt (2006)
[F = 0.55] ChanVese − Bertelli, Sumengen, Manjunath, Gibou (2008)
[F = 0.55] Donoser, Urschler, Hirzer, Bischof (2009)
[F = 0.53] Yang, Wright, Ma, Sastry (2007)

Fig. 2. Evaluation of segmentation algorithms on
the BSDS300 Benchmark. Paired with our gPb contour
detector as input, our hierarchical segmentation algorithm
gPb-owt-ucm [4] produces regions whose boundaries
match ground-truth better than those produced by other
methods [7], [29], [30], [31], [32], [33], [34], [35].

Fig. 3. Berkeley Segmentation Dataset [1]. Top to Bot-
tom: Image and ground-truth segment boundaries hand-
drawn by three different human subjects. The BSDS300
consists of 200 training and 100 test images, each with
multiple ground-truth segmentations. The BSDS500 uses
the BSDS300 as training and adds 200 new test images.

Historically, however, there have been different lines of
approach to these two problems, which we now review.

Berkeley segmentation dataset
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2.3.2 Rand Index

Originally, the Rand Index [62] was introduced for gen-
eral clustering evaluation. It operates by comparing the
compatibility of assignments between pairs of elements
in the clusters. The Rand Index between test and ground-
truth segmentations S and G is given by the sum of the
number of pairs of pixels that have the same label in
S and G and those that have different labels in both
segmentations, divided by the total number of pairs of
pixels. Variants of the Rand Index have been proposed
[5], [7] for dealing with the case of multiple ground-truth
segmentations. Given a set of ground-truth segmenta-
tions {G

k

}, the Probabilistic Rand Index is defined as:

PRI(S, {G
k

}) =

1

T

X

i<j

[c
ij

p
ij

+ (1� c
ij

)(1� p
ij

)] (6)

where c
ij

is the event that pixels i and j have the same
label and p

ij

its probability. T is the total number of
pixel pairs. Using the sample mean to estimate p

ij

, (6)
amounts to averaging the Rand Index among different
ground-truth segmentations. The PRI has been reported
to suffer from a small dynamic range [5], [7], and its
values across images and algorithms are often similar.
In [5], this drawback is addressed by normalization with
an empirical estimation of its expected value.

2.3.3 Segmentation Covering

The overlap between two regions R and R0, defined as:

O(R,R0
) =

|R \R0|
|R [R0| (7)

has been used for the evaluation of the pixel-wise clas-
sification task in recognition [8], [11]. We define the
covering of a segmentation S by a segmentation S0 as:

C(S0 ! S) =

1

N

X

R2S

|R| · max

R

02S

0
O(R,R0

) (8)

where N denotes the total number of pixels in the image.
Similarly, the covering of a machine segmentation S by

a family of ground-truth segmentations {G
i

} is defined
by first covering S separately with each human segmen-
tation G

i

, and then averaging over the different humans.
To achieve perfect covering the machine segmentation
must explain all of the human data. We can then define
two quality descriptors for regions: the covering of S by
{G

i

} and the covering of {G
i

} by S.

3 CONTOUR DETECTION
As a starting point for contour detection, we consider
the work of Martin et al. [2], who define a function
Pb(x, y, ✓) that predicts the posterior probability of a
boundary with orientation ✓ at each image pixel (x, y)

by measuring the difference in local image brightness,
color, and texture channels. In this section, we review
these cues, introduce our own multiscale version of the
Pb detector, and describe the new globalization method
we run on top of this multiscale local detector.

0 0.5 1

Upper Half−Disc Histogram

0 0.5 1

Lower Half−Disc Histogram

Fig. 4. Oriented gradient of histograms. Given an
intensity image, consider a circular disc centered at each
pixel and split by a diameter at angle ✓. We compute
histograms of intensity values in each half-disc and output
the �2 distance between them as the gradient magnitude.
The blue and red distributions shown in the middle panel
are the histograms of the pixel brightness values in the
blue and red regions, respectively, in the left image. The
right panel shows an example result for a disc of radius
5 pixels at orientation ✓ =

⇡

4 after applying a second-
order Savitzky-Golay smoothing filter to the raw histogram
difference output. Note that the left panel displays a larger
disc (radius 50 pixels) for illustrative purposes.

3.1 Brightness, Color, Texture Gradients
The basic building block of the Pb contour detector is
the computation of an oriented gradient signal G(x, y, ✓)
from an intensity image I . This computation proceeds
by placing a circular disc at location (x, y) split into two
half-discs by a diameter at angle ✓. For each half-disc, we
histogram the intensity values of the pixels of I covered
by it. The gradient magnitude G at location (x, y) is
defined by the �2 distance between the two half-disc
histograms g and h:

�2
(g, h) =

1

2

X

i

(g(i)� h(i))2

g(i) + h(i)
(9)

We then apply second-order Savitzky-Golay filtering
[63] to enhance local maxima and smooth out multiple
detection peaks in the direction orthogonal to ✓. This is
equivalent to fitting a cylindrical parabola, whose axis
is orientated along direction ✓, to a local 2D window
surrounding each pixel and replacing the response at the
pixel with that estimated by the fit.

Figure 4 shows an example. This computation is moti-
vated by the intuition that contours correspond to image
discontinuities and histograms provide a robust mech-
anism for modeling the content of an image region. A
strong oriented gradient response means a pixel is likely
to lie on the boundary between two distinct regions.

The Pb detector combines the oriented gradient sig-
nals obtained from transforming an input image into
four separate feature channels and processing each chan-
nel independently. The first three correspond to the
channels of the CIE Lab colorspace, which we refer to
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A. Color-texton map vs. grayscale texton map
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SOTG:F=0.68, AP=0.70

TG:F=0.64, AP=0.65

Baseline:F=0.67, AP=0.69

B. Precision-recall curves

Fig. 4. Contour detection on BSDS500. (A) Some representative examples of tex-
ton maps and color extensions. From left to right: original images, color-texton map
(SOTG) and texton map (TG). (B) Precision-recall curves on BSDS500, comparing
the original grayscale texture channel with the full Berkeley system that combines
brightness, color, and texture cues against our color-texture cue.

5 Conclusion

We have described a hierarchical model of color processing for the extraction of
surface (SO descriptor) and boundary/shape (DO descriptor) information based
on known properties of the primate visual system and basic canonical circuits
(i.e., half-squaring rectification and divisive normalization).

We have further used the framework to extend the Hmax model of object
recognition in the visual cortex and a standard bag-of-words model based on the
sift descriptor. We have tested both approaches on standard image datasets pre-
viously used to evaluate color descriptors (soccer team [10] and flower datasets
[14]) and object recognition algorithms [15] and shown that the proposed de-
scriptors perform on par or better than other color and shape descriptors. We
have further shown increased performance in the context of scene categoriza-
tion using an extension of the Gist algorithm and contour detection within the
Berkeley segmentation system.

Further work is needed to quantitatively assess the invariance properties of the
proposed descriptors to changes in illumination. We expect the proposed repre-
sentation to be tolerant to shifts in light intensity because of the type of filter-
ing used (zero-mean Gabor filters). Furthermore, the normalization used provides
some tolerance with respect to small light intensity scaling. The proposed descrip-
tors thus share tolerance properties similar to those of the Huesift [25] and the
Opponentsift descriptors [6]. However the proposed method was shown to yield
higher accuracy for object recognition suggesting that the SO and DO descriptors
achieve just the right trade-off between selectivity and invariance. Overall the rel-
ative success of the proposed biologically inspired approach suggests that neuro-
science may contribute new ideas and algorithms for computer vision.

Zhang Barhomi & Serre ’12
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luminance patterns in approximately
equal numbers of color-responsive and
color-blind neurons; consequently, the
relative numbers of each type of cell in the
study population in this report do not re-
flect their relative frequency in V1. From
our previous work on V1 color cells, we
estimate that the proportions of cells in the
V1 population are !60% nonopponent,
30% double opponent, and 10% single
opponent.

In addition to analyzing the electro-
physiological responses of the neurons, we
studied their anatomical location. Cells
were assigned a cortical depth and layer by
histological reconstruction of the elec-
trode track (see Materials and Methods).
The laminar assignment for each class of
cells is shown in Table 1. Single-opponent
cells were most often in layers 2/3 and 5;
double-opponent cells were most often in
layers 2/3 and 6; and non-opponent cells
were most often in layers 4B and 6. Cells
that could not be assigned a cortical depth
are not reported in the table (n " 35).

Double-opponent neurons
An example of a double-opponent simple
cell that was spatial-frequency selective for
color but gave only a weak luminance re-
sponse is shown in Figure 1. Two-
dimensional maps (from subspace reverse
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Figure 2. Two double-opponent cell examples: a complex cell from layer 2/3 (A–D) and a simple cell from an unknown layer (E–H ). A, E, Spatial-frequency (freq) tuning curves at the optimal
orientation measured with luminance (lum) gratings of 0.2 contrast (black) and red– green equiluminant (equilum) gratings of 0.17 rms cone contrast (A) or 0.14 rms cone contrast (E) (red curve).
B, F, Orientation tuning with red– green equiluminant patterns of 0.17 rms cone contrast (B) or 0.14 rms cone contrast (F ) (red) and 0.15 luminance contrast (black). C, G, Spatial-frequency tuning
for cone-isolating gratings. The L-cone-isolating curve is plotted as orange points and curve; the M-cone-isolating curve is plotted in green; the S-cone-isolating tuning curve is plotted in violet. L-,
M-, and S-cone contrasts were set at 0.13, 0.15, and 0.24, respectively. D, H, Results of a color-exchange experiment. The stimuli were drifting gratings with different red– green balances. The
patterns were modulated around a white point. For each pattern, the red gun modulation on a CRT screen was of fixed modulation depth (0.8), whereas the green gun modulation depth, or gain,
was varied from 0 to #1 times the modulation of the red. This means the gratings used were all heterochromatic and spanned the L- and M-cone isolation points as well as the equiluminant point
at green gun gain " #0.4 (marked with an arrow) (cf. Shapley and Hawken, 1999; Johnson et al., 2004). Color-blind neurons, for example, magnocellular LGN neurons, have a steep V-shaped
response curve in such a color-exchange experiment (Shapley and Hawken, 1999). The absence of local minima in D and H implies that these are color-opponent neurons.
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Figure 3. An example of a V1 single-opponent neuron from layer 6. A, B, Two-dimensional maps (from subspace reverse
correlation) of the sensitivity of this cell for L- (A) and M- (B) cone-isolating patterns. Plotting conventions are as in Figure 1. C,
Spatial- frequency (freq) responses for luminance (lum) and equiluminant (equilum) red– green gratings. This cell responded very
weakly to luminance patterns of 0.2 contrast and was spatially low-pass for red– green equiluminant patterns (rms cone con-
trast " 0.14). D, Spatial-frequency responses for L-, M-, and S-cone-isolating patterns. The low-pass tuning curve data to L- and
M-cone-isolating gratings are consistent with the absence of spatial opponency of the spatial maps of cone inputs to this neuron
shown in A and B. This L$M# single-opponent cell had very weak responses to S-cone-isolating stimuli. L-, M-, and S-cone
contrasts were 0.13, 0.15, and 0.24, respectively. E, F, Temporal phase of L- and M-cone inputs. PSTHs of the responses to L- (E)
and M- (F ) cone-isolating, drifting grating patterns of optimal spatial frequency and orientation. The PSTHs to M-cones and
L-cones are precisely out of phase, meaning the cone inputs are of opposite sign. G, Orientation tuning for equiluminant and
luminance patterns. Responses to equiluminant red– green drifting gratings of optimal spatial frequency are plotted in red (rms
cone contrast " 0.14; O/P ratio " 0.56; CV " 0.87). The responses to luminance patterns (0.15 contrast stimuli; points plotted
in black) were negligible.
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DO cells

well as the amplitude and phase of the funda-
mental stimulus frequency (F1). The cells were
classified as simple or complex according to the
ratio of the mean to first harmonic response.
Cells that did not give a response of at least 10
spikes/s above the mean spontaneous rate to
either luminance or equiluminant chromatic
gratings were excluded from the analysis.

In color-exchange experiments, the red gun
contrast was held fixed at 1.0, and the green gun
contrast varied from 0 to !1.0. The green and
red modulation was 180° out of phase. The
stimuli were drifting at the optimal orientation,
spatial frequency, and temporal frequency as
determined by the initial receptive field charac-
terization. The methods for color exchange are
described in detail previously (Shapley and
Hawken, 1999; Johnson et al., 2004).

Orientation tuning. Orientation tuning was
determined for each cell with drifting grating
stimuli of the optimal spatial and temporal fre-
quency. Orientation was varied in 15 or 20°
steps through a full 360°. Orientation responses
for the two directions of drift were combined,
and circular variance was determined from
these response measurements. Circular vari-
ance measures the orientation selectivity based
on all the orientations measured, and it is de-
fined (Mardia, 1972; Ringach et al., 2002) as
V " 1 ! !R!, where R is the resultant,

R !
¥krke#i2"#k/180$

¥krk
.

Here, #k represents equally spaced orientation
angles spanning 0 to 360°, and rk represents the
spike rate at each orientation. For complex cells,
the spontaneous rate was subtracted from the
mean spike rate, and for simple cells, the spike
rate was measured as the amplitude of the first
harmonic response. Cells with very sharp orien-
tation tuning are mapped to values of V close to
0, and those with broad orientation tuning are
mapped to values close to V " 1.

Cone maps and reverse correlation. The cone
spatial maps in Figures 1 and 3 and supplemen-
tal Figure 1 (available at www.jneurosci.org as
supplemental material) were measured using
subspace reverse correlation (Ringach et al.,
1997). In this experiment, images were drawn
randomly from a low-pass subset of the two-
dimensional Hartley functions. The Hartley
stimuli consist of an orthogonal set of sinusoids of evenly spaced orien-
tations, spatial frequencies, and spatial phases. Spatial frequencies ranged
from one cycle per stimulus width up to a maximum that was chosen for
each cell to be higher than its high-frequency cutoff. Orientations were
evenly spaced around the full 360°. Each stimulus in the set was matched
by another stimulus, offset by 90° in spatial phase. Stimuli were bounded
by a square window, the width of which was at least as large as four cycles
of the optimal spatial frequency, determined using drifting gratings. Each
Hartley stimulus was presented for two consecutive video frames (20 ms)
as part of a continuous 15 min stream. The color contrast of the Hartley
stimuli was cone isolating as described above.

Results
Single-opponent, double-opponent, and
non-opponent neurons
We classified cells as single opponent, double opponent, and
non-opponent for chromatic stimuli, as specified in detail in Ma-

terials and Methods. Single-opponent cells are color-responsive
cells that receive opponent cone input, meaning excitation from
one cone and inhibition from another. Single-opponent cells re-
spond best to large areas of color, because there is no spatial
antagonism within their cone-specific inputs. Non-opponent
cells receive the same sign of input from different cones, and
therefore are color blind. Double-opponent cells are color re-
sponsive, with cone-opponent inputs, but they prefer spatial pat-
terns of color rather than full field because there is spatial antag-
onism within their cone-specific inputs. This classification
scheme is different from the one introduced in Johnson et al.
(2001, 2004) that was based purely on a color-sensitivity index
(see Materials and Methods).

The 147 neurons in this study are a distinct population of
neurons from those we studied previously (Johnson et al., 2001,
2004). We sought to study orientation selectivity for color and
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Figure 1. Double-opponent simple cell from layer 2/3. A, B, Two-dimensional maps (from subspace reverse correlation) of the
sensitivity of this cell for L- (A) and M- (B) cone-isolating patterns. The pseudocolor maps depict excitation to increments in red
and excitation to decrements in blue. Fixed points in the visual field are designated with a star and with an open circle to facilitate
comparison between the L- and M-cone maps. At the star location, the L-cone map is decrement excitatory, whereas the M-cone
map is increment excitatory, and vice versa for the location marked by the open circle. C, Spatial-frequency (freq) responses for
luminance (lum) and equiluminant (equilum) red– green gratings. This cell responded very weakly to luminance patterns of 0.2
contrast, and was spatial-frequency tuned for red– green equiluminant patterns (rms cone contrast " 0.14). D, Spatial-
frequency responses for L-, M-, and S-cone-isolating patterns. The bandpass tuning curve data to L- and M-cone-isolating gratings
are consistent with the spatial opponency of the cone inputs to this neuron shown in A and B. L-, M-, and S-cone contrasts were
set at 0.13, 0.15, and 0.24, respectively. E, F, Temporal phase of L- and M-cone inputs. PSTHs of the responses to L- (E) and M- (F )
cone-isolating, drifting grating patterns with a temporal frequency of 2 Hz and optimal spatial frequency and orientation are
shown. The PSTHs to M-cones and L-cones are precisely out of phase, meaning the cone inputs are of opposite sign. G, Orientation
tuning in response to equiluminant red– green drifting gratings of optimal spatial frequency (rms cone contrast " 0.14; O/P
ratio % 0.01; CV " 0.32).

Table 1. The laminar distribution of single-opponent, double-opponent, and non-opponent neurons in each
layer of primary visual cortex expressed as the fraction and percentage of each type

Layer Single-opponent (n " 13) Double-opponent (n " 51) Non-opponent (n " 48)

2/3 4/13, 31% 19/51, 37% 7/48, 15%
4A 0/13, 0% 1/51, 2% 1/48, 2%
4B 1/13, 8% 9/51, 18% 15/48, 31%
4C$ 0/13, 0% 3/51, 6% 7/48, 15%
4C% 1/13, 8% 2/51, 4% 4/48, 8%
5 4/13, 31% 6/51, 12% 4/48, 8%
6 3/13, 23% 11/51, 22% 10/48, 21%

8098 • J. Neurosci., August 6, 2008 • 28(32):8096 – 8106 Johnson et al. • Color and Orientation in V1
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Beyond V1: Comparison 
with glob cells in V4/PIT
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Zhang & Serre in prep

Beyond V1: Comparison 
with glob cells in V4/PIT
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Color constancy

• Color 
constancy: 
Perceived 
colors highly 
tolerant to light 
source (eg 
green or red)

source:  Frisby & Stone



The Land-Mondrian experiments (1964)
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The Land-Mondrian experiments (1964)

• Subjects view a multicolored display (Color Mondrian)


• Display with patches of different size, shape and color


- No patch surrounded by another of a single color


- Patches surrounding another patch differed in color


- Patches were matte


• Lighting


- Illuminated by 3 projectors with filters for Red, Green and Blue


- Intensity was measured using a photometer 



The Land-Mondrian experiments (1964)
• Experiment 1: Light reflectance from a “green” patch (60 units 

red | 30 units green | 10 units blue) when other patches are 
visible 


- Subjects observation ⇒ GREEN 


• Experiment 2: Light reflectance from a “green” patch (60 units 
red | 30 units green | 10 units blue) when viewed in isolation


- Subjects observation ⇒ RED


• Conclusion: Perceived color is not determined by dominant 
reflected wavelength


- Perceived color depends upon the colors of other nearby 
objects



Color correction as an 
anchoring problem

unknown source



Gray-world assumption

• Given image with 
sufficient color 
variations, average of 
RGB components 
should average out to 
common gray value


• True for variations in 
color that are random 
and independent


• Given a large enough 
amount of samples, the 
average should tend to 
converge to the mean 
value (which is gray)



White-world 
assumption

• Brightest patch is 
white
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Color processing

the model responses to such stimuli, and we found that these
equations provided good fits to the neural responses.

Portions of this work have been presented briefly elsewhere
(Carandini and Heeger, 1994, 1995).

MATERIALS AND METHODS
Experiments were performed on five cynomolgus macaque monkeys
(Macaca fascicularis) and four pigtail macaque monkeys (M. nemestrina)
ranging in weight from 1.5 to 4 kg.

Preparation and maintenance
Animals were initially anesthetized with ketamine HCl (10 mg/kg) and
premedicated with atropine sulfate (0.05 mg/kg) and acepromazine
maleate (0.1 mg/kg). Anesthesia continued on 1.5–2.0% halothane in a
98% O2–2% CO2 mixture while the initial surgery was performed.
Indwelling catheters were introduced into the saphenous veins of each
hindlimb, and a tracheotomy was performed.

The animal was then mounted in a stereotaxic instrument, and halo-
thane anesthesia was replaced by a continuous infusion of sufentanil
citrate (typically 4– 6 �gzkg ⇤1zhr ⇤1, beginning with a loading dose of 4
�g/kg). EEG, ECG, and arterial blood pressure were monitored contin-
uously, and any signs of arousal were corrected by modifying the rate of
anesthetic infusion. The monkey was artificially respirated with a mix-
ture of O2 , N2O, and CO2 adjusted so that end-tidal CO2 was maintained
at 3.8 –4.0%. Rectal temperature was kept near 37°C with a heating pad.

A small craniotomy was performed, usually 9–10 mm lateral to the
midline and 3–4 mm posterior to the lunate sulcus. This location often
yielded two encounters with the primary visual cortex, with eccentricities
first at �2–5° and then at �8–15°. A small slit in the dura was made, and
a vertical hydraulic microdrive containing a glass-coated tungsten micro-
electrode (Merrill and Ainsworth, 1972) in a guide tube was positioned.
The craniotomy was covered with a chamber containing 4% agar in
sterile saline solution.

On completion of surgery, animals were paralyzed to minimize eye
movements. Paralysis was maintained with an infusion of vecuronium

bromide (Norcuron, 0.1 mgzkg ⇤1zhr ⇤1) in lactated Ringer’s solution with
dextrose (5.4 ml/hr). The pupils were dilated and accommodation par-
alyzed with topical atropine. The corneas were protected with zero
power gas-permeable contact lenses; supplementary lenses were chosen
to focus the eyes on a tangent screen plotting table set up at a distance
of 57 in. To maintain the animal in good physiological condition during
experiments (typically 72–96 hr), intravenous supplementation of 2.5%
dextrose/ lactated Ringer’s was given at 5–15 ml/hr. Animals received
daily injections of a broad-spectrum antibiotic (Bicillin) as well as an
anti-inflammatory agent (dexamethasone) to prevent cerebral edema.

Stimuli
Stimuli were generated by a Truevision ATVista board operating at a
resolution of 582 ⇥ 752 and a frame rate of 106 Hz, the output of which
was directed to a Nanao T560i monitor (mean luminance, 72 cd/m 2,
subtending 10–25° of visual angle). Nonlinearities in the relation be-
tween applied voltage and phosphor luminance were compensated by
appropriate look-up tables. Stimulus strength is measured in units of
contrast, defined as the difference between the highest and lowest inten-
sities, divided by the sum of the two.

Drifting luminance-modulated sinusoidal gratings were presented
alone or superimposed on another grating or on a noise background.
Superposition was obtained by interleaving, i.e., by presenting the two
components in alternate frames. When two gratings were presented
together they had the same temporal frequency and differed in orienta-
tion and/or spatial frequency. Their contrast could be varied indepen-
dently. The noise background was composed of square pixels, the size of
which was chosen for each cell to be approximately one-fourth of the
spatial period of the optimal grating. Occasionally we used one-
dimensional noise (bars rather than squares). The intensity of each
square was randomly refreshed at 13.4 or 26.8 Hz and assumed one of
two possible values.

All the stimuli had the same mean luminance. The grating and plaid
stimuli were vignetted by a square window, the size of which was chosen
to elicit the maximal responses. The noise masks occupied the whole
screen. In their absence the surrounding field was uniform.

Experiments. Experiments consisted of two to nine consecutive blocks
of stimuli. Each block consisted of a random permutation of 5–90 stimuli.
Randomization was adopted to minimize the effects of adaptation and
other nonstationarities. The stimuli had equal duration (generally 5–10
sec) and were separated by uniform field presentations lasting about
4 sec.

Experimental protocol. Receptive fields were initially mapped by hand
on a tangent screen. When the activity of a single neuron was isolated, we
established the dominant eye of the neuron and occluded the other eye.
We then positioned the receptive field on the face of the monitor, and
quantitative experiments proceeded under computer control.

To characterize each cell we performed the following sequence of
measurements using single gratings: (1) orientation and direction tuning;
(2) spatial frequency tuning; (3) temporal frequency tuning; and (4)
stimulus size tuning. Each of these measurements was performed at the
optimal values of the parameters as obtained from the previous measure-
ments. Cells were classified as simple or complex on the basis of the
frequency component of their response to the drifting grating eliciting
the maximum number of spikes, as classified by Skottun et al. (1991). If
the cell was simple we proceeded to the core experiments in this study.
These were of three types:

(1) Grating matrix experiments, consisting of drifting sinusoidal stimuli
having 5–10 different contrasts, two to four different temporal frequen-
cies, and two to four different orientations or spatial frequencies. A
typical experiment would involve three orientations or spatial frequen-
cies, three temporal frequencies, and five contrasts, yielding a total of 45
stimuli.

(2) Plaid experiments, consisting of sums of two gratings with contrasts
that were independently varied. Often the two directions were opposite,
and the “plaid” was a counterphase flickering grating. A typical experi-
ment would involve two orthogonal gratings with contrasts that assumed
five possible values, yielding a total of 25 different stimuli.

(3) Noise-masking experiments, in which the contrast response to
drifting gratings was measured in the presence of noise at different
contrasts. A typical experiment would involve nine grating contrasts and
two noise contrasts (0 and 0.5), yielding a total of 18 different stimuli.

Figure 1. Two models of simple cell function. A, The linear model,
composed of a linear stage (receptive field) and a rectification stage. The
linear stage performs a weighted sum of the light intensities over local
space and recent time. This sum is converted into a positive firing rate by
the rectification stage. Rectification is a nonlinearity, so the “linear
model” is not entirely linear. B, The normalization model extends the
linear model by adding a divisive stage. The linear stage feeds into a
circuit composed of a resistor and a capacitor in parallel (RC circuit). The
conductance of the resistor grows with the pooled output of a large
number of cortical cells. This effectively divides the output of the linear
stage.
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Figure 8. Estimation of Stimulus Color from Population Response

(A) Perceptual effect of background color. The rows of color patches marked by asterisks are physically identical, but they are displayed on
different backgrounds and therefore look different. For example, patch (b) looks more similar to the physically different patch (a) than to the
physically identical patch (c).
(B) Four of the tuning curves of Figure 3, rotated in color space such that the respective directions of the background chromaticities (gray
circles) are aligned, to mimic the background conditions in (A). Responses to patches (a)–(c) were estimated from the data points on the
appropriate tuning curves in the 0! and 45! directions.
(C) Estimated responses to patches (a)–(c) for the four neurons in (B). Responses are scaled relative to maximum firing rate for each neuron
individually. The response pattern elicited by patch (b) is more similar to that for patch (a) than to that for (c), corresponding to the perceptual
situation.
(D) Induced color shifts estimated from 94 tuning curve pairs. For responses to six stimulus chromaticities (open dots) on bluish background
(bluish circle), those chromaticities (black dots) were determined that yielded the most similar responses when presented on a gray background.
Responses were considered as 94-dimensional vectors and similarity was measured by Euclidean distance. The dark purple curve shows,
for the 90! ("S) stimulus on bluish background, the response vector distance as function of chromatic direction. The minimum occurs at a
direction that is shifted from the 90! direction, away from the background direction. The dashed dark purple circle denotes the minimum
distance, for easier visual inspection of the distance curve. For the other directions tested, similar shifts were obtained. Thus, qualitatively,
the background has the same inducing effect as in perception.

Discussion cluded cells that respond to spatial chromatic contrast
(Michael, 1978b; Lennie et al., 1990; Johnson et al., 2001;
Conway, 2001). It is not clear whether cells that respondOur results regarding chromatic tuning of V1 neurons in

awake monkeys are largely consistent with reports of preferentially to chromatic edges and cells that prefer
homogeneous stimuli form distinct classes, or whetherprevious studies using anaesthetized animals. Chro-

matic selectivity is diverse, and most cells showed re- this just reflects different spatial frequency tuning (John-
son et al., 2001). Spatial opponency, often consideredsponses to isoluminant as well as to nonisoluminant

stimuli, in agreement with earlier studies (Lennie et al., an important property of color-selective neurons, was
largely ignored by our choice of stimuli. They were de-1990; Johnson et al., 2001).

We did not attempt to find for each cell the stimulus signed to ensure that the classical receptive field was
covered. Nevertheless, relatively strong lateral interac-parameters that would evoke the strongest responses,

as was done in most previous studies. Apart from slight tions were found. In our study, we were primarily inter-
ested in the representation of chromatic stimuli undersize changes, the stimuli were the same for all neurons

and were identical to the stimuli used in psychophysical conditions comparable to typical situations in which we
have to judge the color of an object. Spatial chromaticexperiments. This enabled us to analyze the data as

responses of a population of neurons and to compare contrast probably plays a role in the detection of object
borders and the visual segmentation of scenes (Hurlbertthem to perceptual experiments done with the same

stimuli. and Poggio, 1988), but experiments on color appear-
ance usually employ extended stimuli with dimensionsOwing to the properties of our stimuli, we preferen-

tially recorded from neurons that responded strongly to on the order of degrees of visual angle. We argue that,
likewise, we typically judge the colors of natural objectshomogeneous color patches, and we may have ex-
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