Computational Vision

 Orientation selectivity
- Spatial frequency

* Normalization
 Color opponency




Color selective cells

Single-opponency (SO) Double-opponency (DO)
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Spatially opponent (major
type in parvocellular
layers in LGN)

M+S
cyan

Chromatically opponent
(koniocellular layers)

redrawn from Conway et al. 2010



Color processing
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Color processing

R/G R/C Y/B Lum

Parameters can be fitted to

psychophysics data on color perception
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Color processing
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Color processing
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Computer Vision
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Computer Vision
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Color descriptors in computer vision

Image gradients Keypoint descriptor

source: David Lowe



Color descriptors in computer vision

ColorDescriptor software

for object and scene categorization

Point sampling strategy Color descriptor extraction Codebook model
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Contours detection with

A. Original images

B. Double-Opponent gradient C. Specular invariant gradient
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D. Specular and shadow-
shading invariant gradient
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Computer Vision

« SO/DO approach improves on
all recognition and
segmentation datasets tested
as compared to existing color
representations

A. Gradient used in SIFT

Soccer team = - H

B. Gabor filters used in HMAX

17-category flowers T - E

C. Gaussian derivatives used in segmentation

« Color datasets

Soccer team Flower
Method Color  Shape Both Color  Shape Both
Hue/SIFT 69 (67) 43 (43) 73 (73) 58 (40) 65 (65) 77 (79)
Opp/SIFT 69 (65) 43 (43) 74 (72) 57 (39) 65 (65) 74 (79)
SOSIFT/DOSIFT 82 66 83 68 69 79

SOHMAX/DOHMAX 87 76 89 77 73 83 Zhang Barhomi & Serre *12




Computer Vision

SO/DO approach improves on
all recognition and
segmentation datasets tested
as compared to existing color
representations

A. Gradient used in SIFT

B. Gabor filters used in HMAX

PASCAL VOC 2007
C. Gaussian derivatives used in segmentation
- Pascal challenge
Method SIFT HuesiFT OpponentSIFT CSIFT SODOSIFT SODOHMAX
AP 40 (38.4) 41 43 (42.5) 43 (44.0)| 46.5 (33.3/39.8) 46.8 (30.1/36.4)

Zhang Barhomi & Serre ’12



Contours detection

Berkeley segmentation dataset




Contours detection
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Contours detection
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luminance

Color gratings

stimulus

compound



SO cells

[ s T ] 50 C —&— |um 60| D L-cone
L-cone map A —e— equilum M-cone
| | 3 3 —®— S-cone
XY XY
() [72)
| o | 2 30 2 30
o o
%) %)
|
L-increment excitatory | P ol T 1 T
" BTN Spatlal freq (c/deg Spatial freq (c/deq)
- _—— — — L-cone
M-decrement excitatory R g | G |
| 60 —&— equilum
(@]
| | 3 t;
- M-cone ﬁ 30,
| o 5
Q w
; \
| 1 deg | 8 0 ¢eeecoceooscccoooe
P e WG sa”%0 W . 0 180 360
Time (ms) Orientation (degrees)

Figure 3.  An example of a V1 single-opponent neuron from layer 6. A, B, Two-dimensional maps (from subspace reverse
correlation) of the sensitivity of this cell for L- () and M- (B) cone-isolating patterns. Plotting conventions are as in Figure 1. C,
Spatial- frequency (freq) responses for luminance (lum) and equiluminant (equilum) red— green gratings. This cell responded very
weakly to luminance patterns of 0.2 contrast and was spatially low-pass for red— green equiluminant patterns (rms cone con-
trast = 0.14). D, Spatial-frequency responses for L-, M-, and S-cone-isolating patterns. The low-pass tuning curve data to L- and
M-cone-isolating gratings are consistent with the absence of spatial opponency of the spatial maps of cone inputs to this neuron
shown in A and B. This L+M— single-opponent cell had very weak responses to S-cone-isolating stimuli. L-, M-, and S-cone
contrasts were 0.13, 0.15, and 0.24, respectively. E, F, Temporal phase of L- and M-cone inputs. PSTHs of the responses to L- (E)
and M- (F) cone-isolating, drifting grating patterns of optimal spatial frequency and orientation. The PSTHs to M-cones and
L-cones are precisely out of phase, meaning the cone inputs are of opposite sign. G, Orientation tuning for equiluminant and
luminance patterns. Responses to equiluminant red— green drifting gratings of optimal spatial frequency are plotted in red (rms
cone contrast = 0.14; 0/P ratio = 0.56; C(V = 0.87). The responses to luminance patterns (0.15 contrast stimuli; points plotted

in black) were negligible. Johnson et al 2008
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Figure1. Double-opponentsimple cell from layer 2/3. A, B, Two-dimensional maps (from subspace reverse correlation) of the
sensitivity of this cell for L- (4) and M- (B) cone-isolating patterns. The pseudocolor maps depict excitation to increments in red
and excitation to decrements in blue. Fixed points in the visual field are designated with a star and with an open circle to facilitate
comparison between the L- and M-cone maps. At the star location, the L-cone map is decrement excitatory, whereas the M-cone
map is increment excitatory, and vice versa for the location marked by the open circle. €, Spatial-frequency (freq) responses for
luminance (lum) and equiluminant (equilum) red— green gratings. This cell responded very weakly to luminance patterns of 0.2
contrast, and was spatial-frequency tuned for red—green equiluminant patterns (rms cone contrast = 0.14). D, Spatial-
frequency responses for L-, M-, and S-cone-isolating patterns. The bandpass tuning curve data to L- and M-cone-isolating gratings
are consistent with the spatial opponency of the cone inputs to this neuron shown in 4 and B. L-, M-, and S-cone contrasts were
setat0.13,0.15,and 0.24, respectively. E, F, Temporal phase of L- and M-cone inputs. PSTHs of the responses to L- (E) and M- (F)
cone-isolating, drifting grating patterns with a temporal frequency of 2 Hz and optimal spatial frequency and orientation are
shown. The PSTHs to M-cones and L-cones are precisely out of phase, meaning the cone inputs are of opposite sign. G, Orientation
tuning in response to equiluminant red— green drifting gratings of optimal spatial frequency (rms cone contrast = 0.14; 0/P

ratio << 0.01; CV = 0.32). Johnson et al 2008
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Beyond V1: Compar
with glob cells in V4/
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Beyond V1: Compar
with glob cells in V4/
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Zhang & Serre in prep



Munsell space

source: wikipedia



Munsell space
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Color constancy
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The Land-Mondrian experiments (1964)




The Land-Mondrian experiments (1964)

« Subjects view a multicolored display (Color Mondrian)
» Display with patches of different size, shape and color
- No patch surrounded by another of a single color
- Patches surrounding another patch differed in color
- Patches were matte
» Lighting
- llluminated by 3 projectors with filters for Red, Green and Blue

- Intensity was measured using a photometer



The Land-Mondrian experiments (1964)

* Experiment 1: Light reflectance from a “green” patch (60 units
red | 30 units green | 10 units blue) when other patches are
visible

- Subjects observation = GREEN

» Experiment 2: Light reflectance from a “green” patch (60 units
red | 30 units green | 10 units blue) when viewed in isolation

- Subjects observation = RED

» Conclusion: Perceived color is not determined by dominant
reflected wavelength

- Perceived color depends upon the colors of other nearby
objects



Color correction as an
anchoring problem

Land Retinex Model (normalizes cone responses)

_In shadow, S-cone > L-cone response » “blue”
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Gray-world assumption

+ Given image with
sufficient color
variations, average of
RGB components
should average out to
common gray value

* True for variations in
color that are random
and independent

- Given a large enough
amount of samples, the
average should tend to
converge to the mean
value (which is gray)




White-world
assumption

 Brightest patch is
white
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Gelb / Gilchrist demo

Jooks white



Gelb / Gilchrist demo




Gelb / Gilchrist demo




Gelb / Gilchrist demo




Gelb / Gilchrist demo




Gelb / Gilchrist demo




Color processing

A Linear model
Rectification

- | / |— Firing rate

Receptive field

B Normalization model

Rectification

> | / » Firing rate

Receptive field

Many other
cortical cells

T

Other color channels

Zhang & Serre in prep
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Color contrast and divisive normalization




