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Image pyramids vs. frequency channels

Fig. 1. Two methods of searching for a target pattern over
many scales. In the first approach, (a), copies of the target
pattern are constructed at several expanded scales, and
each is convolved with the original image. In the second
approach, (b),  a  single copy of  the  target  is convolved with

copies of the image reduced in scale. The target should be
just large enough to resolve critical details The two ap-
proaches should give equivalent results, but the second is
more efficient by the fourth power of the scale factor (image
convolutions are represented by 'O').

trated in Fig. 1. Several copies of the pat-
tern can be constructed at increasing scales,
then each is convolved with the image.
Alternatively, a pattern of fixed size can be
convolved with several copies of the image
represented at correspondingly reduced re-
solutions. The two approaches yield equi-
valent results, provided critical information
in the target pattern is adequately repre-
sented. However, the second approach i s
much more efficient: a given convolution
with the target pattern expanded in scale    
by a factor s will require s4 more arith-   
metic   operations  than   the  corresponding

convolution with the image reduced in
scale by a factor of s. This can be substan-
tial for scale factors in the range 2 to 32, a
commonly used range in image analysis.

The image pyramid is a data structure
designed to support efficient scaled convo-
lution through reduced image representa-
tion. It consists of a sequence of copies of
an original image in which both sample
density and resolution are decreased in
regular steps. An example is shown in Fig.
2a. These reduced resolution levels of the
pyramid are themselves obtained through a
highly  efficient   iterative  algorithm.   The

bottom, or zero level of the pyramid, G0,  
is equal to the original image. This is low-
pass-filtered and subsampled by a factor of
two to obtain the next pyramid level, G1.
G1 is then filtered in the same way and
subsampled to obtain G2. Further repeti-
tions of the filter/subsample steps generate
the remaining pyramid levels. To be pre-
cise, the levels of the pyramid are obtained
iteratively as follows. For 0 < l < N:

(1)

Gl  (i,j) Σ Σ
m n

 w (m,n) Gl-1 (2i+m,2j+n)

However,  it  is  convenient  to  refer  to this
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Theories of object recognition

recognition per se we recognize by linking to memory to
interpret the input,whereas inanalogy the input is linked to
memory not only for the sake of interpretation, but also for
the purpose of projecting attributes and generating predic-
tions. Therefore, by using the term analogy, the emphasis is
placed on the associations-based predictions that analogies
elicit beyondmererecognition,and it is thisextra step that is
the focus of the proposed framework.

Nevertheless, analogicalmappingstill serves to interpret
the input: inferring what physical input caused a certain
percept, an issue that has received a lot of attention [10–12].
Therefore, the analogy itself also provides an important top-
down prediction regarding the identity of the input using
initial bottom-up information [13,14] (Box 2). However, the
focus here is on the considerably less explored type of pre-
dictions: forecasting that pertains to what is about to hap-
pen,what is likely toappear in the samecontext, andwhat is
the most beneficial action that needs to be taken given the
specific input. In other words, the analogy in Figure 2 med-
iates interpretation, by linking input to memory, whereas
forecasting predictions stem from the subsequent activation
of information associated with that analogy (e.g. Figure 3).

This principle is not limited to the realm of visual
recognition, but rather encompasses a wide variety of
domains where input can be linked to memory to generate
predictions. For example, imagine meeting a new person.
Our first impressions are rapid [15,16] and are based on
rapidly extracted coarse information [15]. According to the
present proposal, this process is mediated by linking the
features of the new person to the most similar representa-
tion in memory; someone we know and that looks to some
extent like this new person. We automatically project
information such as personality attributes to the new
person based simply on this analogy. Although this ana-
logy is an approximated set of traits, it might be beneficial,
at least under some circumstances, to not start inter-
actions without any assumptions on that new person.

Analogies can be based on similarity on various levels,
including perceptual similarity (e.g. in shape or smell),
abstract conceptual dimensions, and goals [12]. Analogy-
based mappings of properties manifest themselves in
processes ranging from perception and memory [17] to
stereotypic judgments and prejudice [18].

It is important to note that the input is rarely mapped
with a single analogy directly to memory. Instead, the
function of analogies can be based on the integration of
multiple analogies that accumulate to complex mapping.
For example, if you are trying to understand a conversation
that is taking place on a screen when watching a new
movie, you will have to map novel sounds to similar and
familiar sounds in memory (which will then be connected
with their associated linguistic meaning), to map the novel
face appearances to similar and familiar face expressions
(which will then be connected with the intentions associ-
ated with them), the context in which the conversation is
taking place will be mapped to other similar contexts in
memory and, when combined, these analogies can help
map the complete, new situation to a collection of frag-
ments in memory that together can allow you to under-
stand the scene, and to forecast what is likely to be next.

While our existing memories are used to derive analo-
gies and activate predictions, they are constantly being
updated. The analogical process, in addition to affording
the interpretation of our environment, subsequently aug-
ments previous representations in a way that fosters
increasingly flexible future analogies.

Box 2. Top-down facilitation based on rudimentary

information

In the framework outlined here, the activation of a memory
representation based on a sensory or internally generated input is
a process of analogical mapping. A central question is how gist
information, how ever defined, can be sufficient for mapping the
input onto an analogous memory. One model (Figure I), from object
recognition, postulates that rudimentary information in the image
(i.e. low spatial frequencies), which is extracted rapidly, is suffi-
ciently powerful to activate expectations about what the observed
object might be [14,75]. A similar mechanism is proposed to be
operating on multiple levels, although the representation of gist
information on higher levels of analysis is yet to be defined (see
Concluding remarks section). Note that the gist-based initial guess
could elicit more than a single alternative. This ambiguity is
resolved gradually as high-spatial frequencies arrive with the
bottom-up streams. But it can also be resolved more quickly by
incorporating other rapidly extracted sources of information, such
as context [2], which would fine-tune this analogical mapping to
have fewer alternatives and, thus, less ambiguity.

Figure I. A top-down facilitation model. A partially processed, low spatial
frequency (LSF) image of the visual input is rapidly projected to OFC from the
early visual cortex and/or from subcortical structures such as the amygdala,
while detailed, slower analysis of the visual input is being performed along the
ventral visual stream. This ‘gist’ image activates predictions about candidate
objects that are similar to the image in their LSF appearance, which are fed
back to the ventral object recognition regions to facilitate bottom-up
processing. Reproduced with permission from Ref. [14].

Box 3. Questions for future research

! What are the computational operations and the underlying
cortical mechanisms mediating the transformation of a past
memory into a future thought?

! How does the brain handle completely novel situations where no
reliable predictions can be generated?

! To what extent are we aware of our predictions and their origin? In
some cases, such as in stereotypical thinking, being aware of
these predictions can eliminate unwanted influences.

! What does it mean for predictions to provide a perception of
stable environment? In most typical situations, we know what to
expect and what not to expect. How is finding something
alarmingly incongruent with our expectations (e.g. an elephant
in the living-room) different from finding something unexpected
yet insignificant (e.g. a shoe in the living-room)?

! How do we become aware of a mismatch between predictions
and perception? And how do we incorporate lessons from
prediction errors into future behavior?
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Application to machine vision
Fig. 1. Two methods of searching for a target pattern over
many scales. In the first approach, (a), copies of the target
pattern are constructed at several expanded scales, and
each is convolved with the original image. In the second
approach, (b),  a  single copy of  the  target  is convolved with

copies of the image reduced in scale. The target should be
just large enough to resolve critical details The two ap-
proaches should give equivalent results, but the second is
more efficient by the fourth power of the scale factor (image
convolutions are represented by 'O').

trated in Fig. 1. Several copies of the pat-
tern can be constructed at increasing scales,
then each is convolved with the image.
Alternatively, a pattern of fixed size can be
convolved with several copies of the image
represented at correspondingly reduced re-
solutions. The two approaches yield equi-
valent results, provided critical information
in the target pattern is adequately repre-
sented. However, the second approach i s
much more efficient: a given convolution
with the target pattern expanded in scale    
by a factor s will require s4 more arith-   
metic   operations  than   the  corresponding

convolution with the image reduced in
scale by a factor of s. This can be substan-
tial for scale factors in the range 2 to 32, a
commonly used range in image analysis.

The image pyramid is a data structure
designed to support efficient scaled convo-
lution through reduced image representa-
tion. It consists of a sequence of copies of
an original image in which both sample
density and resolution are decreased in
regular steps. An example is shown in Fig.
2a. These reduced resolution levels of the
pyramid are themselves obtained through a
highly  efficient   iterative  algorithm.   The

bottom, or zero level of the pyramid, G0,  
is equal to the original image. This is low-
pass-filtered and subsampled by a factor of
two to obtain the next pyramid level, G1.
G1 is then filtered in the same way and
subsampled to obtain G2. Further repeti-
tions of the filter/subsample steps generate
the remaining pyramid levels. To be pre-
cise, the levels of the pyramid are obtained
iteratively as follows. For 0 < l < N:

(1)

Gl  (i,j) Σ Σ
m n

 w (m,n) Gl-1 (2i+m,2j+n)

However,  it  is  convenient  to  refer  to this
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Application to machine vision
e.g, coarse-to-fine object strategies

B. Heisele et al. / Pattern Recognition 36 (2003) 2007–2017 2009

Thus the number of multiplications required for projecting
the input vector into the feature space and for computing the
decision function is

Mf;poly2 =
(n+ 1)n

2
+
(n+ 3)n

2
= (n+ 2) · n: (5)

From Eqs. (4) and (5) we see that the computation for
an SVM with second-degree polynomial is more e!ciently
done in the feature space if the number of support vectors is
bigger than n. This was always the case in our experiments;
the number of support vectors was between 2 and 6 times
larger than n. That is why we investigated not only methods
for reducing the number of input features but also methods
for feature reduction in the feature space.

3. Hierarchy of classi!ers

3.1. System overview

In most object detection problems the majority of ana-
lyzed image patches belong to the background class. Only
a small percentage of them look similar to objects and re-
quire a highly accurate classi"er to avoid false classi"ca-
tions. It is sensible to apply a hierarchy of classi"ers where
the complexity of the classi"er increases with each level. By
propagating only those patterns that were not classi"ed as

Fig. 1. Example of a hierarchical system with "ve levels: Starting with the classi"er at the lowest resolution patterns which have been
classi"ed as background are successively removed from the image going up the hierarchy. The "nal non-linear classi"er processes the image
at maximum resolution.

background, we quickly decrease the amount of data to pro-
cess. The main issues in designing such a classi"cation hier-
archy are how to choose the input features to the classi"ers,
how to select the number of levels, and "nally how to train
the classi"ers. We used pixel values as inputs to the classi-
"ers and reduced the number of features from top to bottom
by decreasing the image resolution, similar to coarse-to-"ne
matching approaches. An example of a hierarchical system
with "ve layers is shown in Fig. 1.

3.2. Building the hierarchy

In the following we describe an algorithm for automat-
ically determining the architecture of the hierarchy. We
begin with a set of classi"ers which operate at di#erent
resolutions and are each trained over the entire training set.
In our experiments the resolution of the linear SVM classi-
"ers ranged from 3×3 to 19×19. Given this set, the goal is
to "nd the best hierarchy with respect to speed and recogni-
tion performance. The algorithm builds the hierarchy in an
iterative top-down fashion starting with the topmost classi-
"er and adding a new layer at each iteration. It consists of
three steps:
(a) Adding a new layer. We add a classi"er to the hier-

archy which operates at a lower resolution than the current
bottom classi"er. For example, if the current hierarchy con-
sists of a 19×19 and an 11×11 classi"er we add classi"ers

see also Fleuret & Geman ’01

Heisele Serre & Poggio ’01

speed-up: over 
300 times 
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Fig. 3. Data !ow and computing time for the hierarchical classi"er tested on the CMU set 1.

curves on the training set 4 . The hierarchy performs better
than the single classi"er for recognition rates below 75%.
Above that, the single SVM classi"er is superior, indicating
that some of the di#cult face patterns in the test set do not
reach the last layer of the hierarchy. Fig. 3 shows the data
!ow through the hierarchy and the time spent in each layer.
The hierarchical system is about 260 times faster than the
system with the single second-degree polynomial SVM.
In layers one to four most of the computation time

(∼ 90%) is used for feature extraction. Further optimizing
the classi"ers would not lead to a signi"cantly faster sys-
tem. In the last layer about 95% of the computing time is
spent on the classi"cation leaving much room for speed-ups
using feature reduction methods. In the following sections
we explore methods for feature reduction and apply them
to the non-linear SVM at the top level of the hierarchy.

4. Dimension reduction in the input space

4.1. Ranking features in the input space

In Ref. [13] a gradient descent method is proposed to
rank the input features by minimizing the bound of the ex-
pectation of the leave-one-out error of the classi"er. The
algorithm showed superior performance compared to other
feature selection methods ("lter methods based on Fisher
score, Pearson correlation coe#cients and Kolmogorov–
Smirnov test) for various classi"cation tasks (face detection,
person detection, cancer morphology classi"cation). The ba-
sic idea is to re-scale the n-dimensional input space by a
n× n diagonal matrix ! such that R2=M 2 is minimized. The
new mapping function is then "!(x)="(! ·x) and the ker-
nel function is K!(x; y) = K(! · x; ! · y) = ("!(x) ·"!(y)).
The decision function given in Eq. (1) becomes

f(x; !) = w · "!(x) + b=
‘

∑

i=1

#0i yiK!(xi ; x) + b: (6)

4 We selected the point on the ROC curve with 97% recognition
rate.

The maximization problem of Eq. (2) is now given by

W 2(#; !) = max
#

‘
∑

i=1

#i −
1
2

‘
∑

i; j=1

#i#jyiyjK!(xi ; xj) (7)

subject to constraints
∑‘

i=1 #iyi = 0 and C¿ #i¿ 0; i =
1; : : : ; ‘. The radius around the data is computed by solving
the following maximization problem:

R2($; !) = max
$

∑

i

$iK!(xi ; xi)−
∑

i; j

$i$jK!(xi ; xj) (8)

subject to
∑

i $i = 1; $i¿ 0; i = 1; : : : ; ‘.
We solve for #; $, and ! using an iterative procedure:

We initialize ! as a vector of ones and then solve Eqs. (7)
and (8) for the margin and radius, respectively. Using the
values for # and $ and the bound in Eq. (3) we compute
! by minimizing W 2(#; !)R2($; !) using a gradient descent
procedure. We then start a new iteration of the algorithm
using the ! of the current iteration as initialization.
We applied the ranking method to 283 gray features gen-

erated by preprocessing 19×19 image patterns as described
in Ref. [11]. Additionally we performed tests with features
obtained by projecting the data points into the 283 dimen-
sional eigenvector space. The Principal Component Analy-
sis (PCA) was computed on the combination of the positive
and negative training sets. We computed one iteration of the
gradient descent algorithm and performed tests for 60, 80
and 100 ranked features. The ROC curves for second-degree
polynomial SVMs are shown in Fig. 4.
In experiments with 100 features there was no di$erence

between gray and PCA features. For 80 and 60 features,
however, the PCA gray features were superior. For this rea-
son we work exclusively with PCA gray features in the fol-
lowing section.

4.2. Selecting features in the input space

In Section 4.1 we ranked the features according to their
scaling factors !i. Now the problem is to determine a sub-
set of the ranked features (x1; x2; : : : ; xn). This problem can
be formulated as "nding the optimal subset of ranked fea-
tures (x1; x2; : : : ; xn∗) among the n possible subsets, where
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Spatial acuity and eccentricity
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this eccentricity of 10" was estimated to 
be 0.65"/mm. 

A similar experiment was done in the 
same monkey for a region of the right 
striate cortex slightly further lateral and 
anterior, subserving a visual-field terri- 
tory 7" from the fovea instead of 10". 
From the results shown in figure 3,  allow- 
ing for electrode obliquity, i t  can be cal- 
culated that l mm represents about 0.5" 
in the visual field. A s  expected, both the 
receptive fields and the scatter were now 
smaller. Thus in both penetrations a 1 mm 
movement through the cortex produced a 
shift of receptivefield positions that was 
large enough to be obvious above the ran- 
dom staggering, but still small enough so 
that the two sets of fields overlapped. 

The same procedure was repeated in 
two more monkeys, in regions with eccen- 
tricities of 1 and 4". The diagram for 
1"  is shown in figure 4. From the inset, 

which is the same diagram drawn to the 
scale of figures 2 and 3 ,  it can be seen 
that the fields and scatter are now much 
smaller, and so is the field displacement 
corresponding to each millimeter of move- 
ment. Magnification- I was calculated to 
be 0.25"/mm. 

For more peripheral penetrations a dif- 
ferent strategy had to be adopted, since 
this part of the cortex is buried deep in 
the calcarine fissure and tangential pene- 
trations are impractical. We therefore first 
made a long parasagittal penetration 
(same monkey as that of the 4" penetra- 
tion) through the convexity (8.5") and 
through two folds of the buried calcarine 
cortex (18 O and 22 "). A second penetration 
was then made parallel and 3 mm lateral 
to the first. The two tracks are recon- 
structed in figure 5. As expected, the 
three field positions were now slightly 
displaced. Each time a thickness of cortex 
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Fig. 6 A  Graph of average field size (crosses) and magnification-1 (open circles) against 
eccentricity, for five cortical locations. Points for 4 O ,  go, 18" and 2 2 O  were from one monkey; 
for lo, from a second. Field size was determined by averaging the fields at each eccentricity, 
estimating size from (length x widthfO.5. 
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Spatial Frequency Bandwidth (octaves) 

Fig. 5. Distributions of the full bandwidths at half ampli- 
tude (in octaves) of the spatial frequency tuning functions. 
The total population is segregated into X (simple) cells and 
Y (complex) cells recorded from the fovea1 and parafoveal 
areas. Note that there is no difference in the bandwidths of 
the fovea1 and parafoveal sample and that while the simple 
cells are slightly more narrowly tuned than the complex, 
the difference is not statistically significant. The median 
bandwidth was 1.4 octaves for simple ceils and 1.5 octaves 

for complex cells. 

very large. Most of the cells have bandwidths between 
1.0 and 1.5 octaves, but there are a number of very 
narrowly tuned cells with bandwidths of less than an 
octave; and a sizable population of broadly tuned 
cells with bandwidths as large as 2.0 octaves. The 
distribution of the bandwidths of cortical cells, how- 
ever, overlaps very little with the much more broadly 
tuned LGN cells. 

The median bandwidth for simple cells (both fovea1 
and parafoveal) is about 1.4 octaves, very close to that 
predicted from the Blakemore and Campbell selective 
spatial frequency adaptation experiment. It should be 
emphasized that there is a considerable spread of the 
tuning curves, however, so that any statement about 
“the” channel bandwidth of the visual system is of 
questionable validity. 

As demonstrated in Fig. 5, the complex cells cover 
roughly the same range of bandwidths as simple cells, 
but on the average are slightly more broadly tuned. 
For neither simple or complex cells is there any differ- 
ence in narrowness of tuning between the fovea1 and 
parafoveal populations. 

Peak spatial frequency. One of the principal issues 
at question with respect to the visual system’s doing a 
spatial frequency analysis of visual space is the pres- 
ence of multiple spatial frequency channels at each 
locus in the visual field. Psychophysical studies using 

extended gratings provide ambiguous information on 
this question since different spatial frequency bands 
might be operating in different retinal regions. The 
same would be true if recordings from different 
degrees of eccentricity were pooled together. It was 
specifically to address this point that we restricted our 
sample of the cortex to two distinct limited cortical 
loci. By looking at just the fovea1 sample or just the 
parafoveal sample, we can consider the characteristics 
of a population of cells all picking up from the same 
region in space. 

In Fig. 6 it can be seen that the cells within each of 
these samples are tuned to a wide range of spatial 
frequencies, covering overall at least 4 octaves and 
with a sizable portion spread over a 2 octave range. 
Some cells picking up from the fovea1 area respond 
maximally to as low as 0.5 c/deg; others, with over- 
lapping RFs, peak as high as 15 c/deg. The more nar- 
rowly tuned cells within these populations tuned to 
different spatial frequencies would thus be responding 
to totally non-overlapping ranges of spatial frequen- 
cies. 

The fact that cells with overlapping RF locations 
may have quite different spatial frequency tuning is 
seen most dramatically when two such cells are 

0 
~5 5 I IO 14 20 20 40 56 80 112 160W1 

Peak Spatial Frequency (cycles/degree) 

Fig. 6. Distributions of the peaks of the spatial frequency 
tuning functions. The total population was segregated into 
X (simple) and Y (complex) cells recorded from the fovea1 
and parafoveal areas. Note that the fovea1 sample extends 
into higher frequencies than the parafoveal sample as does 
the Y cell sample in comparison to the X cell sample (both 
of these trends are statistically significant). The mean was 
3.0 for the X cell population and 4.4 for the Y cell 

population. 

Hubel & Wiesel 1974

3o-5o

0o-1.5o

3o-5o

0o-1.5o



Spatial acuity and eccentricity
Low spatial acuity

peripheral vision High spatial acuity

foveal vision



Spatial acuity and eccentricity



Perceptual crowding
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Spatial resolution and acuity

Ingres’ Mrs Charles 
Badham (1816)

Renoir’s Madame 
Henriot (1876)

Degas’ Woman ironing (1869)
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Subtle expression 
Leonardo da Vinci’s Mona Lisa

 Livingstone, M. (2000). 
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Gain-control circuits in the (turtle) retina

Carandini & Heeger 2011

Nature Reviews | Neuroscience
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bipolar cells and ganglion cells41, and to become stronger 
in subsequent stages of visual processing.

Under contrast normalization, responses are no 
longer proportional to local contrast Cj (the output of 
the first normalization stage). Instead, the response Rj 
of neuron j is divided by a constant σ plus a measure of 
overall contrast40: 

Σk αk Ck

Σi wi CiRj = γ
σ + 

2

 
(5)

Here, the weights wi (positive or negative) define the 
spatial profile of the summation field (typically, a centre-
surround difference of Gaussians), and the weights αk 
(positive) define the spatial profile of the suppressive field 
(typically, a large Gaussian40). The responses of neurons 
at the output of the retina (as measured in the lateral 
geniculate nucleus (LGN)) are characterized well by this 
equation, in which the normalization in the denomina-
tor corresponds to the standard deviation of contrasts 
over a region of the visual field42. 

A common way to probe contrast normalization is to 
use gratings that vary in overall contrast and size (FIG. 2f). 
As predicted by the model, increasing grating contrast 
leads to response saturation when gratings are shown in 
a large window, but not when they are shown in a small 
window40 (FIG. 2f). For small windows, local contrast is 
zero in most of the suppressive field, so the denomi-
nator has a small role in equation 5. For larger stimuli, 
increasing grating contrast increases local contrast not 
only in the numerator but also in the denominator, and 
responses saturate. Response saturation, therefore, is due 
to contrast and not to the evoked response: it is strongest 
for largest stimuli, which evoke weaker responses than 
smaller stimuli. 

Normalization in the primary visual cortex

Normalization is thought to operate not only in the ret-
ina but also at multiple subsequent stages along the vis-
ual pathway. Indeed, the normalization model was first 
developed to account for the physiological responses of 
neurons in the primary visual cortex (V1)17–19,43–45.

Here, we describe the normalization model for a pop-
ulation of V1 neurons differing in preference for stimu-
lus position and orientation. This characterization of the 
responses of neural populations46–48 encompasses previ-
ous descriptions of single neurons19,43. In the model, the 
responses of a population of V1 neurons are given by:

R(x, θ) = D(x , θ)n

σ n + N(x , θ)n

 
(6)

Here, x and θ indicate the preferred position and orien-
tation of each neuron in the population (the only two 
stimulus attributes that we consider in this simplified 
explanation). The numerator contains the stimulus drive 
D, which results from each neuron’s summation field and 
determines the selectivity for stimulus position and ori-
entation. The normalization factor N in the denominator, 
in turn, is determined by the suppressive field α(x,θ), 
which provides weights with which to pool the stimu-
lus drive received by each of the neurons (BOX 1). The 

Figure 2 | Normalization in the retina. a | Light adaptation operates on light intensity 

to produce a neural estimate of contrast (multiple arrows indicate light intensities from 

multiple locations). b | Responses of a turtle cone photoreceptor to light of increasing 

intensity. The intensity of the coloured squares reflects background intensity. Curves are 

fits of normalization model (equation 2) with n = 1. c | Light adaptation moves the 

operating point to suit images of differing intensity. Histograms on abscissa indicate 

distributions of light intensity for a sinusoidal grating under dim illumination (shown in 

blue) and bright illumination (shown in green). Histograms on ordinate indicate 

distributions of responses, which are more similar to one another than the light  

intensity distributions. d | The same data as in part c plotted as a function of local 

contrast (Weber contrast) rather than light intensity. Light adaptation makes responses 

roughly proportional to local contrast. The linear approximation given by equation 3 is 

shown (indicated by the dotted line). e | Contrast normalization operates on the neural 

estimate of contrast and normalizes it with respect to the standard deviation (sd) of 

nearby contrasts (multiple arrows indicate local contrast from multiple locations).  

f | Effects of contrast normalization. Responses of a neuron in lateral geniculate nucleus 

(which receives input from the retina) as a function of grating contrast and size. deg, 

degrees. Data in part b, from REF. 24. Data in part f, from REF. 40.
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the model responses to such stimuli, and we found that these
equations provided good fits to the neural responses.

Portions of this work have been presented briefly elsewhere
(Carandini and Heeger, 1994, 1995).

MATERIALS AND METHODS
Experiments were performed on five cynomolgus macaque monkeys
(Macaca fascicularis) and four pigtail macaque monkeys (M. nemestrina)
ranging in weight from 1.5 to 4 kg.

Preparation and maintenance
Animals were initially anesthetized with ketamine HCl (10 mg/kg) and
premedicated with atropine sulfate (0.05 mg/kg) and acepromazine
maleate (0.1 mg/kg). Anesthesia continued on 1.5–2.0% halothane in a
98% O2–2% CO2 mixture while the initial surgery was performed.
Indwelling catheters were introduced into the saphenous veins of each
hindlimb, and a tracheotomy was performed.

The animal was then mounted in a stereotaxic instrument, and halo-
thane anesthesia was replaced by a continuous infusion of sufentanil
citrate (typically 4–6 �gzkg ⇤1zhr ⇤1, beginning with a loading dose of 4
�g/kg). EEG, ECG, and arterial blood pressure were monitored contin-
uously, and any signs of arousal were corrected by modifying the rate of
anesthetic infusion. The monkey was artificially respirated with a mix-
ture of O2 , N2O, and CO2 adjusted so that end-tidal CO2 was maintained
at 3.8–4.0%. Rectal temperature was kept near 37°C with a heating pad.

A small craniotomy was performed, usually 9–10 mm lateral to the
midline and 3–4 mm posterior to the lunate sulcus. This location often
yielded two encounters with the primary visual cortex, with eccentricities
first at �2–5° and then at �8–15°. A small slit in the dura was made, and
a vertical hydraulic microdrive containing a glass-coated tungsten micro-
electrode (Merrill and Ainsworth, 1972) in a guide tube was positioned.
The craniotomy was covered with a chamber containing 4% agar in
sterile saline solution.

On completion of surgery, animals were paralyzed to minimize eye
movements. Paralysis was maintained with an infusion of vecuronium

bromide (Norcuron, 0.1 mgzkg ⇤1zhr ⇤1) in lactated Ringer’s solution with
dextrose (5.4 ml/hr). The pupils were dilated and accommodation par-
alyzed with topical atropine. The corneas were protected with zero
power gas-permeable contact lenses; supplementary lenses were chosen
to focus the eyes on a tangent screen plotting table set up at a distance
of 57 in. To maintain the animal in good physiological condition during
experiments (typically 72–96 hr), intravenous supplementation of 2.5%
dextrose/ lactated Ringer’s was given at 5–15 ml/hr. Animals received
daily injections of a broad-spectrum antibiotic (Bicillin) as well as an
anti-inflammatory agent (dexamethasone) to prevent cerebral edema.

Stimuli
Stimuli were generated by a Truevision ATVista board operating at a
resolution of 582 ⇥ 752 and a frame rate of 106 Hz, the output of which
was directed to a Nanao T560i monitor (mean luminance, 72 cd/m 2,
subtending 10–25° of visual angle). Nonlinearities in the relation be-
tween applied voltage and phosphor luminance were compensated by
appropriate look-up tables. Stimulus strength is measured in units of
contrast, defined as the difference between the highest and lowest inten-
sities, divided by the sum of the two.

Drifting luminance-modulated sinusoidal gratings were presented
alone or superimposed on another grating or on a noise background.
Superposition was obtained by interleaving, i.e., by presenting the two
components in alternate frames. When two gratings were presented
together they had the same temporal frequency and differed in orienta-
tion and/or spatial frequency. Their contrast could be varied indepen-
dently. The noise background was composed of square pixels, the size of
which was chosen for each cell to be approximately one-fourth of the
spatial period of the optimal grating. Occasionally we used one-
dimensional noise (bars rather than squares). The intensity of each
square was randomly refreshed at 13.4 or 26.8 Hz and assumed one of
two possible values.

All the stimuli had the same mean luminance. The grating and plaid
stimuli were vignetted by a square window, the size of which was chosen
to elicit the maximal responses. The noise masks occupied the whole
screen. In their absence the surrounding field was uniform.

Experiments. Experiments consisted of two to nine consecutive blocks
of stimuli. Each block consisted of a random permutation of 5–90 stimuli.
Randomization was adopted to minimize the effects of adaptation and
other nonstationarities. The stimuli had equal duration (generally 5–10
sec) and were separated by uniform field presentations lasting about
4 sec.

Experimental protocol. Receptive fields were initially mapped by hand
on a tangent screen. When the activity of a single neuron was isolated, we
established the dominant eye of the neuron and occluded the other eye.
We then positioned the receptive field on the face of the monitor, and
quantitative experiments proceeded under computer control.

To characterize each cell we performed the following sequence of
measurements using single gratings: (1) orientation and direction tuning;
(2) spatial frequency tuning; (3) temporal frequency tuning; and (4)
stimulus size tuning. Each of these measurements was performed at the
optimal values of the parameters as obtained from the previous measure-
ments. Cells were classified as simple or complex on the basis of the
frequency component of their response to the drifting grating eliciting
the maximum number of spikes, as classified by Skottun et al. (1991). If
the cell was simple we proceeded to the core experiments in this study.
These were of three types:

(1) Grating matrix experiments, consisting of drifting sinusoidal stimuli
having 5–10 different contrasts, two to four different temporal frequen-
cies, and two to four different orientations or spatial frequencies. A
typical experiment would involve three orientations or spatial frequen-
cies, three temporal frequencies, and five contrasts, yielding a total of 45
stimuli.

(2) Plaid experiments, consisting of sums of two gratings with contrasts
that were independently varied. Often the two directions were opposite,
and the “plaid” was a counterphase flickering grating. A typical experi-
ment would involve two orthogonal gratings with contrasts that assumed
five possible values, yielding a total of 25 different stimuli.

(3) Noise-masking experiments, in which the contrast response to
drifting gratings was measured in the presence of noise at different
contrasts. A typical experiment would involve nine grating contrasts and
two noise contrasts (0 and 0.5), yielding a total of 18 different stimuli.

Figure 1. Two models of simple cell function. A, The linear model,
composed of a linear stage (receptive field) and a rectification stage. The
linear stage performs a weighted sum of the light intensities over local
space and recent time. This sum is converted into a positive firing rate by
the rectification stage. Rectification is a nonlinearity, so the “linear
model” is not entirely linear. B, The normalization model extends the
linear model by adding a divisive stage. The linear stage feeds into a
circuit composed of a resistor and a capacitor in parallel (RC circuit). The
conductance of the resistor grows with the pooled output of a large
number of cortical cells. This effectively divides the output of the linear
stage.
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and the time constant of the cells in the pool so that they are more
responsive and better able to follow the fine temporal changes of
the stimulus.

The normalization pool. Our final assumption regards the com-
position of the normalization pool. We assume that the cells in
the pool are tuned to all stimulus orientations and directions and
to a broad range of spatial and temporal frequencies.

Solution of the model. The variables in the model depend on
each other in a circular way: (1) the firing rate R of each cell
depends on its membrane potential V (Eq. 3; Fig. 2A); (2) the
membrane potential V of each cell depends on its driving current
Id and on its conductance g (Eq. 2); and (3) the conductance g of
each cell depends on ¥ R, the total firing rate of the cells in the
normalization pool (Eq. 4; Fig. 2B). This arrangement results in
negative feedback, because increases in the overall response ¥ R
increase the conductance g, which in turn reduces the overall
response ¥ R. This guarantees that the conductance g remains
finite (¥ R , 1/k in Eq. 4).

The model is a nonlinear neural network (Grossberg, 1988)
and is in general quite complicated, because both the driving
current and the conductance vary over time. Nevertheless, the
model was designed so that for the visual stimuli used in this
study—drifting sine gratings, plaids, and noise—we can derive
approximate closed form equations for its responses. These equa-
tions, together with their derivation, are detailed in Appendix.

RESULTS
We report here on 149 data sets obtained from a total of 54 cells
that were clearly identified as simple and were held long enough
to be tested with at least two blocks of one of the core experi-
ments in our protocol. In particular, we report on 51 grating

matrix experiments from 34 cells, 76 plaid experiments from 27
cells, and 22 noise-masking experiments from 17 cells.

The cells in the sample exhibited a broad spectrum of tuning
properties. The orientation tuning of the cells ranged from 14° to
124° half-width, with one-third of the cells showing a tuning
sharper than 24° and one-third broader than 51°. The directional
index of the cells (DI; Reid et al., 1987) ranged over the whole
spectrum from 0 to 1. Direction selectivity was prominent (DI .
0.6) in about one-third of the cells.

Responses to gratings
Figure 3A shows the period histograms of the responses of a
typical simple cell to drifting sinusoidal gratings with four differ-
ent stimulus contrasts. Consistent with the linear model, the
responses look like rectified sinusoids.

Dependence on contrast
There are subtle aspects of the responses that are not consistent
with a strictly linear model. One is response saturation (Maffei and
Fiorentini, 1973; Dean, 1981a; Albrecht and Hamilton, 1982;
Ohzawa et al., 1982; Li and Creutzfeldt, 1984; Sclar et al., 1990;
Bonds, 1991; Carandini and Heeger, 1994). For a linear neuron,
scaling stimulus contrast by a certain amount would scale the
responses by the same amount. The responses of the cell in Figure
3, instead, increase only marginally as the contrast doubles from
0.5 to 1. Another nonlinearity is reflected in the latency of the
responses. For a linear cell response latency would be unaffected
by stimulus contrast. Simple cells, instead, display phase advance
(Dean and Tolhurst, 1986; Carandini and Heeger, 1994; Albrecht,
1995); i.e., they respond sooner to high-contrast stimuli than to
low-contrast stimuli. For example, the cell in Figure 3 responds

Figure 3. Responses to drifting sine gratings of different contrasts. The curves are fits of the normalization model. The fits were performed on a larger
data set, which included the responses to 72 different drifting gratings (8 contrasts, 3 orientations, and 3 temporal frequencies). A, Period histograms of
the responses to four different contrasts. Scale bar in spikes per second. B, C, Response amplitude and phase as a function of contrast, computed from
the first harmonic of the spike trains. D, Polar plot of the responses in B and C. Every point in the plot corresponds to a sinusoid with an amplitude that
is given by the distance from the origin, and the phase of which is given by the angle with the horizontal axis. As the contrast increases the responses
get larger (far from the origin), and their phases advance (they turn counterclockwise). Asterisks indicate the predictions of the normalization model at
the different stimulus contrasts. Circles have radius 1 SEM (N 5 3) computed from the estimated variance. Error bars in B and C are 61 SEM, computed
from circles in D. Cell 392l008 [directional index (DI) 5 0.1; preferred spatial frequency (SF) 5 0.9 cycles/°, stimulus size (SZ) 5 4.5°], experiment 4.
Parameters: t0 5 37 msec; t1 5 9 msec; n 5 1.34.

Carandini et al. • Linearity and Normalization in Simple Cells J. Neurosci., November 1, 1997, 17(21):8621–8644 8625
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Busse et al 2008
source-localized to V1 of human subjects. Moreover, we show
with simple simulations how normalization in area V1 can have
profound effects on the interpretation of V1 signals by higher
cortical areas and, thus, shape perceptual judgments.

RESULTS

To measure the responses of a large population of neurons in
area V1, we recorded from a 10 3 10-electrode array implanted
in anesthetized cats (Figure 1A). The array covered an area of
16 mm2 so that it included regions with a diversity of orientation
preferences. As a result, spike responses measured at individual
sites exhibited tuning curves whose preferences covered fairly
uniformly the range of orientations (Figure 1A).

As expected, a stimulus of a given orientation evokes across
the population a response whose profile peaks at the neurons
that prefer the stimulus orientation (Figures 1B and 1C). This
profile was well fit by a simple circular Gaussian function G4(q)
centered on stimulus orientation 4 and varying with the preferred
orientation of the neurons q (Figure 1C).

Contrast-Invariance of Population Responses
We asked how these population responses are affected by stim-
ulus contrast, and we found them to be invariant: changing
contrast affected their profile in amplitude but not in width
(Figures 1D and 1E). To test for invariance, we fitted the
responses to an oriented stimulus (4) by a separable model,
the product of the Gaussian function of preferred orientation q
and a function of stimulus contrast c:

R4ðq; cÞ= G4ðqÞfðcÞ: (1)

We tested this model by choosing a typical function for stim-
ulus contrast (Figure 1E), the hyperbolic ratio that is commonly
applied to individual neurons (Albrecht and Hamilton, 1982;
Heeger, 1992):

fðcÞ= rmax
cn

cn
50 + cn

; (2)

where the parameters rmax, c50, and n determine the overall
responsiveness, the semisaturation contrast, and the exponent
of an accelerating nonlinearity related to spike threshold. The
separable model provided excellent fits to the population
responses. It explained 98.8% of the variance in the example
data set (Figures 1D and 1E) and an average of 98.5% of the
variance in all nine data sets. These results confirm earlier indica-
tions obtained by intrinsic imaging (Carandini and Sengpiel,
2004): population responses to individual orientations are con-
trast invariant.

A factor contributing to this invariance of population
responses is surely the well-known invariance of tuning curves
in individual neurons. Such tuning curves are scaled by stimulus
contrast without changes in shape (Finn et al., 2007; Sclar and
Freeman, 1982). The invariance seen in single neurons, however,
is not sufficient to explain the invariance of population
responses. For example, if neurons that are more sharply tuned
responded only to higher contrasts, then increasing contrast
would narrow the profile of population responses.

The invariance of population responses, indeed, makes
a strong prediction that orientation tuning width and contrast
sensitivity should be distributed independently across neurons.
Increasing contrast, then, would not preferentially engage
neurons that are more or less sharply tuned, thus leaving the
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Figure 1. Tuning Curves and Population
Responses to Single Orientation Stimuli
(A) Orientation tuning curves of all responsive sites

(66 of 96), sorted according to preferred orienta-

tion. Each tuning curve is normalized by its mean

across orientations.

(B) Population response to a 45# stimulus:

responses of all sites (dots) as a function of pre-

ferred orientation of each site.

(C) The population response in (B) after binning

sites with similar orientation preference (bin width:

15#). The curve is the best fitting circular Gaussian.

Error bars indicate ±1 SE of responses across sites

in each bin.

(D) Population response to a 0# stimulus for three

contrasts: 12%, 50%, and 100%. The abscissa

indicates preferred orientation relative to stimulus

orientation. Data for stimuli of multiple orientations

(0#, 30#, and 60#) are combined to obtain each

population response. Error bars indicate ±1 SE of

responses across sites in each bin. The curves

fitting the data are circular Gaussians differing

only in amplitude.

(E) Amplitude of the population responses as

a function of stimulus contrast. The curve is the

best-fitting hyperbolic ratio function (c50 = 42.1%,

n = 1.0). All fits are given by Equation (1). Experi-

ment 84-12-16.
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These behaviors arise rather intuitively from the combination
of operations in the normalization model (Equation 4). Equal
summation is a natural consequence of the sum in the numer-
ator; winner-take-all competition, in turn, stems from the
scaling of the summation terms by contrast; with the help of an
exponent >1, this exponent introduces imbalances in the effects
of the two gratings when contrasts differ. Across all contrast
conditions, the denominator scales the whole response, causing
the effective weights to be <1 (cross-orientation suppression).
This effect is of course most striking in the regime of winner-
take-all competition, where the denominator reduces the weight
applied to the weaker response to almost zero.

We tested the normalization model on the population
responses and found that it provided good fits in both regimes
(Figure 5). For the example experiment (Figure 5A) the model
captures qualitatively all the fundamental behaviors of the popu-
lation. Fits to other data sets, including those where the compo-
nent gratings had different angles, were of comparable or higher
quality (see Figure S1 available online). The good performance of
the model is confirmed by an analysis of effective weights and fit
quality across experiments (Figures 5B and 5C). The model
captured the regime of equal summation seen when component
contrasts are similar, predicting similar weights for the two
component responses (Figure 5B, diagonal) and yielding good
fits (q = 91.5% ± 1.0%; Figure 5C). The model also captured
the regime of winner-take-all competition, predicting progres-
sively smaller weights for gratings whose contrast decreases
relative to the other grating (Figure 5B, off-diagonal) and again
yielding good fits (q = 91.7% ± 0.6% SE; Figure 5C). Median
parameters of the normalization model were n = 1.5 ± 0.13,
c50 = 13.1 ± 4.2, and s = 19.0 ± 2.1.

Importantly, in the normalization model the gradual transition
from one regime to the other is explicitly controlled by the
component contrasts, without requiring a change in model
parameters. The normalization model, indeed, performs almost
as well as the weighted-sum model with optimal weights. Yet it
requires only five parameters: one for overall responsiveness,
rmax, two for contrast responses (c50 and n), and two for the
circular Gaussian G (width and vertical offset). The weighted-
sum model, by comparison, requires the same five parameters
plus two weights w1(c1, c2) and w2(c1, c2) for each combination
of positive grating contrasts c1 and c2. For our data sets that
makes 5 + 16 = 21 free parameters, more than four times the
five free parameters in the normalization model.

Normalization in Subthreshold Responses
The physiological mechanisms underlying response normaliza-
tion in individual V1 neurons are at the moment unclear and
may rest on a combination of factors (Carandini et al., 1997; Car-
andini et al., 2002; Chance et al., 2002; Finn et al., 2007; Freeman
et al., 2002; Priebe and Ferster, 2006). It is therefore of interest
to know to what degree normalization is present in the sub-
threshold responses as opposed to spiking responses.

To measure subthreshold activity in populations of neurons,
we analyzed local field potential (LFP) responses measured
with the same 10 3 10 electrode array that measures the spike
responses. The LFP comprises the combined subthreshold
activity of the neurons surrounding the electrode (Katzner

et al., 2009). To obtain the highest signal-to-noise ratios, we
pooled these LFPs across all responsive sites of the array and
across all animals (n = 4). To distinguish the responses to the
test from the responses to the mask, we employed a frequency
tagging method typically used in EEG research (Candy et al.,
2001; Morrone and Burr, 1986; Regan, 1989): we made the
test and mask contrast-reverse at different frequencies. These
frequencies effectively tag the LFP responses, which oscillate
at twice the frequency of reversal (Katzner et al., 2009).

This design provides an opportunity to test the same normal-
ization model that we have applied to spike responses. Because
of the pooling across sites, we can no longer study population
responses as a function of preferred orientation. By tagging
the two stimuli by frequency, though, we can distinguish the
responses to test and mask. The predicted responses Rj,
accordingly, depend on stimulus tag, j = 1 for the test and j = 2
for the mask:
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Figure 5. Predicted Population Responses, Weights, and Fit Quality
of the Normalization Model
(A) Population responses are fitted by the normalization model with a single set

of parameters. Error bars indicate ±1 SE of responses across sites in each bin.

(B) Weights predicted by the normalization model.

(C) Average fit quality of the normalization model. Data in (A) are from experi-

ment 82-6-3, plaid angle = 90!.
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• Normalization appears to be the most important component of a good 
computer vision system (over learning algorithms, architecture, etc)
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Abstract

In many recent object recognition systems, feature ex-
traction stages are generally composed of a filter bank, a
non-linear transformation, and some sort of feature pooling
layer. Most systems use only one stage of feature extrac-
tion in which the filters are hard-wired, or two stages where
the filters in one or both stages are learned in supervised
or unsupervised mode. This paper addresses three ques-
tions: 1. How does the non-linearities that follow the filter
banks influence the recognition accuracy? 2. does learn-
ing the filter banks in an unsupervised or supervised man-
ner improve the performance over random filters or hard-
wired filters? 3. Is there any advantage to using an ar-
chitecture with two stages of feature extraction, rather than
one? We show that using non-linearities that include recti-
fication and local contrast normalization is the single most
important ingredient for good accuracy on object recogni-
tion benchmarks. We show that two stages of feature ex-
traction yield better accuracy than one. Most surprisingly,
we show that a two-stage system with random filters can
yield almost 63% recognition rate on Caltech-101, provided
that the proper non-linearities and pooling layers are used.
Finally, we show that with supervised refinement, the sys-
tem achieves state-of-the-art performance on NORB dataset
(5.6%) and unsupervised pre-training followed by super-
vised refinement produces good accuracy on Caltech-101
(> 65%), and the lowest known error rate on the undis-
torted, unprocessed MNIST dataset (0.53%).

1. Introduction
Over the last few years, considerable efforts have been

devoted to designing appropriate feature descriptors for ob-
ject recognition. Many recent proposals use dense features
extracted on regularly-spaced patches over the input image.
The vast majority of these systems use a feature extrac-
tion process composed of a filter bank (generally based on
oriented edge detectors), a non-linear operation (quantiza-
tion, winner-take-all, sparsification, normalization, and/or
point-wise saturation), and a pooling operation that com-

bines nearby values in real space or feature space through
a max, average, or histogramming operator. For example,
the SIFT operator applies oriented edge filters to a small
patch and determines the dominant orientation through a
winner-take-all operation. Finally, the resulting sparse vec-
tors are added (pooled) over a larger patch to form local ori-
entation histograms. Several recognition architectures use a
single stage of such features followed by a supervised clas-
sifier. Particular embodiments of the single-stage systems
use SIFT features [19, 13], HoG [6], Geometric Blur [5],
and models inspired by the architecture of the mammalian
primary visual cortex [24], to mention a few. Other models
use two or more successive stages of such feature extractors,
followed by a supervised classifier. This includes convolu-
tional networks globally trained in purely supervised mode
with gradient descent [10], convolutional networks trained
in supervised mode with an auxiliary task [3], or trained
in purely unsupervised mode [25, 11, 18]. Multi-stage sys-
tems also include HMAX-type models [28, 22] in which the
first layer is hardwired with Gabor filters, and the second
layer is trained in unsupervised mode by storing randomly-
picked output configurations from the first stage into filters
of the second stage. All of these models essentially differ
by whether they have one or two (or more) feature extrac-
tion stages, by the type of non-linearity used after the filter
banks, the method used to pick the filters (hard-wired, un-
supervised, supervised), and the top-level classifier (linear
or more sophisticated).

This paper addresses three questions: 1. How do the non-
linearities that follow the filter banks influence the recogni-
tion accuracy? 2. Does learning the filter banks in an un-
supervised or supervised manner improve the performance
over hard-wired filters or even random filters? 3. Is there
any advantage to using an architecture with two successive
stages of feature extraction, rather than with a single stage?
To address these questions, we experimented with various
combinations of architectures (with 1 or 2 stages of fea-
ture extraction), non-linearities, filter types, filter learning
methods (random, unsupervised and supervised). We use
a recently-proposed unsupervised feature learning method
called Predictive Sparse Decomposition (PSD), based on


