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One of the main functions of vision is to estimate the 3D shape of
objects in our environment. Many different visual cues, such as
stereopsis, motion parallax, and shading, are thought to be in-
volved. One important cue that remains poorly understood comes
from surface texture markings. When a textured surface is slanted
in 3D relative to the observer, the surface patterns appear com-
pressed in the retinal image, providing potentially important infor-
mation about 3D shape. What is not known, however, is how the
brain actually measures this information from the retinal image.
Here, we explain how the key information could be extracted by
populations of cells tuned to different orientations and spatial
frequencies, like those found in the primary visual cortex. To test
this theory, we created stimuli that selectively stimulate such cell
populations, by “smearing” (filtering) images of 2D random noise
into specific oriented patterns. We find that the resulting patterns
appear vividly 3D, and that increasing the strength of the orienta-
tion signals progressively increases the sense of 3D shape, even
though the filtering we apply is physically inconsistent with what
would occur with a real object. This finding suggests we have iso-
lated key mechanisms used by the brain to estimate shape from
texture. Crucially, we also find that adapting the visual system’s
orientation detectors to orthogonal patterns causes unoriented
random noise to look like a specific 3D shape. Together these find-
ings demonstrate a crucial role of orientation detectors in the per-
ception of 3D shape.
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When we look at a textured object, the projection of the
surface markings into the retinal image compresses them

in ways that can indicate the object’s 3D shape. This compression
has two distinct causes. The first cause is distance-dependent:
when a surface patch is moved further away from the eye, the
texture shrinks isotropically in the image as a function of the
distance. The second cause of compression is foreshortening:
when a surface is slanted relative to the line of sight, the texture
is anisotropically compressed along the direction of the slant,
with greater slant leading to greater compression.
It is well known that the visual system can use these texture

compression cues to estimate 3D shape (1–9). What is not known,
however, is how the visual system measures the compression at
each point in the image. A crucial stage in any theory of 3D vision
must include an explanation of how the visual system extracts the
key information from the image. At present, there is an explana-
tory gap between the known response properties of cells early in
the visual processing hierarchy, which measure local 2D image
features (10–16), and cells higher in the processing stream, which
respond to various 3D shape properties (17–24). How does the
brain put the measurements made in the primary visual cortex
(V1) to good use to arrive at an estimate of 3D shape?
Estimating the extent and direction of texture compression is

not trivial (6, 7), so it would be useful if the brain could infer
surface attitude from some other readily available image mea-
surement. V1 contains cells tuned to specific orientations and
spatial frequencies (10–16). We suggest that the visual system
could use the output of populations of such cells as a “proxy” for
texture compression when estimating shape.

Specifically, the process could work as follows. As mentioned
above, when surface texture is projected onto the retina it
appears compressed in the image. This compression has pow-
erful effects on local image properties, which we find can be
readily measured by populations of filters tuned to different ori-
entations and spatial frequencies. Isotropic compression of the
texture (because of surface distance) locally scales the pattern,
causing power to shift to higher spatial frequencies. Anisotropic
compression (because of surface slant) causes one orientation to
dominate the others at the corresponding location in the image.
Cells tuned to the dominant orientation respond more strongly,
but those tuned to other orientations tend to respond more
weakly, leading to a peak in the population response (Fig. 1).
This peak response indicates the tilt (25) of the surface (up to an
ambiguity of sign); that is, the 3D orientation of the surface
relative to the vertical in the image (modulo 180°). Additionally,
the size of the peak is related to the surface slant (25) relative
to the line of sight. The more slanted the surface, the more
anisotropic the texture, and thus the more pronounced the peak
in the population response. Thus, taken together, the orientation
and height of the peak in the population response could serve as
a simple surrogate measure of texture foreshortening, which the
visual system could use to estimate surface attitude.
Using wavelet filters as a cartoon model of cell populations we

can measure the dominant orientations at each location in the
image. When we plot how the dominant orientation varies con-
tinuously across the entire image of a surface, we find that the
responses are highly organized, forming a smoothly varying
“orientation field,” which is systematically related to the 3D
shape (Fig. 2). Although additional processing would be required
to regularize the orientation field and to derive a complete es-
timate of the 3D shape from these measurements, the corre-
spondence between the outputs of the filters (which measure
local 2D image structure) and the true 3D surface orientations is
surprisingly good. We, and others, have argued previously that
orientation fields could play an important role in the estimation
of shape from shading and specular reflections (26–29). Here, we
suggest that similar mechanisms could also play a role in the
estimation of shape from texture. Indeed, the idea that contin-
uous variations of orientation can elicit vivid impressions of
shape has been known at least since the Op Art paintings of
Bridget Riley, and more recently numerous psychophysical and
computational studies of perception of contour textures (30–32).
Here we suggest a specific mechanism that could relate orien-
tation measurements in the human brain to the perception of
shape from orientation patterns.
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Results
A key test of this hypothesis can be performed by creating 2D
patterns with orientation structure that corresponds to a partic-
ular 3D shape. If the brain relies on orientation fields to estimate
shape, such patterns should look 3D. We generated such pat-
terns from random noise by locally “smearing” (i.e., filtering) the
noise in different directions in 2D. Examples are shown in Figs.
1–5. We start with a 3D model of a given shape. From this
model, we derive a 2D vector field containing the orientations
orthogonal to the projected surface normals of the shape. We
then use these vectors to direct line integral convolution (33) (a
2D filtering operation) to coerce the local orientation and spatial
frequency statistics of the noise to the desired values. The di-
rection of smear varies across the image so that we can vary the
dominant orientation at each location, to simulate different
surface tilts. Similarly, the amount of smear varies to control the
local anisotropy, so that we can affect the size of the peak in the
population response, thereby simulating slant. The result is a 2D
pattern consisting of “pure” orientation and spatial frequency
signals, in which the response of filter populations is similar to
those produced by a given 3D shape. Crucially, however, the
process of smearing noise along these directions is not equivalent
to physically projecting surface markings into the image. Spe-
cifically, when texture patterns are projected into the image, they
are compressed in the direction of the slant. In contrast, the
smearing process stretches features out in the orthogonal di-
rection, in a way that could never occur by projecting isotropic
surface markings into the image. Thus, the patterns stimulate
orientation populations without simulating the physics of texture

compression. The result is a compelling illusion of 3D shape,
suggesting that the brain uses orientation signals as a proxy for
image compression when estimating shape from texture. We call
this effect “shape from smear.”
To test the perception of 3D shape with such stimuli, we

presented them to subjects with two dots superimposed at ran-
dom locations. On each trial, subjects indicated which of the two
dots on the surface appeared closer to the observer in depth. For
comparison, we also asked subjects to perform the task with two
other types of images: (i) full 3D computer renderings, which
included shading, highlights, and real texture markings (render-
ing), and (ii) patterns that were also made by smearing noise, but
in which the positions of the vectors in the field were scrambled,
thus destroying the global organization (matched noise). Fig. 3
shows that performance with shape-from-smear stimuli was
substantially above chance performance, although not as good as
with a rendering, which is unsurprising given the additional cues.
If orientation measurements play a vital role in the perception

of 3D shape, then increasing the strength of these signals should
progressively increase the strength of the 3D percept. To test this
theory, we made stimuli in which we parametrically varied the
amount of smear applied to the noise (more smear produces
stronger orientation signals). We then asked subjects to adjust
the 3D orientation of “gauge figure” probes distributed across
the surface, to indicate the perceived local surface orientation
(34). Subjects could click a button during the experiment to view
a reconstruction of the reported 3D shape to compare with their
percept of the shape-from-smear stimuli. The reconstructed
shapes (Fig. 4) show that subjects clearly perceived coherent 3D
shapes in response to the stimuli. More importantly, the overall
depth of the reconstructed shapes progressively increased with

Fig. 1. Shape from smear. (A) Random noise is filtered in 2D along the red
arrows. The result appears vividly 3D, demonstrating a key role of orienta-
tion detectors in 3D shape perception. (B) Details from the regions sur-
rounding the red and green dots, with hypothetical cell population responses.
Cells (blue curves) are narrowly tuned for orientation; the population re-
sponse (red curves) is the envelope of cell responses. The red dot lies on a
region of high surface slant, creating strongly oriented texture. Cells aligned
with the dominant orientation respond more strongly, creating a peaked
population response. The green dot lies on a less slanted region with no
clear dominant orientation. The population response is flat, indicating a
fronto-parallel surface region.

Fig. 2. (A) Images generated using the shape-from-smear technique, rep-
resenting two different 3D shapes. (B) Color coded representations of the
orientation fields measured from the images in A using populations of filters
tuned to different image orientations. Hue represents dominant local ori-
entation (peak of the population response) at each point in the image. Color
saturation indicates the local anisotropy (strength of the peak in the re-
sponse), with high saturation indicating a strong peak and low saturation
(paler colors) indicating a less pronounced peak. (C) Color-coded represen-
tation of the 3D surface normals of the two shapes used to generate the
images in A. Hue indicates the surface tilt (modulo 180°) to make the color
coding comparable to the image orientations depicted in B. Color saturation
indicates surface “slant.”
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the degree of smear, indicating that it is orientation signals that
drive the estimation of 3D shape.
Arguably, the ultimate test for a direct role of orientation

detectors in shape estimation would be to modify the orientation
detectors in some way, and then measure how this modification
affects perceived shape. To do this psychophysically, we used
adaptation (Fig. 5). We created stimuli in which the noise was
smeared along the directions orthogonal to those corresponding
to a given shape. These “antishape” orientation fields themselves
yield only a weak and incoherent impression of 3D shape, as
there is no globally consistent interpretation of the orientation
signals as a surface. However, when subjects view these stimuli
for prolonged periods, the brain’s orientation detectors adapt to
the local orientation signals, changing the way they respond to
subsequently presented images. For a short period after viewing
the antishape stimulus, the neurons continue to be affected by
the adaptation. Thus, when subsequently presented with a brief
burst of low contrast unoriented noise, the adaptation makes the
noise appear locally oriented. More importantly, we find that the
adaptation also causes the noise to appear like a specific 3D
shape. This appearance occurs because slow recovery of the
neural circuits following adaptation causes the population re-
sponse to be peaked at the orientation orthogonal to the adap-
tation: that is, aligned with the true orientation field for the
shape of interest (35–37). It is this rebound effect that causes the
noise to appear 3D. An example stimulus is shown in Movie S1,
described in SI Text.
To measure this effect, we presented subjects with sequences

that repeatedly cycled between the adaptor (3 s) and the neutral
noise (0.4 s), and asked them to report the shape they perceived
during the briefly flashed noise. In one task, we asked subjects to
indicate which of two dots appeared closer in depth. As a con-
trol, we also asked subjects to perform this task in a nonadapted
state, where they perform at chance because the noise appears
completely flat. In contrast, following adaptation subjects were
substantially better than chance at determining the depths of the
predicted 3D shape, indicating that orientation adaption pro-
duces a reliable, predictable, illusory surface percept.
In a second task we asked subjects to adjust gauge figures to

report the perceived surface attitude at various locations across
the illusory surface, so that we could reconstruct the shapes that
they perceived in the adapted state. Example results are shown in
Fig. 5F. Considering that the retinal stimulation consisted of
nothing but antiorientation fields (which on their own do not
look 3D) followed by random noise (which also does not look
3D), the correspondence between the perceived shapes and the
predicted shapes is quite remarkable.

Discussion
Together, these findings suggest that cells tuned to different
orientations and spatial frequencies play a crucial role in the
early stages of visual shape estimation by providing an

approximate surrogate measure of texture compression. Such
measurements are simple, rely on known visual cortical mecha-
nisms, and do not require the visual system to make explicit
estimates of the way texture is mapped onto the surface. It
therefore seems quite likely that the visual system could use such
measurements to estimate shape from texture.
As noted above, many cues are involved in estimating 3D

shape. For some cues—most notably binocular stereopsis—the
image measurements used by the visual system to estimate depth
(i.e., binocular disparities and half-occlusions) are well-established
(38–44). However, for other cues—such as texture compression,

Fig. 3. Example stimuli and results from the dot depth-comparison task. (A) Physically based rendering of an object. (B) Shape-from-smear stimulus derived
from the same physical shape. (C) Stimulus with the same distribution of orientations as in B, but with randomly scrambled locations within the image. Nine
subjects judged which of two locations, indicated with a red and a green dot, appeared closer in depth. (D) Percent correct for each of the three stimulus
types. Error-bars depict SE.

Fig. 4. ”Gauge figure” experiment on the effects of texture anisotropy on
perceived 3D shape. (A) Stimuli with increasing anisotropy were created by
increasing the amount of smearing (filtering) applied to the noise. Subjects
adjusted gauge figures (red) to report perceived shape. (B) Perceived depths
reconstructed from responses. Dark pixels are distant, bright pixels are
near. (C) Mean surface slant of the gauge figures increases as a function of
image anisotropy. Blue curves: six individual subjects. Red curve: mean
across subjects.

Fleming et al. PNAS Early Edition | 3 of 6

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S
N
EU

RO
SC

IE
N
CE

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1114619109/-/DCSupplemental/sm01.mov
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1114619109/-/DCSupplemental/pnas.201114619SI.pdf?targetid=nameddest=STXT


shading, and perspective—the fundamental image quantities are
still unclear. To place our understanding of monocular cues on
the same foundations as stereopsis, we must establish the image
measurements that form the input to the computations. Our
findings suggest that much as disparity estimates can be derived
from filter responses, so texture compression can also be derived
from populations of cells tuned to different orientations and
spatial frequencies.
For a long time, the various monocular cues to 3D shape were

thought to be treated differently by the visual system. Intuitively,
this theory makes sense because the relationship between 2D
image properties and 3D surface properties is different for dif-
ferent cues. However, we and others have previously suggested
that measurements similar to the ones proposed here likely play
a role in the estimation of shape from shading and specular
(mirror-like) reflections (26–29). This theory suggests that at
least for the early stages of processing, texture, shading, specular
reflections, and possibly some other cues could share more in
common than previously thought. The potential importance of
this idea is that it means that despite substantial differences in
the computations required to estimate different monocular
shape cues, the basic image substrate from which the shape
estimates are derived (i.e., orientation fields) could be the same.
Nevertheless, it is important to emphasize that we are pro-

posing a theory only of the “front-end” of shape processing, not
a complete model of 3D shape reconstruction. Subsequent pro-
cessing would be required to smooth and remove noise from the
orientation fields, resolve the sign ambiguity of the tilt of the
surface, and extract higher-level shape quantities from the sur-
face estimate (convexities and concavities, principal axis struc-
ture, and so forth). Additionally, to make surface estimates from
different cues comparable with one another, and to use the esti-
mates to guide actions, the visual system must transform them into
different coordinate frames and translate between depths, surface
normals, and surface curvature estimates.
Many important details of the physiology of V1 are missing

from the model presented in Figs. 1 and 2. The filter-tuning
properties are not modeled on physiological measurements, and
we do not model static nonlinearities (12, 13) (other than full-

wave rectification), contrast normalization (45–47), nonclassic
receptive field properties (48, 49), or any lateral interactions (50)
or feedback between neighboring regions. Adding such details
improves the quality of the orientation-field measurements by
increasing sensitivity to low contrast features, and regularizing
the field (51). However, here the experiments focus specifically
on the role of orientation measurements per se: that is, whether
orientation measurements are the basic substrate in the first
place. Further experiments will be required to establish the role
of these additional properties of V1 in estimating shape from
texture and other monocular cues.
Another significant challenge is to understand how the brain

measures and exploits the systematic spatial organization of
orientation fields to infer higher-order shape properties. It is
interesting to ask what additional shape properties could be
inferred from derivatives of orientation (i.e., 2D curvatures),
which are known to play a key role in texture segmentation (52).
We find that shape-from-smear does not work well when simu-
lating a slanted plane, or when the boundary of the surface is not
visible. This finding suggests that 2D curvatures probably also
play an important role in 3D shape estimation, and that the
object boundary provides key constraints for interpreting the
orientation field, possibly by specifying the sign of tilt, which is
ambiguous when local orientation measurements are taken in
isolation. Boundaries are critically important for other 3D cues
(53, 54) and are clearly important here too, although in Fig. S1
we show example patterns with identical boundaries that none-
theless lead to clearly different 3D shape percepts. Additional
structure in the texture can also provide additional information
about shape. When textures contain regular patterns—especially
parallel lines—perspective causes convergence patterns that in-
dicate slant (8, 55). This effect is particularly important for
planar surfaces. When reconstructing 3D shape, the visual sys-
tem somehow spatially pools local orientation information across
the image although exactly how remains to be explained.

Methods
Subjects. Subjects with normal or corrected-to-normal vision were paid 8
Euros/h for participating in the experiments. At the beginning of each session,

Fig. 5. Adaptation experiments. (A) Subjects viewed antishape patterns, followed by a brief image of unoriented noise. (B) Simulated appearance of noise
after adaptation. (C) Adaptation to the antishape stimulus changes the population response from the green curve (before adaptation) to the red curve (after
adaptation). Following adaption, the noise response is peaked at the orientation orthogonal to the antishape adaptor, causing it to appear 3D. (D) Mean
percent correct (10 subjects) in the dot depth-discrimination task for each of the eight shapes. Blue bars, without adaptation; pink bars, with adaptation.
Performance was higher (P < 0.001) during adaptation for all shapes except shape 7 (P < 0.60). In a second task, subjects adjusted gauge figures to report
perceived shape of the noise stimulus in the adapted state. (E) Depth map for the true 3D shape and (F) depth maps reconstructed from responses of three
subjects (white is near, dark is far). Subjects never saw images resembling the shape, only noise and adaptation stimuli, which caused the noise to appear 3D.
(G) Scatterplot showing perceived depth as a function of predicted depth. Data are pooled across all three subjects and both tested shapes. Only probe
locations within the shape are shown.
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they were informed that they could terminate the experiment at any time
without giving any reason and still receive full compensation.

Stimuli. Stimuli were 750 × 750 pixel images created from Gaussian white
noise using a modified version of line integral convolution (LIC) (33). Before
applying LIC, the noise was blurred with a Gaussian filter, the SD of which
varied across the image in proportion to the cosine of the slant of the sur-
face. Image contrast was normalized locally after applying LIC, to ensure
approximately constant contrast across the image. The resulting oriented
pattern was cropped with the silhouette of the 3D shape. For the experi-
ment on the effects of anisotropy (Fig. 4), four gradations of anisotropy
were used, ranging from no LIC to a maximum LIC length parameter of 5
pixels. In all experiments, naive subjects viewed the stimuli on a laptop in a
darkened room, at a distance of 50–70 cm, responding via keyboard and
mouse. Stimuli subtended about 12° visual angle. Before each task, subjects
were trained using physics-based renderings of practice objects (different
from those used in the main experiments) with texture, shading, and spec-
ular cues. These images were rendered using Radiance (56).

Dot Discrimination Tasks. On each trial, subjects reported whether the red or
green dot appeared to lie on a nearer surface point. The tested locationswere
selected to minimize the correlation between image position and depth, to
ensure subjects relied on perceived shape (rather than distance from the
contour) to perform the task. Nine subjects took part in the experiment
reported in Fig. 3. These subjects were tested on 45 dot pair locations on
eight shapes. For the adaptation experiment (Fig. 5), 10 subjects were tested
with 20 dot pairs on eight shapes.

Gauge Figure Tasks. Subjects adjusted the 3D orientation of 75–110 gauge
figure (34) probes arranged in a triangulated lattice across the image, to
report the perceived surface orientation at each location. For the experi-
ment reported in Fig. 4, having adjusted all probes at least once, subjects
clicked a button to view an interactive reconstruction of the reported shape,
inferred from the probe settings using the Frankot–Chellapa algorithm (57).
Subjects could rotate the reconstruction in 3D to inspect it from multiple
directions. Subjects were encouraged to modify their settings and repeat the
reconstruction until the reported shape matched their perception of the
stimulus as closely as possible. Subjects could add figures to the lattice to
report rapid changes in shape accurately. Of the nine subjects that took part
in the dot task shown in Fig. 3, six subjects took part in the gauge figure
experiment on the effects of anisotropy, reported in Fig. 4. Before the main
task subjects received extensive training with physics-based renderings.
Subjects were explicitly taught the effects of outlier settings (i.e., when one
or a few gauge figures are set incorrectly), which can cause large errors in
the reconstructed shapes. Each subject was tested on three levels of an-
isotropy for a given shape; four different shapes were tested across partic-
ipants. Of the subjects that took part in this experiment, three participated
in the adaptation experiment (Fig. 5). In the adaptation task, no re-
construction was viewed and no additional probe figures could be added.
However, after setting all gauge locations in isolation, subjects were pre-
sented with all probes simultaneously and could readjust probes to make

them consistent with one another. In practice, subjects only made minor
adjustments at this stage.

Adaptation Tasks. In the depth-discrimination task, adaptation lasted for 25 s,
followed by a repeating sequence of 0.4 s postadaptor (noise), alternating
with 3.0-s top-up adaptation, until response was complete. To prevent retinal
after-image effects during the adaptation phase, different noise seeds for the
stimulus generation procedure were used to create 10 adaptor images, all
sharing the same orientation structure but with randomly different bright-
ness at any given pixel. These adaptors were displayed in a loop, 50 ms per
image, so that average brightness over time across the stimulus was roughly
uniform. Once subjects had seen the postadaptor, they could respond at any
time. Eight different shapes were used, and 20 point-comparisons weremade
for each shape. Following collection of depth-comparison data for the noise
stimuli in the adapted state, data were collected for the inducer stimuli (i.e.,
the antiorientation field stimuli) in a nonadapted state. Procedures for the
gauge-figure experiment were similar, although both initial and top-up
adaptation were 4.0 s long. So that subjects could maintain one fixation as
long as possible (aiding in maintaining the postadaptation shape percept),
figures were grouped into clusters and the center of each cluster was used as
a fixation point. Only two shapes were used because of the time-consuming
nature of the task, and these were alternated after each cluster of figures to
reduce fatigue. Subjects were trained to accustom them to respond to brief
bursts of faint oriented patterns. In the first round of practice, the adaptor
stimuli consisted of noise and the postadaptors consisted of low-contrast
oriented shape-from-smear stimuli derived from training shapes. A second
set of training images was similar those to those used in the real experi-
ment, with high-contrast antiorientation field adaptors, and noise for the
postadaptors.

Model Filter Populations. The orientation fields depicted in Fig. 2 were de-
rived using Simoncelli and colleagues’ Steerable Pyramid toolbox (58) for
Matlab. The filters consisted of sp1Filters steered through 24 orientations.
For each pixel in the image, the dominant orientation was defined as the
filter with the maximum response. Anisotropy was defined as the difference
between the maximum and minimum responses across filters. The local
responses were pooled (blurred) using the “blurDn” function from the
toolbox, with the default filter, and “levels” parameter set to 3 (i.e., re-
ducing the resolution by one-eighth). The mapping from anisotropy to color
saturation was nonlinear with the following form: S = A2.5 + 0.15, where S is
the saturation and A is the normalized anisotropy from the filter responses.
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