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Knowledge-based vision and simple visual machines 

DAVE CLIFF AND JASON NOBLE 

School of Cognitive and Computing Sciences, University of Sussex, Brighton BN1 9QH, UK 
(davec@cogs.susx.ac.uk) (jasonn0cogs.susx.ac.uk) 

SUMMARY 

The vast majority of work in machine vision emphasizes the representation of perceived objects and events: 
it is these internal representations that incorporate the 'knowledge' in knowledge-based vision or form the 
'models' in model-based vision. In this paper, we discuss simple machine vision systems developed by arti- 
ficial evolution rather than traditional engineering design techniques, and note that the task of identifying 
internal representations within such systems is made difficult by the lack of an operational definition of 

representation at the causal mechanistic level. Consequently, we question the nature and indeed the exis- 
tence of representations posited to be used within natural vision systems (i.e. animals). We conclude that 

representations argued for on a priori grounds by external observers of a particular vision system may well 
be illusory, and are at best place-holders for yet-to-be-identified causal mechanistic interactions. That is, 
applying the knowledge-based vision approach in the understanding of evolved systems (machines or 

animals) may well lead to theories and models that are internally consistent, computationally plausible, 
and entirely wrong. 

1. INTRODUCTION 

The vast majority of work in machine vision empha- 
sizes the representation of perceived objects and 
events: it is these internal representations that are the 

'knowledge' in knowledge-based vision and the 
'models' in model-based vision. In this paper, we 

argue that such notions of representation may have 
little use in explaining the operation of simple 
machine vision systems that have been developed by 
artificial evolution rather than through traditional 

engineering design techniques, and which are, there- 

fore, of questionable value in furthering our 

understanding of vision in animals, which are also the 

product of evolutionary processes. 
This is not to say that representations do not exist or 

are not useful: there are many potential applications of 
machine vision, of practical engineering importance, 
where significant problems are alleviated or avoided 

altogether by use of appropriate structured representa- 
tions. Examples include medical imaging, terrain 

mapping, and traffic monitoring (e.g. Taylor et al. 1986; 
Sullivan 1992). 

But the success of these engineering endeavours may 
encourage us to assume that similar representations are 
of use in explaining vision in animals. In this paper, we 

argue that such assumptions may be misleading. Yet the 

assumption that vision is fundamentally dependent on 

representations (and further assumptions involving the 
nature of those representations) is widespread. We seek 

only to highlight problems with these assumptions; 
problems which appear to stem from incautious use of 
the notion of 'representation'. We argue in particular 
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that the notion of representation as the construction of 
an internal model representing some external situation 
is probably not applicable to evolved systems. This 
paper is intentionally provocative; the arguments put 
forward below are offered for discussion, rather than 
as unquestionable truths. 

We start, in ? 2, by briefly reviewing two key influ- 
ences in the development of the view of vision as a 
process that forms representations for subsequent 
manipulation. Then, in ? 3, we discuss simple visual 
machines by (i) summarizing the process of artificial 
evolution, (ii) then reviewing work where artificial 
evolution has been used to evolve design specifications 
for visual sensorimotor controllers, and (iii) discussing 
the issue of identifying representations in these evolved 
designs. Following this, ? 4 explores further the issue of 
defining the notion of representation with sufficient 
accuracy for it to be of use in empirically determining 
whether representations are employed by a system. 
Finally, in ? 5 we explore the implications of these 
issues for the study of vision in animals, before offering 
our conclusions in ? 6. 

2. BACKGROUND 

Although it is beyond the scope of this paper to 
provide a complete historical account of the key influ- 
ences on the development of present knowledge-based 
vision techniques and practices, there are two major 
works that permeate almost all knowledge-based 
vision with which we are familiar. These are the 
Physical Symbol System Hypothesis of Newell & 
Simon (1976) and Marr's (1982) work on vision. 

? 1997 The Royal Society 165 
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(a) The Physical Symbol System hypothesis 

Newell & Simon (1976) were instrumental in estab- 

lishing the belief that systems which engage in the 

syntactic manipulation of symbols and symbol struc- 
tures have the necessary and sufficient means for 

general intelligent action. For Newell & Simon the 

symbols are arbitrary, but their interpretation and 
semantics (i.e. what the symbols represent) are socially 
agreed between observers of the symbol system. Under 
this hypothesis, intelligent action involves the receipt of 

symbols from symbol-generating sensory apparatus, 
the subsequent manipulation of those symbols (e.g. by 
using techniques derived from mathematical logic, or 

algorithmic search), in order to produce an output 
symbol or symbol structure. Both the input and the 

output have meaning conferred on them by external 

observers, rather than the meaning being intrinsic to 
the symbol (Harnad 1990). 

In the field of artificial intelligence, Newell & 
Simon's hypothesis licensed a paradigm of research 

concentrating on intelligence as the manipulation of 

symbolic representations, and on perception as the 

generation of those symbols and symbol structures. 

Specialized symbol-manipulating and logic-based 
computer programming languages such as Lisp (e.g. 
Winston & Horn 1980) and Prolog (e.g. Clocksin & 
Mellish 1984) (from 'LISt Processing' and 'PROgram- 
ming in LOGic', respectively) were developed to ease 
the creation of 'knowledge-based systems' (e.g. 
Gonzalez & Dankel 1993). In due course, undergrad- 
uate textbooks appeared that essentially treated the 

hypothesis as an axiomatic truth (e.g. Nilsson 1982; 
Charniak & McDermott 1985), paying little attention 
to criticisms of the approach (e.g. Dreyfus 1979, 1981). 

In the field of machine vision, the Physical Symbol 
System Hypothesis underwrites all research on know- 

ledge-based vision, where it is assumed that the aim of 
vision is to deliver symbolic representations (or 
'models') of the objects in a visual scene: in the words 
of Pentland (1986), to go 'from pixels to predicates'. 
This mapping from visual images to predicate-level 
representations was studied in depth by David Marr. 

(b) Marr's theories of vision 

Marr's (1982) work on vision had an enormous 

impact on practices in machine vision. He argued 
forcefully and coherently for vision to be treated as a 

data-driven, bottom-up process which delivers repre- 
sentations of three-dimensional (3D) shape from two- 
dimensional (2D) images. Marr cites studies of vision 
in humans as being influential in the development of 
his theories: in particular the mental rotation experi- 
ments of Shepard & Metzler (1971) and the parietal 
lesion data ofWarrington & Taylor (1973, 1978). 

In Shepard & Metzler's experiments, human subjects 
were shown pairs of line-drawings of simple objects, 
and were asked to discriminate whether the two 

images were projections of the same 3D object viewed 
from different poses, or images of two different but 

mirror-symmetric objects viewed from different poses. 
Their results (which remain the subject of debate) indi- 
cated that the length of time taken for subjects to 

identify that the two images differed only in pose (i.e. 
were of the same object) was linearly related to the 

degree of 3D rotation involved in the difference in 

pose. From these results (and, indeed, via introspection 
if one attempts to perform this discrimination task) it is 

compelling to conclude that the nervous system gener- 
ates some internal representation of 3D shape from one 
2D image, and then somehow manipulates it to deter- 
mine whether it can match the second 2D image. 

Warrington & Taylor's results concerned human 

patients who had suffered brain lesions in the left or 

right parietal areas. Left-lesioned patients could 

perceive the shape of an object from a wide variety of 

poses, but could offer little or no description of its 
'semantics': its name or its purpose. Meanwhile, right- 
lesioned patients could describe the semantics of an 

object, provided it was presented from a'conventional' 

pose or view-angle; if the view was somehow 'uncon- 
ventional', such as a clarinet viewed end-on, the right- 
lesioned patients would not be able to recognize the 

object, and in some cases they would actively dispute 
that the view could be one of that object. 

These results, and other considerations, led Marr to 
conclude that the main job of vision is to derive repre- 
sentations of the shapes and positions of things from 

images. Other issues (such as the illumination and 
reflectances of surfaces; their brightness and colours 
and textures; their motion) '... seemed secondary' 
(Marr 1982, p. 36). 

In Marr's approach, vision is fundamentally an 

information-processing task, attempting to recover 3D 
information hidden or implicit in the 2D image. Marr 

proposed that such information-processing tasks, or the 
devices that execute them, should be analysed using a 
three-level methodology: 

'[There are three] different levels at which an infor- 

mation-processing device must be understood before 
one can be said to have understood it completely. At 
one extreme, the top level, is the abstract computa- 
tional theory of the device, in which the performance 
of the device is characterized as a mapping from one 
kind of information to another, the abstract properties 
of this mapping are defined precisely, and its appropri- 
ateness and adequacy for the task at hand are 
demonstrated. In the center is the choice of representa- 
tion for the input and output and the algorithm to be 
used to transform one into the other. And at the other 
extreme are the details of how the algorithm and repre- 
sentation are realized physically-the detailed 

computer architecture, so to speak.' (Marr 1982, p. 24.) 
Application of this three-level methodology to the 

problem of analysing vision led Marr and his collea- 

gues to develop a theory of vision involving a pipeline 
of processes applying transformations to intermediate 

representations derived from the initial image (Marr 
1982, p. 37): the ambient optic array is sampled to 
form a 2D image, which represents intensities; the 

image is then operated on to form the 'primal sketch', 
which represents important information about the 2D 
image such as the intensity changes and their geome- 
trical distribution and organization. Following this, 
the primal sketch is processed to form the '21/2D 
sketch', which represents orientation and rough depth 
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of visible surfaces, and any contours of discontinuities 
in these quantities, still in a viewer-centred coordinate 
frame. Next, the 2/2D sketch is processed to form an 
internal'3D model', which represents shapes and their 
spatial organization in an object-centred coordinate 
frame; including information about volume. Hence, 
the 3D model is an internal reconstruction of the 
external physical world. 

Within Marr's framework, formation of the 3D 
model is the end of the visual process, and the model is 
then passed to 'higher' processes, such as updating or 
matching against a stored library of 3D shapes. Since 
the initial development and publication of these ideas, 
much knowledge-based vision has been based on this 
approach. 

Over the last decade, the increasing research activity 
in 'active vision' (e.g. Ballard 1991), where the camera 
that forms the image is under dynamic control of the 
vision system, has led to a number of criticisms being 
levelled at Marr's approach (e.g. Nelson 1991; Horswill 
1993). 

3. SIMPLE VISUAL MACHINES 

Traditional modular engineering design techniques, 
based on dividing a given problem into a number of 
sub-problems such that each sub-problem can be 
resolved using a separate computational module, 
require intermediate representations for inter-module 
communication. The task of each computational 
module is to receive input data in a pre-specified repre- 
sentation, apply some required transformation, and 

pass on the result of the transformation as the output 
of the module. The Marr pipeline is a fine example of 
this approach: to go from image to 3D model in one 
step is unrealistically ambitious; instead, a sequence of 

operations is applied to the image, generating succes- 
sive internal representations, leading to the final 
desired representation. Given that such techniques are 
well-established in engineering design and manifestly 
successful in a number of potentially very problematic 
task domains, it is difficult to conceive of alternatives. 

However, recent work in adaptive behaviour (see the 
journal Adaptive Behavior, published by MIT Press, or 
the proceedings of the biennial conference on simula- 
tion of adaptive behaviour (Meyer & Wilson 1991; 
Meyer et al. 1993; Cliff et al. 1994; Maes et al. 1996)) has 

employed artificial evolution (i.e. genetic algorithms) as an 
alternative to traditional design techniques. In these 
studies, simple visual machines (either real robots or 
simulated agents existing within virtual realities) have 
been evolved to perform a variety of behaviours 
mediated by vision or other distal sensing (e.g. sonar, 
infrared (IR) proximity detectors). Typically, the 
sensorimotor 'controllers' of these machines are parallel 
distributed processing systems: commonly, artificial 
neural networks simulated on a fast serial computer, 
but also in at least one case (Thompson 1995) real 

parallel asynchronous analogue electronic circuits. In 
these studies there is no precommitment to any particular 
representational scheme: the desired behaviour is speci- 
fied, but there is minimal specification of the 
mechanism required to generate that behaviour. In the 

following three sections we give (i) a brief introduction 
to artificial evolution, (ii) some examples of artificially 
evolved simple visual machines, and (iii) then discuss 
further the issue of representation in these systems. 

(a) Artificial evolution 

Artificial evolution encompasses a number of compu- 
tational optimization or satisficing techniques which 
draw inspiration from biological evolution. Only the 
simplest form of 'genetic algorithm' will be explained 
here, with specific reference to developing sensorimotor 
controllers for simple visual machines; for further 
details, see, for example Goldberg (1989). 

In order to apply a genetic algorithm it is necessary 
to first formulate an encoding scheme and afitnessfunction. 
The encoding scheme is a method of encoding the 
designs of sensorimotor 'controller' mechanisms (and 
possibly also the sensor and motor morphology) as 
strings of characters from a finite alphabet, referred to 
as 'genomes'. The fitness function takes the spatiotem- 
poral pattern of behaviour of a given individual 
controller (decoded from a given genome) over one or 
more trials, and assigns that individual a scalar value 
which is referred to as its fitness, such that desirable 
behaviours are awarded higher fitness than less desir- 
able behaviours. 

The system is initialized by creating a 'population' of 
individuals, each with a randomly generated genome. 
The system then enters a loop: all individuals are 
tested and assigned a fitness score. Individuals with 
higher fitness values have a greater chance of being 
selected for breeding. In breeding, the genomes of two 
parents are mixed in a similar manner to recombinant 
DNA transfer in sexual reproduction, and extra varia- 
tion is introduced by 'mutations' where characters at 
randomly-chosen positions on the genotype are 
randomly 'flipped' to some other character from the 
genome-alphabet. Sufficiently many new individuals 
are bred to replace the old population, which is then 
discarded. Following this, the new population is tested 
to assign a fitness to each individual. In each cycle of 
testing the population and breeding a replacement is 
referred to as one generation, and generally a genetic 
algorithm runs for a pre-set number of generations, or 
until the best or average fitness in the population 
reaches a plateau. 

If parameters such as the mutation rate, fitness func- 
tion, and selection pressure are all set correctly, then 
typically fitness increases over a number of generations: 
at the end of the experiment, the best individual 
genome encodes for a useful design. The final evolved 
design can then be implemented and analysed to deter- 
mine how it functions. 

In evolving sensorimotor controllers, a variety of 
possible 'building blocks' can be employed: for a 
comprehensive review and critique, see Mataric & 
Cliff (1995). In many of the systems discussed in the 
next section, continuous-time recurrent neural 
networks (CTRNNs) are employed: these are artificial 
neural networks composed of 'neurone' units with 
specified time-constants giving each neurone an 
intrinsic dynamics. The primary reasons for employing 
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such neural networks are (i) their sigmoidal activation 
function allows them to approximate a very wide class 
of mathematical functions; (ii) their recurrent connec- 
tions allow them to maintain their internal state; and 
(iii) there is a theoretical result which suggests that, 
appropriately configured, they can approximate a very 
large class of continuous dynamical systems with arbi- 
trary accuracy. (See Beer (1995b) for further details.) 

The evolved simple visual machines described below 
are all both embodied and situated within an environ- 
ment: the emphasis is on the evolution of entire 
sensory-motor coordination mechanisms or processing 
pathways, constrained only in terms of the fitness of 
the observable behaviour of the agent. This contrasts 
with many artificial neural network models, where the 
constraint is that (either by learning or evolution) the 
network is capable of making appropriate mappings 
from a given input representation to a given output 
representation: modelling entire sensorimotor path- 
ways has a significant impact on the semantics of any 
representations within the system, see Cliff (1991, 1995). 

(b) Examples 

As far as we are aware, the first case of an evolved 
artificial agent using distal sensing was the simulation 
study by Cliff et al. (1993a) (see also Cliff et al. 1993b). 
In this work, CTRNNs were evolved, along with the 
specification of the angle of acceptance and physical 
arrangement of the visual sensors on the robot body. 
Only two simulated photodetectors (i.e. two 'pixels') 
were used, but the robot was successfully evolved to 
visually navigate its way to the centre of a simple 
arena: a closed circular room with a white floor and 
ceiling, and a black wall. 

Subsequently, Harvey et al. (1994) evolved CTRNNs 
for real-time control of a robot camera head moving in 
another visually simple environment. The head was 
mounted with touch sensors and a low-bandwidth 
charge-coupled device video camera. Networks with 
three circular receptive fields sampling the input video 
stream were evolved, with the position and radius of 
the receptive fields under genetic control. The networks 
were selected on the basis of their ability to approach a 
triangular visual target, and avoid a rectangular 
target: a simple visual categorization task. 

Floreano & Mondada (1994) evolved feed-forward 
neural networks for a simple robot with an eight-pixel 
input 'image' formed by the inputs of photodetector 
cells placed around the perimeter of its body (an 
upright cylinder of height 4 cm and radius 3 cm). 
These network controllers were evolved to guide the 
robot through a maze-like environment, attempting to 
maximize the distance travelled without colliding with 
the walls of the maze. 

Thompson (1995) developed a genetic encoding for 
electronic circuits composed of digital logic gates, 
which were asynchronous and recurrently connected, 
so that the analogue properties of the circuits could be 

exploited by evolution. The distal sensors were ultra- 
sonic sonars, rather than visual; economical circuits 
were evolved to allow the robot to guide itself to the 
centre of a rectangular enclosure using sonar responses. 

Jakobi (1994) and Jakobi et al. (1995) reported the 
development of a simulator for the same type of eight- 
pixel robot used by Floreana & Mondada. They 
evolved CTRNNs in simulation which could then be 
successfully transferred to the real robot, generating 
behaviours which guided the robot towards a light 
source, while avoiding collisions with obstacles (a task 
similar to that studied by Franceschini et al. (1992)). 

Cliff & Miller (1996) evolved CTRNNs for simu- 
lated 2D agents using projective geometry to give a 
'flatland vision' approximation to visual sensing, with 
up to 14 pixels in the sensory input vector. Separate 
populations of 'predator' and 'prey' agents were 
evolved. The predators were selected for on the basis of 
their ability to approach, chase, or capture individuals 
from the prey population; and prey individuals were 
selected for their ability to avoid being captured by the 
co-evolving predators. 

Finally, Beer (1996) evolved CTRNNs for simulated 
agents with distal sensing using either five or seven 
directional proximity detectors: the agents had to 
perform what Beer refers to as 'minimally cognitive 
tasks', i.e. behaviours that would usually be assumed 
to require some form of internal representation or cate- 
gorization, such as orienting to objects of one particular 
shape, distinguishing between different shapes, and 
pointing a'hand' at certain shapes. 

(c) The search for internal representations 

All of the evolved simple visual machines discussed 
above perform tasks that are trivial by the standards 
of most machine vision research. There is little or no 
doubt that these tasks could all be solved using a 
knowledge-based approach, involving a sequence of 
transformations on appropriate internal representa- 
tions. Yet the significance of these machines is not the 
complexity of the problems they solve or the behaviours 
they exhibit, but rather the way in which their design 
was produced. In contrast to traditional engineering 
design techniques, the use of an evolutionary approach 
with minimal pre-commitments concerning internal 
architecture or representations makes the question 
'What types of representation do these machines use?' 
an empirical one. That is, we must examine or analyse 
the evolved designs, generate hypotheses about the 
representations employed, and test those hypotheses in 
an appropriate manner. Possibly, the evolutionary 
process will have resulted in a knowledge-based or 
model-based solution, in which case appropriate repre- 
sentations will be found; or possibly not. 

And it is on this issue that the true significance of 
these simple visual machines is revealed: as far as we 
are aware, no analysis of the evolved systems described 
above has identified the use of representations or 
knowledge in the conventional (physical symbol 
system) sense. That is, none of these systems operate by 
forming a representation of the external environment, 
and then reasoning with or acting upon that represen- 
tation (e.g. by comparison with, or reference to, in-built 
or acquired representations). This is in spite of the fact 
that a machine-vision engineer, conversant in the 
methods of knowledge-based vision, could (trivially) 
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develop an appropriate computational theory for any of 
these tasks, identify appropriate representations and 
transformation algorithms to act on them, and specify 
an implementation in some physical hardware. Evolu- 
tion, working with primitive building blocks to 
construct parallel distributed processing architectures 
for these tasks, just does not do it the knowledge-based 
way. 

This is not to say that the operation of these systems 
is a mystery. Full causal mechanistic explanations of the 
evolved systems can be offered via analysis, typically 
using the tools and language of dynamical systems 
theory. (For further discussion of the rationale for and 
use of dynamical systems theory as an alternative to 
computational/representational accounts of cognition, 
see Smithers (1992, 1995), Thelen & Smith (1994), Port 
& van Gelder (1995) and Beer (1995a).) Causal 
mechanistic explanations are also the ultimate aim of 
much work in analysing evolved biological systems 
(Horridge 1977). 

For example, the two-pixel controllers evolved to 
guide a simulated robot to the centre of a circular 
room (Cliffet al. 1993), have been analysed both quali- 
tatively (Cliff et al. 1997) and quantitatively (Husbands 
et al. 1995). The behaviour of the robots can be 
explained and predicted by reference to the dynamics 
of the agent-environment interaction. The CTRRNs 
can maintain their internal state, and the state-space 
of the networks has certain identifiable attractors 
which correspond to (or are correlated with) certain 
situations or relationships between the agent and the 
environment, such as the robot being at the centre of 
the room. There is a closed sensory-motor loop, in the 
sense that the changing state of the network is affected 
by the current and past inputs to the sensors, which are 
determined by the path the robot takes through the 
environment, which is in turn determined by the chan- 
ging state of the network. When the robot is released 
into the environment at a particular orientation and 
location, the sensors receive certain light values, which 
can perturb the state-space trajectory of the CTRNN, 
which affects the motor outputs, possibly moving the 
robot, and hence altering the light values subsequently 
sampled by the sensors. As this state-space trajectory 
unfolds, the robot can be observed to be moving 
toward the centre of the circular room, and staying 
there once it arrives, but there is nothing within the 
CTRNN that can usefully be described as a representa- 
tion. There is nothing, for example, corresponding to a 
stored version of a 'goal state' such as the sensory inputs 
received when at the centre of the room, or a method 
for determining, on the basis of comparison with 
stored values, whether the robot should turn left or 
right, move forward or reverse, or stop. 

Of course, it is famously difficult to prove a negative, 
and it is beyond the scope of this paper to give a full 
illustrative example analysis of one of the evolved 
systems listed above, but a simple thought experiment, 
adapted from Braitenberg (1984), will serve as a useful 
illustration. Consider the design for a simple visually- 
guided wheeled robot with a body plan symmetric 
about its longitudinal axis. At the front, on the long 
axis, is a single castor-wheel. At the rear left and rear 

right, there are identically sized wheels, attached to 
independent electrical motors with colinear axles. The 
robots are differential-steer devices (by altering the 
angular velocities of the two rear wheels, the robots 
can travel in arcs of varying radii, either clockwise or 
anticlockwise). At the front-left and front-right of the 
robot there is a forward-pointing light sensor. A wire 
leads from each sensor into a black box where some 
control circuitry and batteries are hidden. Wires lead 
from the black box to the two drive motors. Two such 
robots, marked A and B, are placed in a dark room 
with no obstacles except for a floor-mounted light- 
bulb. When the light-bulb is switched on, robot A 
(which was initially not pointing toward the light- 
bulb) turns to face the bulb and accelerates toward it, 
only stopping when it hits it. Meanwhile, robot B 
(which was initially facing the light-bulb) turns away 
from the bulb, moving fast at first but then more 
slowly until it comes gently to a halt. If we were now 
to ask a knowledge-based vision engineer to theorize 
about what might be hidden inside the black boxes of 
robots A and B, s/he would, presumably, in following 
Marr's three levels of analysis, first formulate a compu- 
tational theory for each robot, characterizing the 

performance of each as a mapping from one kind of 
information to another, and thereby establishing a link 
from visual information received at the sensors to infor- 
mation concerning appropriate motor outputs. The 

engineer would then determine the representations for 

input and outputs, and any intermediate representa- 
tions, and the algorithm(s) for transforming between 

them; finally s/he would address issues of how the 

representations and algorithms can be realized physi- 
cally. Quite probably, the solution will involve 

measuring the signals received from the left and right 
sensors, comparing them (or their difference) to some 
reference values, and issuing appropriate motor 
commands on the outcome of the comparison. Given 

enough time and money, we have no doubt that such 
controllers could be built and would operate success- 

fully. But, upon opening the black-box controllers on 
A and B, there is a surprise lurking. The black box in 
A simply has a wire connecting the left-hand sensor to 
the right-hand motor, via an appropriate amplifier, and 
a wire connecting the right-hand sensor to the left- 
hand motor, again via an amplifier. Similarly, the 
black box in B has nothing but an amplifier sitting 
between a wire joining the left sensor to the left motor, 
and another amplifier between the right sensor and the 

right motor. All the amplifiers do is ensure that the 

signals coming from the light sensors are magnified 
sufficiently to drive the motors: they provide a 
constant of proportionality, but essentially each motor 
is driven by a direct connection from one sensor. 

(Readers familiar with Braitenberg (1984) will recog- 
nize A as the contralaterally connectedVehicle 3a, and B 
as the ipsilaterally connected Vehicle 3b.) This is all it 
takes to generate the observed behaviours. And the 

key issue here is that, despite the knowledge-based 
vision engineer being able to specify representation- 
manipulating controllers, the actual controllers for 
these two vehicle robots use no representations. Their 
observable behaviour is a result of the dynamics of 
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interaction between the agent (robot) and the environ- 
ment (floor of a dark room and a light-bulb). A 
complete account of the behaviour of either agent 
requires treating the agent and environment as 
coupled (through a sensory motor loop); and there is 
no useful definition of 'representation' that allows any 
variable with these coupled systems to be described as 
a representation to the agent of any external object, situa- 
tion, or event. Of course, this argument rests on the 
definition of 'representation', a point we return to 
below. 

Just as the Braitenberg vehicles use no representa- 
tions, so we argue that the artificially evolved simple 
visual machines discussed previously use no representa- 
tions. Now it should be noted that, in the majority of 
cases, the researchers responsible for the evolved 
simple visual machines are highly doubtful as to 
whether traditional notions of representation serve any 
useful purpose in explaining cognitive systems (artifi- 
cial or natural). Their work is part of a wider 
movement within the Adaptive Behaviour research 
community that questions or rejects traditional 
symbolic notions of representation (for overviews, see 
for example, Brooks 1991a,b). 

For this reason, it is pertinent to ask whether (and 
with all due respect to the researchers involved) repre- 
sentation has not been identified in these machines, 
because the researchers had a vested interest in not 
finding any. Put another way: if evolution did produce 
a design that used internal representations, how would 
we recognize it? This requires a firm definition of 
representation: preferably an operational definition 
(i.e. the specification of a procedure by which an inde- 
pendent third party could establish whether 
representations are being used or not). It is this issue of 
attempting to usefully define 'representation' that we 
turn to in the next section: analysis may identify 
causal interactions, or high order correlations, but 
surely a representation is more than just an interaction 
or a correlation? 

4. WHAT IS IT LIKE TO BE A 
REPRESENTATION? 

Harvey (1992, 1996) argues that the only meaningful 
sense in which internal representations can be discussed 
in cognitive systems is to recognize that the verb 'repre- 
sent' should be treated as a four-place predicate: that P 
is used by Qto represent R to S. For example, the char- 
acter string 'mast' is used by writers of English to 
represent 'long upright pole on which the sails of a 
ship are carried' to English readers. But people writing 
in Serbo-Croat use exactly the same character string to 
represent 'ointment, fat, or lard' to Serbo-Croat 
readers: as Harvey emphasizes, Qand S are necessary 
to allow for the same P representing different Rs to 
different P-using communities. So, to talk of represen- 
tations in vision (and anywhere else), we need to 
determine who or what are filling the roles of Q and S. 
We, as external observers, can safely talk of patterns of 
activity in the nervous system as representing external 
objects or events to us: Qand S are us humans engaging 
in a discourse where it is socially agreed that the neural 

activity patterns (P) represent some external object(s) 
or event(s) (R). But to talk about the patterns being 
representations used by the agent (robot or animal) 
implies that an agent-within-the-agent is somehow 
'reading' these representations: if P is some representa- 
tional pattern of activity on a defined set of neurones, 
and we say that P represents some external object or 
event R, then we should also be able to specify Q and 
S. If we want to define Q as the collection of neurones 
over which the pattern P is detected, then what is S? 
Some other part of the agent's neural system, excluding 
the neurones in Q? If that is the case, then it is not the 
agent as a whole that is using the representations: the 
agent becomes decomposed into a community of sub- 
agents, forming, using, and exchanging representations. 
Of course, systems designed by traditional engineering 
techniques can be described this way. But applying this 
style of description to an evolved agent requires care: 
Harvey's reasoning implies that, unless used carefully, 
explanation of an agent's neural mechanisms in terms 
of representations used 'by the agent' can hide an 
implicit homunculus: the (sub-)agent that reads the 
representation. And with this homunculus comes the 
manifest danger of infinite regress. 

One means by which a representation can be distin- 
guished from a correlation is by noting that Harvey's 
argument implies that representations are essentially 
linguistic (i.e. they form an interlingua between repre- 
sentation-using agents or entities). A representation 
should therefore be normative: it should at least offer 
the opportunity to misrepresent; to more or less 
correctly capture some external state of affairs. In the 
simple visual machines discussed above, there is no 
representation because there is no possibility of mis- 
representation. We, the external observers, can point to 
the activity patterns and refer to them as representa- 
tions in explaining the system, and be right or wrong 
to varying degrees about what those patterns represent. 
But to talk of the agent using the representations is to 
confuse patterns of activity which represent something 
else, and patterns of activity which actually constitute 
the agent's perceptual or experiential world, a point 
forcefully made by Brooks & Stein: 

'There is an argument that certain components of 
stimulus-response systems are "symbolic". For example, 
if a particular neuron fires-or a particular wire carries 
a positive voltage-whenever something red is visible, 
that neuron-or wire-may be said to "represent" the 
presence of something red. While this argument may 
be perfectly reasonable as an observer's explanation of 
the system, it should not be mistaken for an explanation 
of what the agent in question believes. In particular, the 
positive voltage on the wire does not represent the 
presence of red to the agent; the positive voltage is the 
presence of something red as far as the robot is 
concerned.' (Brooks & Stein (1994), original emphasis.) 

It could be argued that the simple systems studied so 
far are merely demonstrations that 'knowledge' and 
'structured representations' are not required for such 

simple tasks, but will be necessary for more complex 
tasks. We disagree. 

Rather, we argue that 'knowledge' and its 'represen- 
tation' may be nothing more than constructs from folk- 
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psychology. We maintain that these terms are best 
viewed as place-holders for yet-to-be-identified causal 
mechanistic interactions: philosophically, this is a posi- 
tion of eliminative materialism such as that first 
proposed by Churchland (1979, 1989) and subsequently 
argued for by Smithers (1992). Such a position also has 
clear parallels with the work of Braitenberg (1984), who 
demonstrated that mentalistic notions such as 'fear' and 
'aggression' are easily imputed by external observers of 
his Vehicle series of simple visual machines, two of 
which were introduced in the thought experiment 
discussed earlier. Briefly, Braitenberg's argument is 
that human observers ascribe mental states to the vehi- 
cles when describing their actions (e.g. 'robot A 
approaches light-bulbs aggressively' or 'robot B is frigh- 
tened of light and turns away from it'), yet these 
mentalistic terms have no place in explanations of the 
causal mechanisms involved in the generation of those 
behaviours. 

In sum, our position is that 'knowledge' and its 
'representation' are useful notions at levels of explana- 
tion higher than the causally mechanistic; and in 
particular are valuable when analysis has yet to 
uncover the causal mechanisms involved in the visual 
processing mechanisms of interest. But that when an 
evolved system is fully analysed at the causal mechan- 
istic level, there is no useful place for these terms. 

For this reason, we find it hard to agree with state- 
ments such as that from the synopsis of this Discussion 
Meeting:'. . . visual systems acquire and use knowledge 
in many ways. It is encoded into ... visual systems by 
evolution and perhaps still more by individual experi- 
ence.' For evolved simple visual machines, although it 
is useful for us to talk of 'knowledge encoded into 
visual systems' before we analyse them, once the analysis 
is complete and we have a causal mechanistic explana- 
tion of the system, there are only the interaction 

dynamics: there is nothing we can point to (or wave 
our hands over, for fans of 'distributed representations') 
as the knowledge in the system. It is as elusive as the 
Ghost In The Machine. 

5. IS THE SAME TRUE OF ANIMALS? 

Given the existence of evolved artificial systems 
which exhibit visually guided behaviours yet employ 
no representations, it is compelling to consider 
whether similar systems exist in the natural world. 
Although there is no animal for which a complete 
analysis (comparable to the analyses of the artificial 
systems enumerated above) is available, we discuss 
below some suggestive results from phylogenetically 
diverse animals. 

The visual systems of insects, especially the dipteran 
flies, have been subjected to extensive studies. Examples 
include fruit-flies such as Drosophila melanogaster (e.g. 
Wolf & Heisenberg 1991), hover-flies such as Syritta 
pipiens (e.g. Collett & Land 1975a), and house-flies 
such as Musca domestica (e.g. Reichardt & Guo 1986) or 
Fannia canicularis (e.g. Land & Collett 1974). 

These are, probably, the natural systems for which it 
is most realistic to attempt a complete causal mechan- 
istic explanation of the couplings between (visual) 

sensors and motors. Hence, if vision by definition 
involves the formation and manipulation of representa- 
tions, these are also the animals in which we are most 
likely to be able to identify the neural realization of 
those representations. 

From the reflex loops governing take-off and landing 
responses or optomotor flight stabilization, through the 
servo systems underlying the chasing or tracking of one 
fly by another, to the use of visual landmarks for navi- 
gation, there exist published accounts of information- 
processing or control-theoretic analyses, extensive 
behavioural studies, and relatively rich neurological 
data from identifiable individual visual interneurones. 

Yet to cast these analyses within a 'model-based' or 
'knowledge-based' framework would be, surely, to 
reduce the notions of 'model' or 'knowledge' to vacuity. 
Consider conspecific-chasing behaviours: for a full 
causal mechanistic analysis, it is necessary to acknow- 
ledge that much of the 'knowledge' about chasing flies 
of the same species is 'represented' in the entire design of 
the animal. From the anatomy and optics of the eye, 
through the neural dynamics of the relevant sensori- 
motor pathways, to the kinematics of the flight motor 
system, and indeed the aerodynamics of the whole fly: 
a full account will treat the fly as a subsystem within 
the coupled dynamical system formed by the interac- 
tion of the agent and its environment. (Here the agent 
is the chasing fly, and the environment is everything 
else, the space through which the fly is chasing its 
target, and any relevant objects in that space; the most 
relevant of which is the target object, which will usually 
be a conspecific fly but might be many other things, 
such as flies of another species, distant birds, or peas 
thrown by nearby biologists (e.g. Collett & Land 
1975b).) Presumably the 'knowledge' of important 
system parameters (e.g. the fly's body shape, its 
moments of inertia and coefficients of friction for both 
angular and linear acceleration, etc.) is somehow 
'represented' in the neural processes responsible for 
sensory-motor coordination. But such loosely-sketched 
representations often prove elusive when we consider 
how the representations might be identified within the 
system. 

Again, we do not deny that external observers can 
derive elegant and useful computational-level analyses 
of the task faced by the chasing fly, and that these 
analyses may involve variables which represent to us 
(the observers) cogent factors in the environment. This 
is our privilege as external observers. The fly, unable to 
adopt the perspective of an external observer, has no 
access to the representations or knowledge that we 
humans might invoke when explaining the fly-chasing 
system to other humans. To talk of knowledge or repre- 
sentations being encoded or compiled by evolution into 
the body design of the fly is to homuncularize either the 
fly, the evolutionary process, or both. 

To reiterate our argument: a priori, one could 
construct a knowledge-based vision system which deli- 
vers representations appropriate to the control of 
chasing behaviour, but instead it appears that real flies 
are a collection of neat tricks that exploit the simplici- 
ties and regularities of the environment and the 
required behaviour, thereby circumventing the need 
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for a full representation-manipulating vision system. 
That is, it appears that flies do not actually use represen- 
tations, even though they could. A possible rejoinder to 
this is to agree that flies use no representations, but to 

argue that more complex animals will have to form and 

manipulate representations in virtue of the complexities 
of either their environments, the behaviours required of 

them, or both. We have some sympathy for this position 
(because it admits that there are no representations in 

flies), but there are studies of animals more complex 
than flies which, again, we take as an indication that 
structured knowledge-based representations may not 
be involved: we briefly review some of these below. 

Consider the numerous studies of so-called 'time-to- 
contact' behaviours, where the time remaining before 

impact of a seeing animal with some object or surface 

plays an important role in exhibiting a desired beha- 
viour (often because the behaviour has to be executed 
or initiated some time before the moment of contact). A 
clear example is Lee & Reddish's (1981) study of wing- 
folding in the gannet, Sula bassana: hunting gannets dive 
into the sea, from considerable cruising altitudes, to 
catch fish. The gannet's speed when it hits the water 

(at near-vertical angles) can be as high as 24 ms-1. To 
avoid injury, the gannet folds its wings into its body 
before impact with the sea surface. But when the 

wings are folded the gannet has greatly reduced aero- 

dynamic control: it is essentially ballistic and hence it 
cannot make any final adjustments to its flight path, 
and so is unable to compensate for any last-moment 
evasive moves by the fish. In simple but extreme 
terms, if it folds too late, the gannet breaks its wings, 
and if it folds too early, the gannet goes hungry. 
Clearly, the ability to accurately judge the time-to- 
contact with the sea-surface allows the gannet to 
commence folding at a time tfold seconds before impact, 
where tfold is also the time taken to fold the wings from a 
steering position to a safe streamlined pose. 

Now it is certainly not impossible that the gannet's 
nervous system is forming and manipulating appropri- 
ately structured internal representations of the external 
3D environment, as would be required of a model- 
based account. But there is a persuasive argument that 
this is not the case: Lee (1980a) argued that a para- 
meter T, being the quotient of the rate of expansion of 
a point on the retinal image and the distance of that 

point from the pole of the optic flow-field, gives an 
accurate measure of time-to-contact of the surface. 
The T measure is particularly easy to derive if there is 
a log-polar sampling of the retinal image (e.g. Wilson 

1983). Thus, although time-to-contact could be derived 

using a knowledge-based approach, the available 
evidence is best accounted for by reference to a simple 
metric, realizable in image-space (i.e. by a succession 
of retinotopically projected neural sheets), being 
employed. 

Now, once again, defenders of the knowledge-based 
or representational viewpoint may want to argue that 

wing-folding is sufficiently important to the survival of 
gannets that evolution has 'encoded' the relevant 
knowledge and representations into the gannet visual 
system. Presumably the 'knowledge' concerns the 
utility of T as an indicator of time-to-contact, and the 

ease with which it can be derived from an appropriately 
sampled optic flow-field. But, in the absence of clear 
definitions of Harvey's Q and S for the diving gannet, 
to talk of representations within the system is to 
homuncularize either the gannet or the evolutionary 
process. Alternatively, it might be conceded that the 
exploitation of regularities in the gannet's visual 
environment (i.e. the numerator and denominator in 
r) does not constitute a representation-using system, 
and we need to look at more complex animals or 
agent-environment interactions. Yet there is a growing 
body of comparable data from studies of human 
subjects engaging in a variety of visually mediated 
behaviours which are acquired and of little evolu- 
tionary significance (in the sense that the behaviours 
are unlikely to have played a part in selection pressures 
that shaped the human visual sensorimotor system). In 
tasks such as catching tennis balls (Lee 1980b), striking 
the take-off board on a long-jump track (Lee et al. 
1982), braking or steering automobiles (Lee & 
Lishman 1977), and leaping up to punch falling volley- 
balls (Lee et al. 1983), there is evidence that the use of 
simple features or metrics of the flow field, including T, 
can account for the fast reaction times involved, in a 
far more parsimonious manner than any account 
involving the formation and manipulation of struc- 
tured representations. The similarities between these 
results and Gibson's (1979) influential arguments for 
'direct perception' are manifest. 

Even in cases where the reaction times are not an 
issue, manipulation of monolithic structured represen- 
tations is questionable in several cases where sufficient 
data is available to form the basis for alternative 
accounts. We briefly summarize here two exemplar 
bodies of work: computational neuroethological 
studies of visually mediated behaviours in frogs and 
toads, and recent machine vision work on using high 
order statistical correlations in image space for a 
variety of tasks. 

The first involves an ongoing series of experiments 
using computer simulations, behavioural studies, and 
invasive neuroscience in which a team led by Michael 
Arbib have developed sophisticated computational 
models of the neural visuomotor mechanisms under- 
lying predation in frogs and toads (e.g. Arbib 1987; 
Corbacho & Arbib 1995; Cervantes-Perez 1995). In 
brief, behavioural studies (e.g. Lock & Collett 1979) 
have explored the responses of these animals when 
faced with the task of moving to within snapping 
distance of an initially distant food item (the 'prey'), 
given the presence of a 'barrier'; often either a paling 
fence or a wide, deep chasm. Computational models, 
drawing heavily on the available neuroscience data 
(e.g. Ewert 1987), are used to generate action sequences 
for 'virtual frogs' situated within simulated prey- 
barrier environments. The behaviour of the virtual 
frogs can then be compared to the real animals, 
thereby suggesting additional refinements to the model 
or further neuroscience experiments. For the purposes 
of this discussion, the key indication from this body of 
work is that separate neural pathways are maintained 
for processing 'prey' and 'barrier' information, and 
that any conflicts between the desire to approach prey 
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and the need to avoid the barrier are resolved very late 
in the neural pathway, close to the initiation of motor 
schemas. This is in marked contrast with what would 
be expected from a knowledge-based approach: 
presumably this would require the frog to form an 
internal representation of the external environment, 
including the prey, the barrier(s), and possibly also the 
frog itself; some reasoning or planning mechanism(s) 
would then manipulate this representation to deter- 
mine one or more possible paths to the prey, one of 
which would be selected for execution. Once again, 
this is an internally consistent way of doing things 
and, in principle, a machine could be constructed 
along these lines. But, unfortunately, all the available 
evidence indicates that frog and toad visual systems 
are not built the knowledge-based way. 

The second example comes from machine vision 
studies where tasks that might otherwise be achieved 
using 3D model-based techniques, including the repre- 
sentation of 3D shape and volume, are solved using 
approaches which employ multivariate statistics in the 
2D space of the image. In summary, these methods 
involve applying statistical techniques such as principal 
components analysis (PCA) to vectors of points system- 
atically taken from significant contours in the image. 
The statistical techniques give the primary modes of 
variation of these contour-points in image space and, 
crucially, these primary modes of variation are often 
in close correspondence with variations in the 2D 
projection of a 3D object as the pose of the object rela- 
tive to the viewer is altered. That is, the 2D image 
statistics capture regularities in the projected images of 
3D objects in such a way that, to a fair approximation, 
the 2D statistical model can be used to perform tasks 
that might otherwise be assumed a priori to require 
internal representations of 3D shape, volume, etc. 
Examples of work in this area include Baumberg 
(1995), Baumberg & Hogg (1996), Lanitis et al. (1995) 
Again, this is not to say that a 3D model-based 
approach would not be able to perform the task: the 
work of Baumberg (1995), using image-space statistical 
techniques to track movie sequences of walking people, 
complements Hogg's (1983) earlier work on using 
knowledge-based vision to perform much the same 
task. But, given the ease with which artificial neural 
networks can approximate multivariate statistical tech- 
niques such as PCA, it is tempting to ask whether real 
neural networks perhaps employ high order correla- 
tions in 2D image space to circumvent the complexity 
of manipulating internal representations of 3D objects. 
We see this as a provocative question which can only be 
addressed by further research, but statistical arguments 
have been presented as powerful alternatives to repre- 
sentational accounts of lower order visual processes 
(e.g. Srinivasan et al. 1982). 

The examples we have given here, from studies of 
insects, amphibians, birds, and humans, are by no 
means conclusive proof of our arguments. However, 
we believe that they are significant and persuasive 
because, although all of the visually mediated tasks 
involved could be performed using a knowledge-based 
approach, the available evidence indicates that they are 
not. In situations where an a priori consideration of the 

task from a knowledge-based vision perspective might 
lead an external observer or designer to posit the need 
for structured internal representations, reconstructing 
the external world, the best a posteriori explanation 
may be significantly different, employing either no 
representations, or representations very different from 
those assumed to be useful on the basis of successful 
engineering practices in machine vision. 

6. SUMMARY: VISION WITHOUT 
KNOWLEDGE? 

It is easy to conjecture the need for knowledge and its 
representation in vision either when introspecting, as 
is seen in the experiments of Shepard & Metzler; or 
when applying divide-and-conquer approaches to the 
problem of designing a computational vision system, 
as witnessed in the Marr pipeline; or when dealing 
with the incomplete data offered by neuroscience, as 
happens when Marr's three-level methodology is 
applied to analysing animal vision systems. 

But preliminary experience with analysing evolved 
artificial visual systems indicates that, possibly, the 
utility of descriptions and explanations involving 
knowledge and its representation recede as analysis 
progresses. A priori hypotheses involving the represen- 
tation and manipulation or mobilization of knowledge 
are undoubtedly useful for motivating discussion and 
experimentation, but as more is made known about 
the mechanisms involved, so the places where the 
knowledge might be represented or encoded-in recede, 
and when the analysis is complete, knowledge and its 
representation are hard to identify in meaningful 
terms, just as 'aggression' and 'fear' play no part in 
explaining Braitenberg's vehicles once the lid of the 
black box is opened. 

Our intention in this paper has simply been to high- 
light the problems that arise when the language of 
knowledge-based vision is applied to the analysis of 
evolved machines, either animals or artificial agents. 
In these systems, where there has been no pre-commit- 
ment to any representational scheme, the presence or 
absence of knowledge and its representation become 
empirical issues. To pursue the matter further requires 
at least a consensus on what is meant by 'knowledge' 
and 'representation'; and better still an operational 
definition of representation, such that replicable and 
hence falsifiable experiments can be proposed and 
conducted. 

It is certainly difficult to define the notions of know- 
ledge and its representation sufficiently accurately to 
provide these operational definitions. But until such 
operational definitions are agreed upon, arguments 
that the structured representation of knowledge plays 
no part in evolved visual systems are unsound. Yet, 
surely, by the same reasoning, arguments that the 
structured representation of knowledge does play a part 
in evolved visual systems are also unsound. We might be 
happy to agree that representations have a part to play 
in explaining vision in animals and other evolved 
machines, if only we could agree on what a representa- 
tion is, and on who or what is using those 
representations. 
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