
I
n February 1665 the great Dutch
physicist Christiaan Huygens, inven-
tor of the pendulum clock, was con-

Þned to his room by a minor illness.
One day, with nothing better to do, he
stared aimlessly at two clocks he had
recently built, which were hanging side
by side. Suddenly he noticed something
odd: the two pendulums were swinging
in perfect synchrony.

He watched them for hours, yet they
never broke step. Then he tried disturb-
ing themÑwithin half an hour they re-
gained synchrony. Huygens suspected
that the clocks must somehow be inßu-
encing each other, perhaps through tiny
air movements or imperceptible vibra-
tions in their common support. Sure
enough, when he moved them to oppo-
site sides of the room, the clocks grad-
ually fell out of step, one losing Þve sec-
onds a day relative to the other.

HuygensÕs fortuitous observation ini-
tiated an entire subbranch of mathe-
matics: the theory of coupled oscilla-
tors. Coupled oscillators can be found
throughout the natural world, but they

are especially conspicuous in living
things: pacemaker cells in the heart; in-
sulin-secreting cells in the pancreas; and
neural networks in the brain and spinal
cord that control such rhythmic behav-
iors as breathing, running and chewing.
Indeed, not all the oscillators need be
conÞned to the same organism: consid-
er crickets that chirp in unison and con-
gregations of synchronously ßashing
Þreßies [see ÒSynchronous Fireßies,Ó by
John and Elisabeth Buck; SCIENTIFIC

AMERICAN, May 1976].
Since about 1960, mathematical bi-

ologists have been studying simpliÞed
models of coupled oscillators that re-
tain the essence of their biological proto-
types. During the past few years, they
have made rapid progress, thanks to
breakthroughs in computers and com-
puter graphics, collaborations with ex-
perimentalists who are open to theory,
ideas borrowed from physics and new
developments in mathematics itself.

To understand how coupled oscilla-
tors work together, one must Þrst un-
derstand how one oscillator works by
itself. An oscillator is any system that
executes periodic behavior. A swinging
pendulum, for example, returns to the
same point in space at regular inter-
vals; furthermore, its velocity also rises
and falls with (clockwork) regularity.

Instead of just considering an oscil-
latorÕs behavior over time, mathemati-
cians are interested in its motion through
phase space. Phase space is an abstract
space whose coordinates describe the
state of the system. The motion of a
pendulum in phase space, for instance,
would be drawn by releasing the pen-
dulum at various heights and then plot-
ting its position and velocity. These tra-
jectories in phase space turn out to be
closed curves, because the pendulum,
like any other oscillator, repeats the
same motions over and over again.

A simple pendulum consisting of a

weight at the end of a string can take
any of an inÞnite number of closed
paths through phase space, depending
on the height from which it is released.
Biological systems (and clock pendu-
lums), in contrast, tend to have not only
a characteristic period but also a char-
acteristic amplitude. They trace a par-
ticular path through phase space, and
if some perturbation jolts them out of
their accustomed rhythm they soon re-
turn to their former path. If someone
startles you, say, by shouting, ÒBoo!Ó,
your heart may start pounding but soon
relaxes to its normal behavior.

Oscillators that have a standard wave-
form and amplitude to which they re-
turn after small perturbations are known
as limit-cycle oscillators. They incorpo-
rate a dissipative mechanism to damp
oscillations that grow too large and a
source of energy to pump up those that
become too small.

A
single oscillator traces out a sim-
ple path in phase space. When
two or more oscillators are cou-

pled, however, the range of possible be-
haviors becomes much more complex.
The equations governing their behavior
tend to become intractable. Each oscil-
lator may be coupled only to a few im-
mediate neighborsÑas are the neuro-
muscular oscillators in the small intes-
tineÑor it could be coupled to all the
oscillators in an enormous communi-
ty. The situation mathematicians Þnd
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THOUSANDS OF FIREFLIES ßash in syn-
chrony in this time exposure of a noctur-
nal mating display. Each insect has its
own rhythm, but the sight of its neigh-
borsÕ lights brings that rhythm into har-
mony with those around it. Such cou-
plings among oscillators are at the heart
of a wide variety of natural phenomena.
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easiest to describe arises when each os-
cillator aÝects all the others in the sys-
tem and the force of the coupling in-
creases with the phase diÝerence be-
tween the oscillators. In this case, the
interaction between two oscillators that
are moving in synchrony is minimal.

Indeed, synchrony is the most famil-
iar mode of organization for coupled
oscillators. One of the most spectacu-
lar examples of this kind of coupling
can be seen along the tidal rivers of Ma-
laysia, Thailand and New Guinea, where
thousands of male Þreßies gather in
trees at night and ßash on and oÝ in
unison in an attempt to attract the fe-
males that cruise overhead. When the
males arrive at dusk, their ßickerings are
uncoordinated. As the night deepens,
pockets of synchrony begin to emerge
and grow. Eventually whole trees pul-
sate in a silent, hypnotic concert that
continues for hours.

Curiously, even though the ÞreßiesÕ
display demonstrates coupled oscilla-
tion on a grand scale, the details of this
behavior have long resisted mathemat-
ical analysis. Fireßies are a paradigm of
a Òpulse coupledÓ oscillator system: they
interact only when one sees the sudden
ßash of another and shifts its rhythm
accordingly. Pulse coupling is common
in biologyÑconsider crickets chirping
or neurons communicating via electri-
cal spikes called action potentialsÑbut
the impulsive character of the coupling
has rarely been included in mathemati-
cal models. Pulse coupling is awkward

to handle mathematically because it in-
troduces discontinuous behavior into
an otherwise continuous model and so
stymies most of the standard mathe-
matical techniques.

Recently one of us (Strogatz), along
with Renato E. Mirollo of Boston Col-
lege, created an idealized mathematical
model of Þreßies and other pulse-cou-
pled oscillator systems. We proved that
under certain circumstances, oscillators
started at diÝerent times will always be-
come synchronized [see ÒElectronic Fire-
ßies,Ó by Wayne Garver and Frank Moss,
ÒThe Amateur Scientist,Ó page 128].

Our work was inspired by an earlier
study by Charles S. Peskin of New York
University. In 1975 Peskin proposed a
highly schematic model of the heartÕs
natural pacemaker, a cluster of about
10,000 cells called the sinoatrial node.
He hoped to answer the question of how
these cells synchronize their individual
electrical rhythms to generate a normal
heartbeat.

Peskin modeled the pacemaker as a
large number of identical oscillators,
each coupled equally strongly to all the
others. Each oscillator is based on an
electrical circuit consisting of a capaci-
tor in parallel with a resistor. A constant
input current causes the voltage across
the capacitor to increase steadily. As the
voltage rises, the amount of current pas-
sing through the resistor increases, and
so the rate of increase slows down.
When the voltage reaches a threshold,
the capacitor discharges, and the volt-

age drops instantly to zeroÑthis pat-
tern mimics the Þring of a pacemaker
cell and its subsequent return to base-
line. Then the voltage starts rising again,
and the cycle begins anew.

A distinctive feature of PeskinÕs mod-
el is its physiologically plausible form
of pulse coupling. Each oscillator aÝects
the others only when it Þres. It kicks
their voltage up by a Þxed amount; if
any cellÕs voltage exceeds the thresh-
old, it Þres immediately. With these rules
in place, Peskin stated two provocative
conjectures: Þrst, the system would al-
ways eventually become synchronized;
second, it would synchronize even if
the oscillators were not quite identical.

When he tried to prove his conjec-
tures, Peskin ran into technical road-
blocks. There were no established math-
ematical procedures for handling arbi-
trarily large systems of oscillators. So
he backed oÝ and focused on the sim-
plest possible case: two identical oscilla-
tors. Even here the mathematics was
thorny. He restricted the problem fur-
ther by allowing only inÞnitesimal kicks
and inÞnitesimal leakage through the
resistor. Now the problem became man-
ageableÑfor this special case, he proved
his Þrst conjecture.

PeskinÕs proof relies on an idea intro-
duced by Henri Poincar�, a virtuoso
French mathematician who lived in the
early 1900s. Poincar�Õs concept is the
mathematical equivalent of strobo-
scopic photography. Take two identical
pulse-coupled oscillators, A and B, and
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PENDULUM CLOCKS placed near each other soon become
synchronized (above) by tiny coupling forces transmitted
through the air or by vibrations in the wall to which they are

attached. Dutch physicist Christiaan Huygens invented the
pendulum clock and was the Þrst to observe this phenom-
enon, inaugurating the study of coupled oscillators.
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chart their evolution by taking a snap-
shot every time A Þres.

What does the series of snapshots
look like? A has just Þred, so it always
appears at zero voltage. The voltage of
B, in contrast, changes from one snap-
shot to the next. By solving his circuit
equations, Peskin found an explicit but
messy formula for the change in BÕs
voltage between snapshots. The formu-
la revealed that if the voltage is less
than a certain critical value, it will de-
crease until it reaches zero, whereas if 
it is larger, it will increase. In either case,
B will eventually end up synchronized
with A.

There is one exception: if BÕs volt-
age is precisely equal to the critical volt-
age, then it can be driven neither up nor
down and so stays poised at critical-
ity. The oscillators Þre repeatedly about
half a cycle out of phase from each
other. But this equilibrium is unstable,
like a pencil balancing on its point. The
slightest nudge tips the system toward
synchrony.

Despite PeskinÕs successful analysis
of the two-oscillator case, the case of
an arbitrary number of oscillators elud-
ed proof for about 15 years. In 1989
Strogatz learned of PeskinÕs work in a
book on biological oscillators by Arthur
T. Winfree of the University of Arizona.
To gain intuition about the behavior of
PeskinÕs model, Strogatz wrote a com-
puter program to simulate it for any
number of identical oscillators, for any
kick size and for any amount of leakage.
The results were unambiguous: the sys-
tem always ended up Þring in unison.

Excited by the computer results, Stro-
gatz discussed the problem with Mirollo.
They reviewed PeskinÕs proof of the two-
oscillator case and noticed that it could
be clariÞed by using a more abstract
model for the individual oscillators. The
key feature of the model turned out to
be the slowing upward curve of voltage
(or its equivalent) as it rose toward the
Þring threshold. Other characteristics
were unimportant.

Mirollo and Strogatz proved that their
generalized system always becomes
synchronized, for any number of oscil-
lators and for almost all initial condi-
tions. The proof is based on the notion
of ÒabsorptionÓÑa shorthand for the
idea that if one oscillator kicks another
over threshold, they will remain syn-
chronized forever. They have identical
dynamics, after all, and are identically
coupled to all the others. The two were
able to show that a sequence of absorp-
tions eventually locks all the oscillators
together.

Although synchrony is the simplest
state for coupled identical oscillators,

it is not inevitable. Indeed, coupled os-
cillators often fail to synchronize. The
explanation is a phenomenon known
as symmetry breaking, in which a single
symmetric stateÑsuch as synchronyÑ
is replaced by several less symmetric
states that together embody the origi-
nal symmetry. Coupled oscillators are
a rich source of symmetry breaking.

S
ynchrony is the most obvious case
of a general eÝect called phase
locking: many oscillators tracing

out the same pattern but not necessari-
ly in step. When two identical oscillators
are coupled, there are exactly two pos-
sibilities: synchrony, a phase diÝerence 
of zero, and antisynchrony, a phase dif-
ference of one half. For example, when 
a kangaroo hops across the Australian
outback, its powerful hind legs oscillate
periodically, and both hit the ground at
the same instant. When a human runs
after the kangaroo, meanwhile, his legs
hit the ground alternately. If the network
has more than two oscillators, the range
of possibilities increases. In 1985 one of
us (Stewart), in collaboration with Mar-
tin Golubitsky of the University of Hous-
ton, developed a mathematical classiÞ-
cation of the patterns of networks of
coupled oscillators, following earlier
work by James C. Alexander of the Uni-
versity of Maryland and Giles Auchmu-
ty of the University of Houston.

The classiÞcation arises from group
theory (which deals with symmetries in
a collection of objects) combined with
Hopf bifurcation (a generalized descrip-
tion of how oscillators Òswitch onÓ). In
1942 Eberhard Hopf established a gen-

eral description of the onset of oscilla-
tion. He started by considering systems
that have a rest point in phase space (a
steady state) and seeing what happened
when one approximated their motion
near that point by a simple linear func-
tion. Equations describing certain sys-
tems behave in a peculiar fashion as 
the system is driven away from its rest
point. Instead of either returning slow-
ly to equilibrium or moving rapidly out-
ward into instability, they oscillate. The
point at which this transition takes place
is termed a bifurcation because the sys-
temÕs behavior splits into two branch-
esÑan unstable rest state coexists with
a stable oscillation. Hopf proved that
systems whose linearized form under-
goes this type of bifurcation are limit-
cycle oscillators: they have a preferred
waveform and amplitude. Stewart and
Golubitsky showed that HopfÕs idea can
be extended to systems of coupled iden-
tical oscillators, whose states undergo
bifurcations to produce standard pat-
terns of phase locking.

For example, three identical oscillators
coupled in a ring can be phase-locked
in four basic patterns. All oscillators can
move synchronously; successive oscilla-
tors around the ring can move so that
their phases diÝer by one third; two os-
cillators can move synchronously while
the third moves in an unrelated manner
(except that it oscillates with the same
period as the others); and two oscilla-
tors may be moving half a phase out of
step, while the third oscillates twice as
rapidly as its neighbors.

The strange half-period oscillations
that occur in the fourth pattern were a
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POSITION
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PERIODIC MOTION can be represented
in terms of a time series or a phase por-
trait. The phase portrait combines posi-
tion and velocity, thus showing the entire
range of states that a system can dis-
play. Any system that undergoes peri-
odic behavior, no matter how complex,
will eventually trace out a closed curve
in phase space.
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surprise at Þrst, even to Stewart and
Golubitsky, but in fact the pattern oc-
curs in real life. A person using a walk-
ing stick moves in just this manner :
right leg, stick, left leg, stick, repeat. The
third oscillator is, in a sense, driven by
the combined eÝects of the other two:
every time one of them hits a peak, it
gives the third a push. Because the Þrst
two oscillators are precisely antisynchro-
nous, the third oscillator peaks twice
while the others each peak once.

The theory of symmetrical Hopf bi-
furcation makes it possible to classify
the patterns of phase locking for many
different networks of coupled oscilla-
tors. Indeed, Stewart, in collaboration
with James J. Collins, a biomedical en-
gineer at Boston University, has been
investigating the striking analogies be-
tween these patterns of phase locking
and the symmetries of animal gaits,
such as the trot, pace and gallop. 

Quadruped gaits closely resemble the
natural patterns of four-oscillator sys-
tems. When a rabbit bounds, for exam-
ple, it moves its front legs together,
then its back legs. There is a phase dif-
ference of zero between the two front
legs and of one half between the front
and back legs. The pace of a giraÝe is
similar, but the front and rear legs on
each side are the ones that move to-
gether. When a horse trots, the locking
occurs in diagonal fashion. An ambling
elephant lifts each foot in turn, with
phase diÝerences of one quarter at each
stage. And young gazelles complete the
symmetry group with the pronk, a four-
legged leap in which all legs move in
synchrony [see ÒMathematical Recrea-
tions,Ó by Ian Stewart; SCIENTIFIC AMER-
ICAN, April 1991]. 

More recently, Stewart and Collins
have extended their analysis to the
hexapod motion of insects. The tripod
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SYMMETRY BREAKING governs the ways
that coupled oscillators can behave. Syn-
chrony is the most symmetrical single
state, but as the strength of the cou-
pling between oscillators changes, other
states may appear. Two oscillators can
couple in either synchronous or antisyn-
chronous fashion (a, b), corresponding
roughly to the bipedal locomotion of a
kangaroo or a person. Three oscillators
can couple in four ways: synchrony (c),
each one third of a cycle out of phase
with the others (d ), two synchronous
and one with an unrelated phase (e) or
in the peculiar rhythm of two oscilla-
tors antisynchronous and the third run-
ning twice as fast ( f ). This pattern is also
the gait of a person walking slowly with
the aid of a stick.

a TWO IN SYNCHRONY

c  THREE IN SYNCHRONY

d  THREE ONE THIRD OUT OF PHASE

e  TWO IN SYNCHRONY AND ONE WILD

f  TWO OUT OF SYNCHRONY AND ONE TWICE AS FAST

b  TWO OUT OF SYNCHRONY
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gait of a cockroach is a very stable pat-
tern in a ring of six oscillators. A trian-
gle of legs moves in synchrony: front
and back left and middle right; then
the other three legs are lifted with a
phase diÝerence of one half.

Why do gaits resemble the natural
patterns of coupled oscillators in this
way? The mechanical design of animal
limbs is unlikely to be the primary rea-
son. Limbs are not passive mechanical
oscillators but rather complex systems
of bone and muscle controlled by equal-
ly complicated nerve assemblies. The
most likely source of this concordance
between nature and mathematics is in
the architecture of the circuits in the
nervous system that control locomotion.
Biologists have long hypothesized the
existence of networks of coupled neu-
rons they call central pattern genera-
tors, but the hypothesis has always been
controversial. Nevertheless, neurons of-
ten act as oscillators, and so, if central
pattern generators exist, it is reason-
able to expect their dynamics to resem-
ble those of an oscillator network.

Moreover, symmetry analysis solves
a signiÞcant problem in the central-pat-
tern generator hypothesis. Most ani-
mals employ several gaitsÑhorses walk,
trot, canter and gallopÑand biologists
have often assumed that each gait re-
quires a separate pattern generator.
Symmetry breaking, however, implies
that the same central-pattern generator
circuit can produce all of an animalÕs
gaits. Only the strength of the couplings
among neural oscillators need vary.

S
o far our analysis has been lim-
ited to collections of oscillators
that are all strictly identical. That

idealization is convenient mathemat-
ically, but it ignores the diversity that
is always present in biology. In any real
population, some oscillators will always
be inherently faster or slower. The be-
havior of communities of oscillators
whose members have diÝering frequen-

cies depends on the strength of the
coupling among them. If their inter-
actions are too weak, the oscillators
will be unable to achieve synchrony. The
result is incoherence, a cacophony of
oscillations. Even if started in unison
the oscillators will gradually drift out
of phase, as did HuygensÕs pendulum
clocks when placed at opposite ends of
the room.

Colonies of the bioluminescent algae
Gonyaulax demonstrate just this kind
of desynchronization. J. Woodland Hast-
ings and his colleagues at Harvard Uni-
versity have found that if a tank full of
Gonyaulax is kept in constant dim light
in a laboratory, it exhibits a circadian
glow rhythm with a period close to 23
hours. As time goes by, the waveform
broadens, and this rhythm gradually
damps out. It appears that the individual
cells continue to oscillate, but they drift
out of phase because of diÝerences in
their natural frequencies. The glow of
the algae themselves does not maintain
synchrony in the absence of light from
the sun.

In other oscillator communities the
coupling is strong enough to overcome
the inevitable diÝerences in natural fre-
quency. Polymath Norbert Wiener point-
ed out in the late 1950s that such os-
cillator communities are ubiquitous in
biology and indeed in all of nature.
Wiener tried to develop a mathematical
model of collections of oscillators, but
his approach has not turned out to be
fruitful. The theoretical breakthrough
came in 1966, when Winfree, then a
graduate student at Princeton Univer-
sity, began exploring the behavior of
large populations of limit-cycle oscil-
lators. He used an inspired combina-
tion of computer simulations, mathe-
matical analysis and experiments on an
array of 71 electrically coupled neon-
tube oscillators.

Winfree simpliÞed the problem tre-
mendously by pointing out that if oscil-
lators are weakly coupled, they remain

close to their limit cycles at all times.
This insight allowed him to ignore var-
iations in amplitude and to consider
only their variations in phase. To incor-
porate diÝerences among the oscillators,
Winfree made a model that captured the
essence of an oscillator community by
assuming that their natural frequencies
are distributed according to a narrow
probability function and that in other
respects the oscillators are identical. In
a Þnal and crucial simpliÞcation, he as-
sumed that each oscillator is inßuenced
only by the collective rhythm produced
by all the others. In the case of Þreßies,
for example, this would mean that each
Þreßy responds to the collective ßash
of the whole population rather than to
any individual Þreßy.

To visualize WinfreeÕs model, imag-
ine a swarm of dots running around a 
circle. The dots represent the phases of
the oscillators, and the circle represents
their common limit cycle. If the oscilla-
tors were independent, all the dots would
eventually disperse over the circle, and
the collective rhythm would decay to
zero. Incoherence reigns. A simple rule
for interaction among oscillators can re-
store coherence, however: if an oscilla-
tor is ahead of the group, it slows down
a bit ; if it is behind, it speeds up.

In some cases, this corrective cou-
pling can overcome the diÝerences in
natural frequency; in others (such as
that of Gonyaulax), it cannot. Winfree
found that the systemÕs behavior de-
pends on the width of the frequency
distribution. If the spread of frequencies
is large compared with the coupling, the
system always lapses into incoherence,
just as if it were not coupled at all. As
the spread decreases below a critical
value, part of the system spontaneous-
ly ÒfreezesÓ into synchrony.

Synchronization emerges coopera-
tively. If a few oscillators happen to
synchronize, their combined, coherent
signal rises above the background din,
exerting a stronger eÝect on the others.
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a b c d

NONIDENTICAL OSCILLATORS may start out in phase with one
another (as shown on circle a, in which 360 degrees mark one
oscillation), but they lose coherence as the faster ones move

ahead, and the slower ones fall behind (b, c). A simple cou-
pling force that speeds up slower oscillators and slows down
faster ones, however, can keep them all in phase (d ).
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When additional oscillators are pulled
into the synchronized nucleus, they am-
plify its signal. This positive feedback
leads to an accelerating outbreak of syn-
chrony. Some oscillators nonetheless re-
main unsynchronized because their fre-
quencies are too far from the value at
which the others have synchronized for
the coupling to pull them in.

In developing his description, Win-
free discovered an unexpected link be-
tween biology and physics. He saw that
mutual synchronization is strikingly
analogous to a phase transition such 
as the freezing of water or the sponta-
neous magnetization of a ferromagnet.
The width of the oscillatorsÕ frequency
distribution plays the same role as does
temperature, and the alignment of oscil-
lator phases in time is the counterpart

of an alignment of molecules or elec-
tronic spins in space.

The analogy to phase transitions
opened a new chapter in statistical me-
chanics, the study of systems composed
of enormous numbers of interacting
subunits. In 1975 Yoshiki Kuramoto of
Kyoto University presented an elegant
reformulation of WinfreeÕs model. Ku-
ramotoÕs model has a simpler mathe-
matical structure that allows it to be an-
alyzed in great detail. Recently Strogatz,
along with Mirollo and Paul C. Matthews
of the University of Cambridge, found
an unexpected connection between Ku-
ramotoÕs model and Landau damping,
a puzzling phenomenon that arises in
plasma physics when electrostatic waves
propagate through a highly rareÞed me-
dium. The connection emerged when we

GONYAULAX luminescent algae (top) change the intensity of their glow according
to an internal clock that is aÝected by light. If they are kept in constant dim light,
the timing of the glow becomes less precise because the coupling among individu-
al organisms is insuÛcient to keep them in sync (bottom ).
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studied the decay to incoherence in os-
cillator communities in which the fre-
quency distribution is too broad to
support synchrony. The loss of coher-
ence, it turns out, is governed by the
same mathematical mechanism as that
controlling the decay of waves in such
ÒcollisionlessÓ plasmas.

T
he theory of coupled oscillators
has come a long way since Huy-
gens noticed the spontaneous

synchronization of pendulum clocks.
Synchronization, apparently a very nat-
ural kind of behavior, turns out to be
both surprising and interesting. It is 
a problem to understand, which is not
an obvious consequence of symmetry.
Mathematicians have turned to the the-
ory of symmetry breaking to classify
the general patterns that arise when
identical, ostensibly symmetric oscilla-
tors are coupled. Thus, a mathematical
discipline that has its most visible roots
in particle physics appears to govern
the leap of a gazelle and the ambling of
an elephant. Meanwhile techniques bor-
rowed from statistical mechanics illumi-
nate the behavior of entire populations
of oscillators. It seems amazing that
there should be a link between the vio-
lent world of plasmas, where atoms rou-
tinely have their electrons stripped oÝ,
and the peaceful world of biological os-
cillators, where Þreßies pulse silent-
ly along a riverbank. Yet there is a co-
herent mathematical thread that leads
from the simple pendulum to spatial
patterns, waves, chaos and phase tran-
sitions. Such is the power of mathemat-
ics to reveal the hidden unity of nature.
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