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What is cognition? Contemporary orthodoxy maintains that it is com-
putation: the mind is a special kind of computer, and cognitive pro-
cesses are internal manipulations of symbolic representations. This
broad idea has dominated the philosophy and the rhetoric of cognitive
science—and even, to a large extent, its practice—ever since the field
emerged from the post-war cybernetic melee. It has provided the gen-
eral framework for much of the most well-developed and insightful
research into the nature of mental operation. Yet, over the last decade
or more, the computational vision has lost much of its lustre.
Although work within it continues, a variety of difficulties and limita-
tions have become increasingly apparent, and researchers throughout
cognitive science have been casting about for other ways to understand
cognition. As a result, under the broad umbrella of cognitive science,
there are now many research programs which, one way or another,
stand opposed to the traditional computational approach; these
include ' connectionism, neurocomputational approaches, ecological
psychology, situated robotics, and artificial life.

Is any alternative conception of the nature of cognition emerging
from these programs? More generally, is there any real alternative to
understanding cognition as computation? One of the most persuasive
considerations favoring the computational conception has been the so-
called What-else-could-it-be? argument. As Allen Newell put it,

although a small chance exists that we will see a new paradigm
emerge for mind, it seems unlikely to me. Basically, there do not
seem to be any viable alternatives. This position is not surprising.
In lots of sciences we end up where there are no major alternatives
around to the particular theories we have. Then, all the interesting
kinds of scientific action occur inside the major view. It seems to
me that we are getting rather close to that situation with respect to
the computational theory of mind. (1990, p. 5)
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The central claim of this paper is that there is indeed a viable alterna-
tive. Rather than computers, cognitive systems may be dynamical sys-
tems; rather than computation, cognitive processes may be state-space
evolution within these very different kinds of systems. If correct, this
effectively disarms the What-else-could-it-be? argument, and advances
the broader project of evaluating competing hypotheses concerning
the nature of cognition. Note that these aims do not require establish-
ing that the dynamical hypothesis is z7ue. All they require is describing
and motivating it sufficiently to show that it does in fact amount to a
genuine alternative conception of cognition—one that is viable as a
serious and fruitful avenue of research, as far as we can now tell.

A helpful way to introduce the dynamical conception is via a some-
what unusual detour through the early industrial revolution in
England, circa 1788.

1 The governing problem

A central engineering challenge for the industrial revolution was to
find a source of power that was reliable, smooth and uniform. In the
latter half of the eighteenth century, this had become the problem of
translating the oscillating action of a steam piston into the rotating
motion of a flywheel. In one of history’s most significant technological
achievements, Scottish engineer James Watt designed and patented a
gearing system for a rotary steam engine. Steam power was no longer
limited to pumping; it could be applied to any machinery that could
be driven by a flywheel. The cotton industry was particularly eager to
replace its horses and water wheels with the new engines. However,
high-quality spinning and weaving required that the source of power
be highly uniform—that is, there should be little or no variation in the
speed of rotation of the main driving flywheel. This is a problem, since
the speed of the flywheel is affected both by the pressure of the steam
from the boilers, and by the total workload being placed on the
engine, and these are constantly fluctuating.

It was clear enough how the speed of the flywheel had to be regu-
lated. In the pipe carrying steam from the boiler to the piston there
was a throttle valve. The pressure in the piston chamber, and so the
speed of the wheel, could be adjusted by turning this valve. To keep
engine speed uniform the throttle valve would have to be turned, at
just the right time and by just the right amount, to cope with changes
in boiler pressure and workload. How was this 1o be done? The most
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obvious solution was to employ a human mechanic to turn the valve as
necessary. However, this had several drawbacks: mecbanics required
wages, and were often unable to react sufficiently swiftly an.d accu-
rately. The industrial revolution thus confronted a second engineering
challenge: to design a device that could automatically adjust the thro.t-
tle valve so as to maintain uniform flywheel speed despite changes in
steam pressure or workload. Such a device is known as a governor.

Difficult engineering problems are often best app.roached by break-
ing the overall task down into simpler subtasks, contmuing the process
of decomposition until one can see how to construct devices that can
directly implement the various component tasks. In the case of the
governing problem, the relevant decomposition seems .clear. A change
need only be made to the throttle valve if the flywheel is not currently
running at the correct speed. Therefore, the first subtask must be to
measure the speed of the wheel, and the second must be to calculate
whether there is any discrepancy between the desired speed and the
actual speed. If there is no discrepancy, no change is needed, for the
moment at least. If there is a discrepancy, then the governor must
determine by how much the throttle valve should be adjusted to bring
the speed of the wheel to the desired level. This will depend, of course,
on the current steam pressure, and so the governor must measure the
current steam pressure and then on that basis calculate how much to
adjust the valve. Finally, the valve must actually be adjusted. This over-
all sequence of subtasks must be carried out often enough to keep the
speed of the wheel sufficiently close to the desired speed.

A device able to solve the governing problem would have to carry
out these various subtasks repeatedly in the correct order. So we could
think of it as obeying the following algorithm:

(1) Begin:
(i) Measure the speed of the flywheel;
(ii) Compare the actual speed against the desired speed.
(2) 1If there is no discrepancy, return to step 13 otherwise:
(i) Measure the current steam pressure;
(i) Calculate the desired alteration in steam pressure;
(iii) Calculate the necessary throttle-valve adjustment;
(iv) Make the throttle-valve adjustment.

(3) Return to step 1.
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There must be some physical device capable of actually carrying out
each of these subtasks. So we can think of the governor as incorporat-
ing a tachometer (for measuring the speed of the wheel), a device for
calculating the speed discrepancy, a steam-pressure meter, a device for
calculating the throttle-valve adjustment, a throttle-valve adjuster, and
some kind of central executive to handle sequencing of operations.
This conceptual breakdown of the governing task may even corre-
spond to the governor’s actual composition; that is, each subtask may
be implemented by a distinct physical component. The engineering
problem would then reduce to the (presumably much simpler) one of
constructing the various components and hooking them together so
that the whole system functions in a coherent fashion.

Now, as obvious as this approach now seems, it was not the way the
governing problem was actually solved. For one thing, it presupposes
devices that can swiftly perform some fairly complex calculations; and,
for another, it presupposes transducers that can transform physical
conditions into symbolic arguments for these calculations, and then
transform the results back into physical adjustments. Both are well
beyond the capabilities of anything available in the eighteenth century.

The real solution, adapted by Watt from existing windmill technol-
ogy, was much more direct and elegant. It consisted of a vertical spin-
dle geared into the main flywheel so that it rotated at a speed directly
dependent upon that of the flywheel itself (see figure 16.1). Attached
to the spindle by hinges were two arms, and on the end of each arm
was a metal ball. As the spindle turned, centrifugal force drove the balls
outwards and hence upwards. By a clever arrangement, this arm
motion was linked directly to the throttle valve. The result was that, as
the speed of the main wheel increased, the arms rose, closing the valve
and restricting the flow of steam; as the speed decreased, the arms fell,
opening the valve and allowing more steam to flow. The engine
adopted a constant speed, maintained with extraordinary swiftness and
smoothness in the presence of large fluctuations in pressure and load.

It is worth emphasizing how remarkably well the centrifugal gover-
nor actually performed its task. This device was not just an engineer-
ing hack employed because computer technology was unavailable. In
1858, Scientific American claimed that an American variant of the basic
centrifugal governor, “if not absolutely perfect in its action, is so nearly
50, as to leave in our opinion nothing further to be desired”.
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Figure 16.1: The Watt centrifugal governor for controlling the speed of a
steam engine. (Drawing adapted from Farey 1827.)

But why should any of this be of any interest in the philosophy of
cognitive science? The answer may become apparent as we examine a
little more closely some of the differences between the two governors.

2 Two kinds of governor

The two governors described in the previous section are patently dif-
ferent in construction, yet they both solve the same control problem,
and we can assume (for purposes of discussion) that they both solve it
sufficiently well. Does it follow that, deep down, they are really the
same kind of device, despite superficial differences in construction? Or
are they deeply different, despite their similarity in overt performance?

It is naturdl to think of the first governor as a computational device;
one which, as part of its operation computes some result—namely, the
desired change in throttle-valve angle. Closer attention reveals that
there is in fact a complex group of properties working together here, a
group whose elements are worth teasing apart.
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Perhaps the most central of the computational governor’s distinc-
tive properties is its dependence on representation. Every aspect of its
operation, as outlined above, deals with representations in some man-
ner or other. The very first thing it does is measure its environment
(the engine) to obtain a symbolic representation of current engine
speed. It then performs a series of operations on this and other repre-
sentations, resulting in an output representation, a symbolic specifica-
tion of the alteration to be made in the throttle valve. This final
representation then causes the valve-adjusting mechanism to make the
corresponding change.

This is why it is appropriately described as computational (now in a
somewhat narrower sense): it literally computes the desired change in
the throttle valve by manipulating symbols according to a schedule of
rules. Those symbols, in the context of the device and its situation,
have meaning; and the success of the governor in its task is owed to its
symbol manipulations being in systematic accord with those mean-
ings. The manipulations are discrete operations which necessarily
occur in a determinate sequence; for example, the appropriate change
in the throttle valve can only be calculated after the discrepancy, if any,
between the current and desired speeds has been calculated. At the
highest level, the whole device operates in a cyclic fashion: it first mea-
sures (or “perceives”) its environment; it then internally computes an
appropriate change in the throttle valve; and then it effects this change
(“acts” on its environment). After the change has been made and given
time to affect engine speed, the governor runs through whole the cycle
again and again, repeatedly.

Finally, notice that the governor is homuncular in construction.
Homuncularity is a special kind of breakdown of a system into parts or
components, each of which is responsible for a particular subrtask.
Homuncular components are ones that, like departments or commit-
tees within bureaucracies, interact by communicating (that is, by
passing meaningful messages). Obviously, the representational and
computational nature of the governor is essential to its homuncular
construction: if the system as a whole did not operate by manipulating
representations, it would not be possible for its components to interact
by communicating.

These properties—representation, computation, sequential and
cyclic operation, and homuncularity—form a mutually interdepen-
dent cluster; a device with any of them will typically possess the others.
Now, the Watt centrifugal governor does not exhibit this cluster of
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properties as a whole, nor any of them individually. As obvious as this
may seem, it deserves some discussion and argument, since it often
meets resistance, and a few useful insights can be gained along the way.

There is a common intuition to the effect that the angle at which
the arms are swinging represents the current speed of the engine, and
that it is because the quantities are related in this way that the governor
ts able to control that speed. This intuition is misleading, however: the
concept of representation gets no real explanatory grip in this situa-
tion. Serious explanations of how governors work—ranging from a
mid-nineteenth-century mechanic’s manual for constructing them,
through Maxwell’s original dynamical analysis (see below), to contem-
porary mathematical treatments—never in fact traffic in representa-
tional talk. Why not?

The heart of the matter is this. At all times, the speed of the engine
influences the angle of the arms. Yet the arms are directly connected to
the throttle valve, which controls the flow of steam to the engine.
Thus, at all times, the angle of the arms is also influencing the speed of
the engine. The quantities are thus simultaneously determining the
shapes of each other’s changes. There is nothing mysterious about this
relationship; it is quite amenable to mathematical description. How-
ever, it is much more subtle and complex than the standard concept of
representation—very roughly, one thing “standing in” for another—
can handle. In order to describe the relationship between arm angle
and engine speed, we need a framework that is more powerful, with
respect to this kind of situation, than talk of representations. That
framework is the mathematical language of dynamics; and, in that lan-
guage, the two quantities are said to be coupled. The real problem with-
describing the governor as a representational device, then, is that the
relation of representing—something standing in for something else—
is just too simple to capture the actual interaction between the centrifu-
gal governor and the engine.

If the centrifugal governor is not representational, then it cannot be
computational, at least in the specific sense that its processing cannot
be a matter of the rule-governed manipulation of symbolic represen ta-
tions. Its noncomputational nature can also be established in another
way. Not only are there no representations to be manipulated, there are
also no distinct manipulations that might count as computational
operations—no discrete, identifiable steps in which one representation
could get transformed into another. Rather, the system’s entire opera-
tion is smooth and continuous; there is no possibility of nonarbitrarily
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dividing its changes over time into distinct manipulations, and no
point in trying to do so. From this, it follows that the centrifugal gov-
ernor is not sequential and not cyclic in its operation in anything like
the manner of the computational governor. Since there are no distinct
processing steps, there can be no sequence in which those steps occur.
There is never any one operation that must occur before another one
can take place. Consequently, there is nothing cyclical about its opera-
tion. The device has, to be sure, an “input” end (where the spindle is
driven by the engine) and an “output” end (the connection to the
throttle valve). But the centrifugal governor does not follow a repeti-
tive sequence in which it first takes a measurement, then computes a
throttle-valve change, then makes that adjustment, and then starts over
with another measurement, and so on. Rather, input, internal activity,
and output are all happening continuously and at the very same time,
much as a radio is producing music at the same time as its antenna is
receiving signals.

The fact that the centrifugal governor is not sequential or cyclic in
any respect points to yet another deep difference between the two
kinds of governor. There is an important sense in which zime does not
matter in the operation of the computational governor. Of course,
inasmuch as the device must control the engine speed adequately, its
internal operations must be fast enough; moreover, they must happen
in the right order. Beyond these minimal adequacy constraints, how-
ever, there is nothing that dictates when each internal operation should
take place, sow long each should take to carry out, or how long should
elapse between them. There are only pragmatic implementation con-
siderations: which algorithms to use, what kind of hardware to use to
run the algorithms, and so forth. The timing of the internal operations
is thus essentially arbitrary relative to that of any wider course of
events. It is as if the wheel said to the governing system: “go away and
figure out how much to change the valve to keep me spinning at 100
rpm. I don’t care how you do it, how many steps you take, or how long
you take over each step, as long as you report back within (say) 10 ms.”

In the centrifugal governor, by contrast, there is simply nothing
that is temporally unconstrained in this way. There are no occurrences
whose timing or velocity or acceleration is arbitrary relative to the
operation of the engine. All behavior in the centrifugal governor hap-
pens in the very same real time frame as both the speed and changes in
speed of the flywheel. We can sum up the point this way: the two
kinds of governor differ fundamentally in their temporality, and the
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temporality of the centrifugal governor is essentially that of the engine
itself. '

Finally, it need hardly be labored that the centrifugal governor is
not a homuncular system. It has parts, to be sure, and its overall behav-
ior is the direct result of the organized interaction of those parts. The
difference is that those parts are not modules interacting by communi-
cating; they are not like little bureaucratic agents passing representa-
tions among themselves as the system achieves the overall task.

3 Conceptual frameworks

In the previous section I argued that the differences in nature betwef.:n
the two governors run much deeper than the obvious differences in
mechanical construction. Not surprisingly, these differences in nature
are reflected in the kinds of conceptual tools that we must bring to
bear if we wish to understand their operation. That is, the two differ-
ent governors require very different conceptual frameworks in order to
understand how they function as governors—that is, how they manage
to control their environments.

In the case of the computational governor, the behavior is captured
in all relevant detail by an algorithm, and the general conceptual
framework we bring to bear is that of mainstream computer science.
Computer scientists are typically concerned with what can be achieved
by stringing together, in an appropriate order, some set of basic opera-
tions: either how best to string them together to achieve some particu-
lar goal (programming, theory of algorithms), or what is achievable in
principle in this manner (computation theory). So we understand the
computational governor as a device capable of carrying out some set of
basic operations (measurings, subtractings, and so on), and whose
sophisticated overall behavior results from nothing more than .the
complex sequencing of these basic operations. Note that there is 2
direct correspondence between elements of the governor (the basic
processing steps it goes through) and elements of the algorithm that
describes its operation (the basic instructions).

The Watt centrifugal governor, by contrast, cannot be understood
in this way at all. There is nothing in it for any algorithm to latch
onto. Very different conceptual tools have always been used instead.
The terms in which it was described above, and indeed by Watt and
his peers, are straightforwardly mechanical: rotations, spindles, levers,
displacements, forces. Last century, more precise and powerful
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descriptions became available, but these also have nothing to do with
computer science. In 1868, the physicist James Clerk Maxwell made a
pioneering extension of the mathematical tools of dynamics to regulat-
ing and governing devices (Maxwell 1868). The general approach he
established has been standard ever since. Though familiar to physicists
and control engineers, it is less so to most cognitive scientists and phi-
losophers of mind, and hence is worth describing in a little detail.

The key feature of the governor’s behavior is the angle at which the
arms are hanging, for this angle determines how much the throttle
valve is opened or closed. Therefore, in order to understand the
behavior of the governor we need to understand the basic principles
governing how arm angle changes over time. Obviously, the arm angle
depends on the speed of the engine; hence we need to understand
change in arm angle as a function of engine speed. If we suppose for
the moment that the link between the governor and the throttle valve
is disconnected, then this change is given by the differential equation

i d9
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where 6 is the angle of the arms, 7 is a gearing constant,  is the speed
of the engine, gis a constant for gravity, /is the length of the arms, and
r is a constant of friction at the hinges (Beltrami 1987, p. 163). This
nonlinear, second-order differential equation tells us the instantaneous
acceleration in arm angle, as a function of what the current arm angle
happens to be (designated by the state variable 8), how fast the arm
angle is currently changing (the derivative of 6 with respect to time,
d8/dt), and the current engine speed (). In other words, the equation
tells us how change in arm angle is changing, depending on the cur-
rent arm angle, ghe way it is changing already, and the engine speed.
Note that in the system defined by this equation, change over time
occurs only in arm angle, 6 (and its derivatives). The other quantities
(w, n, g, [, and r) are assumed to stay fixed, and are called parameters.
The particular values at which the parameters are fixed determine the
precise shape of the change in 6. For this reason, the parameter settings
are said to fix the dynamics of the system.

This differential equation is perfectly general and highly succinct: it
is a way of describing how the governor behaves for any arm angle and
engine speed. That generality and succinctness come at a price, how-
ever. If we happen to know what the current arm angle is, how fast it is
changing, and what the engine speed is, then from this equation all we
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can figure out is the current instantaneous acceleration. If we want to
know at what angle the arms will be in a half-second, for example, we
need to find a solution to the general equation—that is, an equation
which tells us what values 0 takes as a function of time. There are of
course any number of such solutions, corresponding to all the different
behavioral trajectories that the governor might exhibit; but these solu-
tions often have important general properties in common. Thus, as
long as the parameters stay within certain bounds, the arms will always
eventually settle into a particular angle of equilibrium for that engine
speed; that angle is known as a point attractor.

Thus far I have been discussing the governor without taking into
account its effect on the engine, and thereby indirectly on itself. Here,
the situation gets a little more complicated, but the same mathematical
tools apply. Suppose we think of the steam engine itself as a dynamical
system governed by a set of differential equations, one of which gives
us some derivative of engine speed as a function of current engine
speed and a number of other variables and parameters:

%:(’7,) = F(o,..,1,...)

One of these parameters is the current setting of the throtdle valve, T,
which depends directly on the governor arm angle, 8. We can thus
think of 8 as a parameter of the engine system, just as engine speed © is
a parameter of the governor system. (Alternatively, we can think of the
governor and steam engine as comprising a single dynamical system in
which both arm angle and engine speed are state variables.) This cou-
pling relationship is particularly interesting and subtle. Changing a
parameter of a dynamical system changes its total dynamics (that is,
the way its state variables change their values depending on their cur-
rent values, across the full range of values they may take). Thus, any
change in engine speed, no matter how small, changes not the state of
the governor directly, but rather the way the state of the governor
changes, and any change in arm angle changes not the speed of the
engine directly, but the way the speed of the engine changes. Again,
however, the overall system (engine and governor coupled together)
settles quickly into a point attractor; that is, engine speed and arm
angle remain constant—which is exactly the desired situation. Indeed,
the remarkable thing about this coupled system is that under a wide
variety of conditions it always settles swiftly into states at which the
engine is running at a particular speed.
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In this discussion, two very broad, closely related sets of conceptual
resources have (in a very modest way) been brought into play. The first
is dynamical modeling, that branch of applied mathematics which
attempts to describe change in real-world systems by describing the
states of the system numerically and then writing equations which cap-
ture how these numerical states change over time. The second set of
resources is dynamical systems theory, the general study of dynamical
systems considered as abstract mathematical structures. Roughly
speaking, dynamical modeling attempts to understand natural phe-
nomena as the behavior of real-world realizations of abstract dynami-
cal systems, whereas dynamical systems theory studies the abstract
systems themselves. There is no sharp distinction between these two
sets of resources, and for our purposes they can be lumped together
under the general heading of dynamics.

4 Morals

This discussion of the governing task suggests a number of closely
related lessons for cognitive science. First, various different kinds of
systems, fundamentally different in nature and requiring very different
conceptual tools for their understanding, can subserve sophisticated
tasks—including interacting with a changing environment—which
may initially appear to demand that the system have knowledge of,
and reason about, its environment. Second, in any given case, our
sense that a specific cognitive task must be subserved by a (generically)
computational system may be due to deceptively compelling precon-
ceptions about how systems solving complex tasks must work. It may
be that the basically computational shape of most mainstream models
of cognition results not so much from the nature of cognition itself as
it does from the’shape of the conceptual equipment that cognitive sci-
entists typically bring to the study of cognition. Third, cognitive sys-
tems may in fact be dynamical systems, and cognition the behavior of
some (noncomputational) dynamical system. Perhaps, that is, cogni-
tive systems are more relevantly similar to the centrifugal governor
than they are either to the computational governor, or to that more
famous exemplar of the broad category of computational systems, the
Turing machine.

In what follows, this third suggestion will be developed into a spe-
cifically dynamical conception of cognition via an explication of the
key concept of dynamical system. An example will then illustrate how
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even “high level” cognitive performances may be intelligible in thor-
oughly dynamical terms. The final section will briefly defend the
viability of the dynamical conception as a research program in contem-
porary cognitive science.

5 Three kinds of system

What are dynamical systems? How do they differ not only from com-
puters, but also from connectionist networks—hitherto the main com-
petition for computational models in cognitive science?

Begin with the concept of a system. The term ‘system’ is often used
very loosely, designating pretty much any complex thing we wish to
talk about (for example, a roulette betting system). For current pur-
poses, however, systems are best defined more tightly as sets of vari-
ables (things, aspects, features, and the like) which change over time,
such that the way any one variable changes at a given time depends on
the states of other variables in the system at that time. Taken together,
the states of all the variables make up the state of the system as a whole.
Systems can be affected by external factors as well; these are commonly
known as parameters when they are relatively fixed and influence only
the way the variables interact, and as inputs when they are occasional
and set the actual states of some variables directly.

Systems can be classified in many different ways. The most useful
classifications are those that are neither too wide nor too narrow. For
example, sometimes computers are taken very broadly as systems that
compute, dynamical systems as systems that change, and connectionist
networks as just a species of dynamical system. However, such wide
definitions wash out the very contrasts that are most important for
understanding what is going on in cognitive science. In what follows,
informal, but more restrictive, specifications will be adopted as guides:
computers are symbol manipulators, dynamical systems are sets of cou-
pled magnitudes, and connectionist systems are networks of neural units.
The differences among these ideas can be articulated by focusing on
four points of contrast: the kinds of variables involved, the ways states
change, the tools for describing the changes, and more general features
that lend each kind of system its distinctive character (see table 16.1).

Thus, computers (in the relevant sense) always have digital vari-
ables.! For a variable to be digital, there must be some set of discrete
values, such that at any relevant time the variable has unambiguously
taken on one or another of those values. Thus a memory location (bir)
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Computational Dynamical Connectionist
systems systems systems

Informal Symbol Sets of coupled | Networks of
description | manipulators magnitudes neural units
Classic Turing machine; | Solar system; Perceptron;
exemplars || LISP machine Watt governor Hopfield net
Kinds of Digital—often Quantitative— Quantitative—
variable syntactical states and rates | activation levels
Changes Discrete steps Interdependent | Propagated

in states (sequential) in “real” time interaction
Tools for Transition rules | Differential Weighted-sum
description || (“programs”) equations equations
General Interpretable as | Coupled—with | Homogenous &
character representations | environment too | high-dimensional

Table 16.1: Differences among kinds of systems.

in an ordinary electronic computer is on or off; an abacus rod has a
definite number of beads on each end; a Turing-tape square is either
empty or occupied by a ‘1’; and so on. Variables in a dynamical sys-
tem, by contrast, are not essentially digital (or not); rather, the impor-
tant thing is that they be guantitiee—that is, variables for which it
makes sense to talk about amounss or about distances? between values.
Amounts and distances are subject to measurement: the use of some
standard “yardstick” for systematically assigning numbers to values and
differences. Thus the height of a falling object can be measured in
meters, and the distance between any two heights determined by sub-
traction to yield 2 distance fallen. This conrrasts with computers, in
which there is a critical difference but no relevant distance between val-
ues of a variable (such as being empty as opposed to being occupied by
a ‘T). Since the variables of dynamical systems are quantities, a little
mathematics allows us to talk of distances between total states. Hence
the state sez of a dynamical system is, in an interesting sense, a space,
within which any state is a position, and any behavior a trajectory.
These in turn clear the way for other important and powerful dynami-
cal notions, such as a#tractor, bifurcation, stability, and equilibrium.
Connectionist networks have quantities as variables, so they also
differ in this respect from computers. How do they differ from dynam-
ical systems? An essential feature of connectionist networks is that their
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variables are modeled, in a very generic way, on biological neurons;
consequently, they exhibit a distinctively “neural” form of interactive
change. Each variable has a certain activity level (its value), and can be
influenced by a certain subset of other variables. This influence,
thought of as flowing or propagating along a “connection”, is modu-
lated by a parameter, known as a weight. The way in which units in
connectionist networks change their activity values is specified by a
simple function (usually just summation) of the modulated activities
of all the units by which they are influenced.’

Now, dynamical systems can change state in this neural fashion, but
they need not {(consider the centrifugal governor, which has no con-
nections or weights). Rather, what really makes change dynamical, in a
strong sense, is an orthogonal requirement: it happens in “real” time.
What does this mean?

Obviously, any system that changes at all, changes “in”™ time in some
sense. But consider an abstract Turing machine, a mathematical entity
standing outside the actual time of everyday events. This machine has
states, and it “changes” from one state to the next; but there is no sense
in which it spends time in any state, or zakes time to change state.
“Time” here is nothing more than an ordered series of discrete points
(#, £, ...). These points have no duration; nothing elapses. The inte-
gers are a convenient way to index these time points, since they have a
familiar order. But this use can be misleading, since it falsely suggests
that there are amounts of time involved. Practical considerations aside,
one might just as well use proper names, ordered alphabetically, as
labels for points of time.

Now, real (actual, everyday, worldly) time has two obvious proper-
ties that mere orders lack. First, real time is at least dense (between any
two points of time there is another one); and second, real time is a
quantity (there are amounts of time and distances between times). These
give rise to a distinctive sense in which a process can happen in time
(real or otherwise). The system must be in some state or other at every
point of time; and so, if time is dense, the system’s states and state
changes must themselves be densely ordered in time. A system that is
in time in this sense is potentially always changing. Further, if time is a
quantity, we can relate happenings in the system in terms amounts of
time; we can talk for example of how long they take, and (if the vari-
ables are quantities) of the rate of change. This latter fact is particularly
important. For, if both time and system variables are continuous, we
can talk of instantaneous rates of change, accelerations, and so on, and
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thus of systems in which rates of change depend on the current states,
and even current rates of change, of the system variables (for example
the solar system and the centrifugal governor). In order to describé
such systems, we need mathematical tools that can relate rates of
change in variables to those variables themselves; that is, we need dif-
Jerential equations. ’

But doesn’t change in any actual system—including computers—
happen in real time, and thus i7 time in the relevant sense? Yes and no
Consider classical computation and complexity theory—the study of
what computers as such can do. This theory is founded on the idea
that details of timing don’t matter; time is measured simply in steps or
operations. But the theory carries over in its entirety to concrete, phys-
ical computers such as my Macintosh. This is to say that, in under-
standing the behavior of ordinary computers as computers, we can
abstract away from the dense and quantitative nature of real time,
From. this point of view, they are only incidentally in time; changing
the timing details would not affect what they are computing in any
way. By contrast, one could never understand the behavior of the solar
system while ignoring its timing. This is one of the most important
differences between computers and systems that are genuinely dynami-
calin the current sense. 9

What can be said more positively about state changes in a com-
puter? Well, the variables are digital, and so any statg change must be
from one digital configuration to another. This means that transitions
are essentially discrete: there is no theoretically relevant time between
any time and the next, and no theoretically relevant state between any
state and the next. These properties are reflected in the nature of the
rules which describe the behavior of computers. These rules (“pro-
gfams”) always specify what the next state is, usually by specifying a
discrete operation which transforms the current state into the next
state. Further, the rules are always expressed in terms of digital proper-
ties of variables: for example, change a square from empry to occupied
byal’ ’

So far, computers have been characterized in terms of the nature of
their variables, their state changes, and how these state changes are
specified—effectively, as automaric Jormal systems (Haugeland 1985)
Yet .nothing could count as a computer, in the full sense, without com:
puting. In the most general terms, computing requires a computer, an
external domain, and a systematic correspondence between the ,two
such that states and transitions of the former make sense in relation to
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the latter. In other words, computers are those automatic formal sys-
tems whose structure supports a systematic and sensible correspon-
dence with some domain (such as arithmetic, baseball, or whatever).
Note that the digital nature of computers characteristically supports
computing of a more particular kind: namely, that in which the
domain itself has a clear, well-ordered structure. Relevant states of the
system are structured configurations of tokens interpretable as symébolic
representations of the domain; and state changes amount to inferences
from one symbolic representation to another.

Now, it is clearly not essential to dynamical systems that they be
systematically and sensibly interpretable with respect to some external
domain. Despite the best efforts of astrologers, there is no good way to
interpret the motions of the planets with regard to any other concerns.
But this is not to say that dynamical systems cannor be interpreted;
sometimes they can, and this may enable them to be understood as
exhibiting cognitive functions. But any interpretation, if there is one,
is always after the fact; it is no part of the dynamical system as such. A
system is dynamical in virtue of other properties. The nature of their
variables and state-changes have already been discussed, but—as in the
case of computers—there is more to the story. Much of the unique fla-
vor of dynamical systems is captured by the idea of coupling. As
explained above, two variables are coupled when the way each changes
at any given time depends directly on the way the other #sat that time.
In other words, coupled variables simultaneously, interdependently co-
evolve, just like arm angle and engine speed in the centrifugal gover-
nor. Genuinely dynamical systems exhibit high degrees of coupling;
every variable is changing all the time, and all pairs of variables are,
either directly or indirectly, mutually determining the shapes of each
other’s changes. For example, in the solar system, the position and
momentum of every massive body is constantly changing, and every
variable influences every other one.

In a computer, by contrast, at each step most variables remain
unchanged; and the changes that do occur are influenced by at most a
few other values. Interestingly, this is also a point of contrast between
connectionist networks and dynamical systems. Some networks (for
example, fully recurrent networks) are dynamical in our sense; but oth-
ers—such as archetypal three-layer feed-forward networks (generalized
perceptrons)—exhibit no coupling at all.”> What distinguishes connec-
tionist networks, apart from their basically neural interaction, is that
they are typically high-dimensional and homogeneous. The former
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property is nothing more than having a relatively® large number of
variables; the latter is having all variables change in basically the same
way. Standard mathematical specifications of connectionist networks
involve just a single equation schema with indexes for variables and
parameters; this form of description is made possible by homogeneity,
and necessary by high-dimensionality. r

This completes our brief tour of computers, dynamical systems,
and connectionist networks as categories of systems. Two points are
worth noting before moving on. First, the aim has been to capture the
core .idea in each case, rather than to provide sets of conditions which
provide precise, rigid and mutually exclusive boundaries, Second, there
are many different notions of computer, dynamical system, and so on,
Fhat are useful for different purposes. Those offered here are not
intended to be better or more correct in general, but, at best, more use-
ful for the philosophy of cognitive science.

6 Three conceptions of cognition

The essence of the dynamical conception of cognition is the idea that
cognitive systems are dynamical systems, and cognition the behavior of
such systems. The distinctions drawn in the preceding section now
combine with the earlier discussion of governors to yield a more
precise elaboration of this idea. Both the dynamical and the computa-
tional conceptions of cognition turn out to comprise clusters of
mutually compatible and constraining commitments with three layers.
The core in each case is a specific empirical hypothesis concerning the
kind of system that natural cognitive systems are. Wrapped around this
core are two further commitments, one concerning the “cognitive
level” properties of cognitive systems, and the other concerning the
kinds of conceptual tools that are most appropriate for the study of
cognition. Thus, the dynamical and computational conceptions both
constitute richly textured visions of the nature of cognition.

. Thus, in the computational vision, cognitive systems are computers
(digital, rule-governed, interpretable systems) with a modular internal
structure; they interact with their environments in a cyclic process that
begins with input transducers producing symbolic representations in
response to the environment, continues with sequential internal com-
putations over symbolic structures, and ends with output transducers
gffecting the environment in response to symbolic specifications. Fach
internal operation is algorithmically specified and takes place in the
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system’s own arbitrary time frame; the whole process can be considered
independently of the body and the environment except insofar as they
deliver occasional inputs and receive outputs. Since the cognitive sys-
tem is a computer that works by sequential transformations of sym-
bolic representations, its most revealing descriptions are those using
the conceptual apparatus of mainstream computer science. In short,
the computational vision sees people as computational governors writ
large.

This contrasts at every level with the dynamical vision, in which
people bear deeper similarities to the centrifugal governor. Cognitive
systems are taken to consist of sets of coupled quantities evolving in
real time. These quantities may be abstract “cognitive” features (see the
example below) or they may be aspects of the body or even of the envi-
ronment. At a higher level, cognitive systems are understood to be
complexes of continuous, ongoing, mutually constraining changes. The
fundamental mode of interaction with the environment is not to rep-
resent it, or even to exchange inputs and outputs with it rather, the
relation is better understood via the technical notion of coupling. To
be sure, cognition can, in sophisticated cases, involve representation
and sequential processing; but such phenomena are best understood as
emerging from a dynamical substrate, rather than as constituting the
basic level of cognitive performance. As complexes of continuous,
ongoing change, cognitive systems are best understood using the very
same tools that have proven so effective for such processes elsewhere in
science: dynamical modeling and dynamical systems theory.

Where does connectionism fit into all of this? Somewhere awk-
wardly in the middle. Some connectionist networks are thoroughly
dynamical; but others, such as layered feed-forward networks, are con-
figured to behave more in the cyclic and sequential fashion of compu-
tational systems. Not surprisingly, when trying to understand their
systems, connectionists sometimes borrow from computer science,
sometimes from dynamics, and sometimes from other fields such as
statistics. Connectionist networks sometimes transform static input
representations into static output representations; other times, they
settle dynamically into attractors, bifurcate, and so on. In short, con-
nectionism may be kind of half-way house between two conceptions of
cognition each of which has a greater theoretical integrity on its own.
Of course, it might turn out that understanding cognition really does
require an eclectic mix of ingredients from several conceptual frame-
works. Alternatively, it may be that connectionism is an unstable
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mongrel, little more than a temporary phase in the transition from

generically computational to generically dynamical approaches to the
study of cogpnition.

7 An example of dynamical research

At this stage, an example may help convey an intuitive sense of how
the c.{ynamical approach, just specified in very abstract terms, can yield
'real insights into the nature of cognition. Consider the proce;s of com-
ing to make a decision among a variety of options, each of which has
attractions and drawbacks. This is surely a high-level cognitive task, if
anything is. Psychologists have done countless experimental studies)of
how people choose, and have produced almost as many mathematical
fnodels to describe and explain that behavior. The dominant approach
in modeling stems from the classic expected-utility theory and statisti-
cal decision theory, as originally developed by von Neumann and Mo-
genstern.(1944/ 80). The basic idea is that an agent makes a decision
by selecting the option that has the highest expected utility, which is
calculated in turn by combining some formal measure of the utility of
each pqssible outcome with the probability that it will eventuate if tha
option is chosen. Much of the work within this framework is mathe-
mauca.lly elegant and provides a useful account of optimal reasoning
strategies. As an account of the actual decisions people reach, however,

clas§1cal utility theory is seriously flawed; human subjects typicall);
deviate from its recommendations in a variety of ways. As a result

many theories proposing variations on the classical core have been’
deve.loped—typically relaxing certain of its standard assumptions, with
varying degrees of success in matching actual human choice beh’avior,

Nevertheless, virtually all such theories remain subject to some further
drawbacks:

. They do_not incorporate any account of the underlying motiva-
tions which give rise to the utility that an object or outcome
holds at a given time.

* They conceive of the utilities themselves as static values, and
can offer no good account of how and why they might change

over time, or why actual preferences are often inconsistent and
inconstant.

* They offer no serious account of the deliberation process, with
its attendapt vacillations, inconsistencies and distress; and they
have nothing to say about the relationships that have been
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uncovered between time spent deliberating and the choices
eventually made.

Curiously, these drawbacks appear to have a common theme; they all
concern, one way or another, femporal aspects of decision making. It is
worth asking whether they arise because of some deep structural fea-
ture inherent in the whole framework which conceprualizes decision-
making behavior in terms of calculating expected utilities.

Notice that utility-theory based accounts of human decision mak-
ing (“utility theories”) are deeply akin to the computational solution to
the governing task. That is, if we take such accounts as not just
describing the outcome of decision making behavior, but also as a guide
to the structures and processes that generate the behavior, then there
are basic structural similarities to the computational governor. Thus,
utility theories are straightforwardly computational; they are based on
static representations of options, utilities, probabilities, and the like,
and processing is the algorithmically specifiable internal manipulation
of these representations to obtain a final representation of the choice to
be made. Consequently, utility theories are strictly sequential; they
presuppose some initial temporal stage at which the relevant informa-
tion about options, likelihoods, and so on, is acquired; a second stage
in which expected utilities are calculated; and a third stage at which
the choice is effected in actual behavior. And, like the computational
governor, they are essentially atemporal; there are no inherent con-
straints on the timing of the various internal operations with respect to
each other or changes in the environment.

What we have, in other words, is a model of human cognition
which, on the one hand, instantiates the same deep structure as the
computational governor, and on the other, seems structurally incapa-
ble of accounting for certain essentially temporal dimensions of deci-
sion making behavior. At this stage, we might ask: what general £7nd of
model of decision making behavior we would get if, rather, we took
the centrifugal governor as a prototype? It would be a model with a rel-
atively small number of continuous variables influencing each other in
real time. It’s behavior would be defined by low-dimensional nonlinear
differential equations. And it would be a model in which the agent and
the choice environment, like the governor and the engine, are tightly
coupled.

It would, in short, be rather like the “motivational oscillatory
theory” (MOT) model described by mathematical psychologist James
Townsend (Townsend 1992). MOT enables modeling of various
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Figure 16.2: The MOT model of decision making compared to the cen-
trifugal governor. Boxes represent variables and arrows rep-
resent influence. In each case, coupled variables evolve
continuously in time, and the system spans a kind of agent/
world divide. The MOT system is significantly more com-
plex than the governor, but still very simple compared with
many dynamical models of cognition. Note that these dia-
grams should not be interpreted in a connectionist fashion;
the lines are not connections and do not have weights. (The
MQOT diagram is adapted from Townsend 1992).

qualitative properties of the kind of periodic behavior that occurs
when circumstances offer the possibility of satiating desires arising
from more or less permanent motivations. An obvious example is regu-
lar eating in response to recurring natural hunger. It is built around the
idea that in such situations, your underlying motivation, transitory
desires with regard to the object, distance from the object, and con-
sumption of it are continuously evolving and affecting each other in
real time; for example, if your desire for food is high and you are far
from it, you will move toward it, which influences your satiation and
so your desire. The framework thus includes variables for the current
state of motivation, satiation, preference, and action (movement), and
a set of differential equations that describe how these variables change
over time as a function of the current state of the system.”

MOT stands to utility theories as the centrifugal governor does to
the computational governor. In MOT, cognition is not symbol manip-
ulation, but rather state-space evolution in a dynamical system that is
in certain key respects rather like the centrifugal governor. It is a
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system that demands dynamical tools in its analysis. MOT produces
behavior which, if one squints while looking at it, seems like decision
making—after all, the agent will make the move that offers the most
reward, which in this case means moving toward food if hungry
enough. There is, however, a sense in which this is decision making
without decisions, for there never are, in the model, any discrete inter-
nal occurrences that one could reasonably characterize as decisions. In
this approach, decision making is better thought of as the behavior of
an agent under the influence of the pushes and pulls that emanate
from desirable outcomes, undesirable outcomes, and internal desires -
and motivations; in a quasi-gravitational way, these forces act on the
agent with strengths varying as a function of distance.

The MOT model is a special case of a more general dynamical
framework that Townsend and Jerome Busemeyer (1993) call “deci-
sion field theory”. That framework, too complex to describe succinctly
(an overview is provided in Busemeyer and Townsend 1995), faithfully
models a wide range of behavior more easily recognizable as decision
making, as studied within the traditional research paradigm. Indeed,
their claim is that decision field theory “covers a broader range of phe-
nomena in greater detail” than do classical utility theories, and even
goes beyond them by explaining in a natural way several important
paradoxes of decision making. The important point is that the general
decision field theory works on the same fundamental dynamical prin-
ciples as MOT. There is thus no question that at least certain aspects of
human high-level cognitive functioning can be modeled effectively
using dynamical systems of the kind that can be highlighted by refer-
ence to the centrifugal governor.

8 Is the dynamical conception viable?

In order soundly to refute a What-else-could-it-be? argument, a pro-
posed alternative must be viable—that is, plausible enough that it is
reasonably deemed an open empirical question whether the orthodox
approach or the alternative is ultimately more promising.

One measure of the viability of an approach is whether valuable
research can be carried out within its terms. On this measure, the
dynamical approach is certainly in good health. Dynamical models
have been or are being developed for a very wide range of aspects of
cognitive functioning, from (so-called) “low level” or “peripheral”
aspects such as perception and motor control, to (so-called) “central”
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or “higher” aspects such as language and decision—making, through to
related areas such as psychiatry and social psychology. As already men-
tioned, a good deal of connectionist work falls under the dynamical
banner, and this work alone would qualify the dynamical approach as
worth taking seriously. However there are now also nonconnectionist
dynamical models of numerous aspects of cognition, and their ranks
are swelling. Further, in a number of fields under the broader umbrella
of cognitive science, dynamics provides the dominant formal frame-
work within which particular theories and models are developed; these
include neural modeling, autonomous agent (“animat”) research, eco-
logical psychology and, increasingly, developmental psychology.?

Of course, it is quite possible for a research program to flourish,
even though, for deep reasons, it will eventually prove inadequate—
cither in general or in particular respects. (Remember behaviorism.)
So, in evaluating the plausibility of an alternative, we should also con-
sider whether any known general considerations either support it or—
perhaps more importantly—undermine it. Many general consider-
ations have been raised in favor of the computational conception of
cognition; and, given the stark contrasts, these might appear to argue
against the dynamical alternative. It isn’t possible to address all (or even
any) such arguments adequately here; but I will briefly comment on
one of the most powerful—not, however, to refute it, but rather to
reveal something of the potential of the dynamical approach.

Cognition is often distinguished from other kinds of complex nat-
ural processes (such as thunderstorms or digestion) by pointing out
that it depends on knowledge. One challenge for cognitive scientists is
to understand how a physical system might exhibit such dependence
in its behavior. The usual approach is to suppose that the system con-
tains internal structures that encode or represent the knowledge. Fur-
ther, it is often thought that the best way to encode or represent
knowledge is to use symbolic representations, manipulated by some
computational system. Thus, insofar as the dynamical approach
abjures representation completely, or offers some less powerful repre-
sentational substitute, it may seem doomed.

But, while the centrifugal governor is clearly nonrepresentational,
and while (as argued above) representation figures in a natural cluster
of deep features that are jointly characteristic of computational mod-
els, in fact there is nothing to prevent dynamical systems from incor-
porating some form of representation. Indeed, an exciting feature of
the dynamical approach is that it offers opportunities for dramatically

Dynamics and Cogpition 445

reconceiving the nature of representation in cognitive systems, even
within a broadly noncomputational framework. A common strategy in
dynamical modeling is to assign representational significance to some
or all of the state variables or parameters (see, for example, the
Townsend and Busemeyer decision-field-theory model mentioned
above, or consider a connectionist network in which units stand for
features of the domain).

Though representations of this kind may be exactly what is needed
for some cognitive modeling purposes, they don’t have the kind of
combinatorial structure that is often thought necessary for oher
aspects of high-level cognition. However, within the conceptual reper-
toire of dynamics there is a vast range of entities and structures which
might be harnessed into representational roles; individual state-vari-
ables and parameters are merely the very simplest of them. For exam-
ple, it is known how to construct representational schemes in which
complex contents (such as linguistic structures) are assigned in a recur-
sive manner to points in the state-space of a dynamical system, such
that the representations form a fractal structure of potentially infinite
depth, and such that the behavior of the system can be seen as trans-
forming representations in ways that respect the represented structure.
Yet even these methods are doing little more than dipping a toe into
the pool of possibilities. Representations can be trajectories or attrac-
tors of various kinds, trajectories obtained by the sequential chaining
of attractors, even such exotica as transformations of attractor arrange-
ments as a system’s control parameters change (Petitot 1995).

Dynamicists are actively exploring how these and other representa-
tional possibilities might be incorporated into cognitive models, with-
out buying the rest of the computational worldview. Consequently,
while the dynamical approach is certainly a very long way from having
actual solutions to most concrete problems of knowledge representa-
tion, it clearly holds sufficient promise to maintain its current viability
as an alternative.

What positive reasons are there to think that the dynamical
approach is actually on the right track? Again, space does not allow
serious treatment of the arguments, but some are at least worth men-
tioning. In practice, an important part of the appeal of the dynamical
approach is that it brings to the study of cognition tools that have
proved extraordinarily successful in many other areas of science. But is
there anything about cognition, in particular, that suggests that it
might best be understood dynamically?
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One central fact about natural cognitive processes is that they
always happen in real time, which means not merely that, like any
physical process (including ordinary digital computation), they occupy
some extent of actual time, but that details of tzming—durations, rates,
thythms, and so on—are critical to how they operate in real bodies
and environments. As we saw above, dynamics is all about how pro-
cesses happen in real time, whereas timing details are in a deep sense
extrinsic to computational systems. Cognition also has other general
features for which a dynamical approach appears well-suited. For
example, it is a kind of complex behavioral organization which is
emergent from the local interactions of very large numbers of (rela-
tively) simple and homogenous elements. It is pervaded by both con-
tinuous and discrete forms of change. At every level, it involves
multiple, simultancous, interacting processes. Dynamics is a natural
framework for developing theories that account for such features. Fur-
ther, the systems within which cognition takes place (the brain, the
body, the environment) demand dynamical tools for their description.
A dynamical account of cognition promises to minimize diffculties in
understanding how cognitive systems are real biological systems in
constant, intimate, interactive dependence on their surroundings.9

A final way to underpin the viability of the dynamical conception is
to place it and the computational conception in broad historical per-
spective. Computationalism, as cognitive science orthodoxy, amounts
to a sophisticated instantiation of the basic outlines of a generically
Cartesian picture of the nature of mind. The prior grip that this pic-
ture has on how most people think about mind and cognition makes
the computational conception seem intuitively attractive. This would
be unobjectionable if the Cartesian conception itself were basically
sound. However, the upshot of philosophical evaluation of the Carte-
sian framework over the last three centuries, and especially in this cen-
tury, is that it seriously misconceives mind and its place in nature.

Cognitive scientists tend to suppose that the primary respect in
which Descartes was wrong about mind was in subscribing to an inter-
actionist dualism: the doctrine that mind and body are two distinct
substances that causally interact with one another. However, already by
the eighteenth century the inadequacy of this particular aspect of Car-
tesianism had been exposed (Berkeley 1710/1977; Leibniz 1714/
1977) and thoroughgoing brain-based materialism espoused (Hobbes
1651/1962; La Mettrie 1748/1912). Some of the greatest achieve-
ments of twentieth-century philosophy of mind have been to expose
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various other, more subtle, pervasive and pernicious epis.temol.ogical
and ontological misconceptions inherent in the Cartesian picture.
These misconceptions are very often retained even w‘he.n substance
dualism is rejected in favor of some brain-based materialism, such as
functionalism in its various guises. . .

Among the most important of these anti—Ca.rteman movements is
one spearheaded by Ryle in Anglo-American phllosgphy (Ryle 1949/
84) and Heidegger in continental philosophy (Heldegger ?927/62;
Dreyfus 1991). Its target has been the generically Cartesian idea tbat
mind is an inner realm of representations and processes, and that mm‘d
conceived this way is what causally explains intelligent behavi'or. This
movement comprises three interrelated components. The first is a relo-
cating of mind. The Cartesian tradition is mistaken in supposing that
mind is an inner realm or entity of any sort, whether mental substance,
brain states, or whatever. Ontologically, mind is much more a matter
of what we 4o within environmental and social possibilities and
bounds. Twentieth-century anti-Cartesianism thus draws mind our—
in particular outside the skull. That aspect of mind that remains
inside, and s the causal basis of our behavior, is cognition.

The second component is a reconceiving of our fundamental relz.i—
tionship to the world around us. In the Cartesian framework, the ba}51c
relation of mind to the world is one of representing it and thinking
about it, with occasional “peripheral” interaction via perceiving and
acting. It has been known since Berkeley that this framework he.as fun-
damental epistemological problems. But only more recently has it been
shown that escaping these problems means reconceivir}g the hurr}an
agent as essentially embedded in and skillfully coping with a changing
world, and that representing and thinking about the world is second-
ary to and dependent upon such embeddedness (Guignon 1983). .

The third component is an attack on the supposition that the kind
of behavior we exhibit (such that we 27 embedded in our world and
can be said to have minds) could ever be causally explained utilizing
only the generically Cartesian resources of representations, .rules, pro-
cedures, algorithms, and so on. A fundamental Cartesian mistake is to
suppose, as Ryle variously put it, that practice is accounted for by the-
ory, that knowledge how is explained in terms of knowlefige ‘t/)zzt, or
that skill is a matter of thought. In other words, not only is mind not
to be found inside the skull, but also cognition, the inner causal basis
of intelligent behavior, is not itself to be explained in terms of the basic
entities of the general Cartesian conception.
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My concern here is not to substantiate these claims or the post-Car-
tesian conception of the person to which they point (see, for example,
Dreyfus 1972/92); it is simply to make the computational conception
of cognition seem less than inevitable by casting doubt upon the philo-
sophical framework within which it thrives. Orthodox computational
cognitive science has absorbed some of the important lessons of seven-
teenth-century reactions to Cartesianism, but so far has remained
largely oblivious to the more radical twentieth-century critiques. If,
however, if we begin with a thoroughly post-Cartesian approach, the
dynamical account of cognition will, in many ways, be immediately
attractive. The post-Cartesian conception rejects the model of mind as
an atemporal representer, and, like the dynamical approach to cogni-
tion, emphasizes instead ongoing, real-time interaction of situated
agents with a changing world. The post-Cartesian agent is essentially
temporal, since its most basic relationship to the world is real-time
skillful coping; the dynamical framework is therefore a natural choice
since it builds time in right from the start. The post-Cartesian agent
manages to cope with the world without necessarily representing it. A
dynamical approach suggests how this might be possible by showing
how the internal operation of a system interacting with an external
world can be so subtle and complex as to defy description in represen-
tational terms—how, in other words, cognition can transcend represen-
tation. In short, from the philosophical perspective that has managed
to overcome the deep structures of the Cartesian world-view, the
dynamical approach looks distinctly appealing; the Watt governor
is preferable to the Turing machine as an archetype for models of
cognition.

Notes

1. Here I am using the term ‘computer’ to refer specifically to digital
computers rather than the wider class that includes so-called “analog
computers”. It is the narrower class which lies at the heart of the
mainstream computational conception of cognition.

2. Distance is captured mathematically by a metric—a function that
maps pairs of values of a variable onto real numbers in a way that sat-
isfies certain familiar constraints. Any guantity, as such, will have a
nontrivial metric associated with it. (An example of a trivial metric
would be the same/different “metric”, a function that returns 1 if two
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values are different and 0 if they are the same. Applied to sequences,
this kind of metric is known as “Hamming distance”. It is a useful
function for some purposes, but is not a metric in the relevant sense.)

3. Hence the ubiquitous “sigma” (£) term in connectionist equations.

4. The general field of dynamical systems theory studies many systems
that are defined in terms of discrete maps. Some of these are just dis-
cretized versions of continuous systems that are iz time in a full-
blooded sense. Others, however, are not (including some that exhibir
chaotic behavior). These systems are dynamical, but only in a wider
sense than is used here. They bear interesting similarities both to
dynamical systems and to computers.

5. The presence of a connection between two units is not enough for
coupling in the full sense. Genuine coupling requires bidirectional
connections and simultaneous update.

6. Relative to what? There are many ways to cash this out, but for non-
linear systems, “large” is roughly so many that we find it hard to under-
stand the behavior of the system.

7. The equations, with rough and partial translations into English, are:
dm
— =M-m-c
dt
(The change in motivation depends on how the current levels of
motivation and consumption compare with some standard level of

motivation, M.)
dz 1
Y omx 55+ 1
dt Z)+2,ta

(The change in preference for a goal depends on current motivation
and distance from the object of preference.)

EE = (x+C-c) x 2#2+]
dt Lt

(The change in consumption depends on the level of preference, the
level of consumption, and the distance from the object of preference.

dz, dz,

E=“(X‘Z|) —Z{:—(x‘zz)

(Movement toward or away from the object depends on the current
level of preference for it.)



450 Timothy van Gelder

8. Rather than cite individual examples, I merely list here some over-
views or collections which the interested reader can use as a bridge
into the extensive realm of dynamical research on cognition. Kelso
(1995) is both a manifesto for the dynamical approach and an accessi-
ble encapsulation of one powerful research program. A representative
sampling of current research is contained in Port and van Gelder
(1995), which also contains guides to a much larger literature. An
excellent illustration of the power and scope of dynamical research, in
a neural network guise, is Grossberg (1988). Serra and Zanarini
(1990) present an overview of a variety of dynamical systems
approaches in artificial intelligence research. For the role of dynamics
in developmental psychology, see Smith and Thelen (1993) and
Thelen and Smith (1993).

9. For more detailed treatment of these arguments, see van Gelder and

Port (1995).




