Self-Organization of Behavior:
The Basic Picture

Im Anfang war die Tat! ("In the beginning was the deed.”)
~—J. W. von Goethe

SOME HISTORICAL REMARKS ABOUT THE SCIENCE OF
PSYCHOLOGY

Science always requires a language, and the science of psychology is no
exception. But psychology is in a tricky position, scientifically speaking. The
reason is that, according to Webster’s dictionary, it must do double duty as
the science of mind and of behavior. Even if we leave the brain out of psychol-
ogy, which seems a bit counterproductive, the language of mind (percepts,
images, thoughts, feelings, etc.) is very different from that of behavior.

It's a strange definition of psychology that contains the fundamental prob-
lem of psychology: what is the relation between mind and behavior? Even
when we bring the brain back in, the best we seem to be able to do is correlate
its physicochemical and physiological activities with different aspects of expe-
rience. Strangely enough, in the contemporary cognitive and brain sciences,
any empirically adequate language of description for the two different do-
mains of brain and cognition seems to suffice. Perhaps this is why correlations
between the two are often less than compelling: after all, something must be
going on in the nervous system when we perceive and act, think, learn,
and make choices. That we should find some kind of correlation is hardly
surprising.

From my point of view, not only does the presence of correlations fall far
short of explanation, but also we seem to be correlating apples and oranges.
Thus, with few exceptions, the science of psychology, broadly conceived here
to include the cognitive and brain sciences, tacitly assumes that the physical
and the mental are independent, irreconcilable categories. To abandon such an
assumption must surely seem reckless. For me, however, the greatest draw-
back to understanding the mind-body problem is the very absence of a com-
mon vocabulary and theoretical framework within which to couch mental,
brain, and behavioral events. Without commensurate description, how is it
possible to see the interconnections? And, without a common conceptual



language to reconcile the mental and the physical, how can psychology be
called a science?

In this chapter I will show, through the use of a specific example and its
detailed analysis, that the concepts and language introduced in chapter 1 are
precisely what psychology needs. But first, as a context within which to
embed these new ideas and results, let’s briefly consider some of the short-
comings of other approaches.

Behaviorism

When we look at the history of psychology it’s easy enough to speculate why
the dictionary includes both mind and behavior in the definition: scientific
psychology is a litany attesting to the continual tension between the two.
B. F. Skinner, for example, appropriated the term behaviorism for a science of
behavior, yet limited his analysis of behavior to the consequences produced
on the environment.! An astonishing fact about behaviorism was that it did
not actually deal with behavior or action, but only the results or outcomes of
individual acts. The central concept of Skinner's behaviorism, the operant,
captured nothing about how behavioral actions were organized spatially and
temporally. Put another way, behaviorism acknowledged that pigeons can
press a lever and rats can run a maze, but it didn’t care a hoot about how the
lever was pressed or the maze run. It treated the organism as a dimensionless
point and ignored the form of behavior produced. Of course, a person may
select a particular action based on the consequences of such action, but this
tells us nothing about the coordination of action per se. Yet we know that
it is this coordination that breaks down in various brain disorders such as
Parkinson’s disease and Huntington’s chorea. And we know that it is impor-
tant when people speak or walk or play the piano. One of the greatest
drawbacks of modern robotic devices is that they lack this flexible coordina-
tive ability.

Perhaps it is because all of us, from early childhood, are so used to coordi-
nating our bodies that the science of mind and behavior (and certainly behav-
iorism) virtually ignored the problem of coordinated action. By analogy, all
of us are familiar with falling, but it took us thousands of years to come up
with the notion of gravitation.? People, as the Gestalt psychologist Wolfgang
Kohler noted years ago, tend not to ask questions about phenomena with
which they are thoroughly familiar. Such, it seems, has been the lot of coordi-
nation as far as most of psychology is concerned. All of us know, in a way,
what coordination is, but little is known about how or why it is the way it is.
One is reminded of the story about a tourist from the dogstar Sirius who
described the most miraculous machine he had ever seen:

A remarkable machine unlike any other I had seen before was rushing toward
me. ... It apparently did not have any wheels but nevertheless moved forward
with an amazing speed. As I was able to see, its most important part was a
pair of powerful elastic rods each one consisting of several segments. ... Each



rod moved along a complex curved arch and suddenly made a soft contact
with the ground. Then it looked as if lightning ran along the rod from the top
to the bottom, the rod straightened and lifted off the ground with a powerful,
resilient push and rushed upwards again.... As I was told, the machine con-
sisted of more than two hundred engines of different size and power, each one
playing its own particular role. The controlling center is on the top of the
machine, where electrical devices are located that automatically adjust and
harmonize the work of the hundreds of motors.?

Maybe we shotld be more like this tourist to see coordinated action as the
miracle it is.

Ethology

The ultimate aim of the field of ethology, the naturalistic study of behavior, was
to describe actions in terms of patterns of muscle activity.* Yet the over-
whelming amount of detail combined with difficulties in recognizing and
classifying relevant chunks of behavior has proved to be an enormous barrier
to understanding. This is an oversimplification, of course, and there are nota-
ble exceptions, such as the seminal work of Erich von Holst in the 1930s that
we will discuss later. Recently, ethologists such as llan Golani® advocated
using a movement notation scheme devised by Eshkol and Wachman (E-W)
to choreograph dance sequences.

Like a musical script, the E-W system provides a permanent record that
allows for the reconstruction of behavioral actions. Without going into all the
details, it treats the body as a set of limb segments, the movements of which
are described relative to an imaginary sphere centered, say, at the carrying
joint. This sphere, like your friendly globe of the world, is marked by coordi-
nates analogous to lines of longitude and latitude. Thus the values of the two
coordinates can be used to specify the position of the limb. A nice feature of
the idea is that the coordinates can be defined with reference to a sphere
centered on the joint of a particular limb, a partner involved in the movement
or some fixed reference point in the environment, thus affording a description
of movement in terms of an individual actor, one actor relative to another, or,
indeed, one actors’ body relative to some outside event, such as orchestral
music (figure 2.1).

The E-W scheme has been used to describe everything from the social
behavior of jackals and Tasmanian devils (small, ferocious, carnivorous marsu-
pials that inhabit Van Diemen’s land), to the ritualized behavior of geese and
aggressive interactions between Australian magpies. One of the most impres-
sive applications is by Golani and John Fentress,® who examined the
ontogeny of facial grooming in mice. They were able to show how grooming
develops from a small set of simple, stereotyped movements into the rich and
precise repertoire of adult mice.

More recently, Golani in collaboration with David Wolgin and Philip
Teitelbaum” used the scheme to analyze recovery of function after lesions to
the rat’s brain, as well as the behavioral effect of drugs. Their results suggested



Figure 2.1 (A) The Eshkol-Wachman (E-W) scheme showing a sphere centered at the
shoulder joint. The path of the elbow is traced on the surface of the sphere. (B) The sphere, like
a geographer’s globe, is marked by coordinate lines analogous to latitude and longitude. Posi-
tions on the surface of the sphere are specified by two coordinates. The E-W notation allows
movement of a limb to be described by its initial position, its final position, and the trajectory
from one to the other.

similarities between the way an adult animal recovers from brain damage and
the way a young intact animal develops certain exploratory behaviors, a ver-
sion of the ontogeny recapitulates phylogeny theme.

From misguided or nonexistent descriptions of behavior in terms of out-
comes or results of action, the E-W system substitutes a formal movement
notation scheme for the description of behavior. Although it allows for objec-
tive and accurate description, it is not at all motivated by theoretical consider-
ations or even the context within which action occurs. Any other ingenious
measurement system could do the job just as well, if not better. Nevertheless,
the E-W system seems the best tool that ethologists have at the moment to
describe naturally occurring behavior.

My view is that accurate description is not enough for a science of behav-
ior, whether of brains or people. Necessary perhaps, but not sufficient. I doubt
very much that naturally occurring behaviors are the place to find laws of
behavioral and neurological organization. Rather, most naturalistic behavior is
simply too complicated to yield fundamental principles. The latter, after all,



are hidden from us and it takes, I believe, either special strategies or pure
serendipity (of the Archimedes in the bathtub kind) to reveal them. Relatedly,
description and explanation are obviously not the same. Explanation demands
theory and a coupling of theory to experiment. No matter how refined a
formal description of behavior is (e.g., dance notation), there is no guarantee
(indeed it seems highly unlikely) that a purely formal approach will provide
any deep insights into the organization of behavior. In fairness, Skinner had a
theory of behavior, but by ignoring behavior, he threw the baby out with the
bathwater. The ethologists refined the measurement of behavior, but the re-
turns, in terms of theoretical insights or understanding, have been modest to
say the least.

Cognitive Psychology

So much for psychology as the science of behavior. What about psychology
as the science of mind? Noam Chomsky, the MIT linguist and activist, is
known to have disliked the term “behavioral science.” For him it suggested a
far from subtle shift of emphasis toward behavioral evidence itself and away
from the abstract mental structures that such evidence might illuminate.
Chomsky’s concern for human language as a subject of study in its own right,
his concept of linguistic competence, an internalized system of rules that
determines both the phonetic structure of a sentence and its semantic content,
bolstered the emergence of modern cognitive science.® Chomsky’s abstraction
away from conditions of language use (“performance”) to the study of formal
rules of structures, and his generally mentalistic, antibehavioristic stance, were
aimed at shifting the science of psychology away from behavior and back to
mind.

Of course, these days the characterization of mental life is dictated by a
machine metaphor: the brain is viewed by many as a sophisticated computer
whose software is the mind. Laymen and scientists alike are prone to de-
scribing almost any activity as involving “information processing.” There are
detractors, however. The philosopher John Searle recently argued that the
brain, as an organ, does not process information by some imaginary computa-
tional rule-following any more than the gut does!® Certainly one can model
some of the functions of the brain on a computer as we do, say, with the
weather, but that should not make us believe that the brain, any more than the
weather, is a computer. Yet many, in my view, take the machine metaphor far
too literally.

In one of my main fields of research, the control and coordination of
movement, the computer metaphor has predominated for years.'° It’s easy to
see why. Actions must be precisely ordered spatially and temporally. Order,
it seems obvious, must be imposed somehow on the motor elements.'! But
how? The machine perspective says that order originates from a central pro-
gram that elicits instructions to select the correct muscles and contract and
relax them at the right time. “Just so,” as Rudyard Kipling might say. Another



artifact familiar to proponents of the machine perspective is the servomecha-
nism. This is good when you want to regulate some property (e.g., limb
position, temperature) using feedback. A template or reference level compares
the feedback it receives with its own value, and based on this comparison,
emits orders to an output device to eliminate any error.

Programs, reference levels, and set points feature heavily in explanations of
intelligent behavior, but where do they come from? How, for example, does a
given reference signal attain its constancy? If a reference signal at one level is
simply the output of another servomechanism at a higher level, this leads to
what philosophers term an “infinite regress,” or, as Daniel Dennett would say,
“a loan on intelligence” that somehow has to be repaid.!2 Any time we posit
an entity such as a reference level or a program and endow it with content,
we mortgage scientific understanding. The loan can be repaid only when these
“phantom users” are vanquished. From the present point of view, it is best not
to use artifactual constructs at all. Computers and servomechanisms are not
natural systems but artifacts whose characteristics are not especially relevant
to understanding living things. Supplanting artifactual machine views of mind
and action with the language of dynamical systems and the concepts of self-
organization may be easier said than done, but that is the journey we embark
on here.

In short, Chomsky and others before and after him tore apart content and
process. Chomsky’s nearly entire emphasis on the competence part of his
performance-competence distinction of linguistic behavior is now pursued to
the extreme by program theorists who see the brain as the programmer and
the body as a mere slave. The thesis here, however, is that psychology might
be better off if it tried to explain the richness of behavior of living things in
terms of self-organization, which does not require science to take out a loan
on intelligence.

In self-organizing systems, contents and representations emerge from the
systemic tendency of open, nonequilibrium systems to form patterns. As we
noted in chapter 1, and as will become more and more apparent as we pro-
ceed, a lot of action—quite fancy, complicated behavior—can emerge from
some relatively primitive arrangements given the presence of nonlinearities.
That is, intelligent behavior may arise without intelligent agents—a priori
programs and reference levels—that act intelligently.

We will need neither the formal measurement schemes of ethology nor the
formal machine vocabulary of cognitive science. Instead, we will emphasize
the necessary and sufficient conditions for the emergence of dynamic patterns
in a complex system, like an animal with a nervous system immersed in a
contextually rich environment.

Gestalt Psychology

Before leaving psychology (which we never really do, since this book is
largely about a science of psychology), I should mention two approaches to



which I am far more sympathetic than those discussed thus far. I will say more
about them later when we consider perceiving as a self-organized process, but
mention them here for the sake of closure, even though they are only loosely
related to the central topic of this chapter. Both views, nevertheless, are
intimately related to the idea of self-organization, but in ways that in my view
are quite complementary. Both are antagonistic to the machine stance.

I'refer first to the Gestalt theorist Wolfgang Kéhler,'* who viewed psycho-
logical processes as the dynamic outcome of external constraints provided by
environmental stimulation and internal constraints of brain structure and func-
tion. No programmable machine metaphor for Khler. Instead, macroscop-
ically organized brain states were deemed the relevant stuff of mental life. The
latter cannot be observed at the micro level of individual neurons, nor can
they be derived by exclusive scrutiny of the microscopic elements. According
to Gestalt theory, only at the molar level of description will correspondences
be found between mental life and brain states.

Gestalt psychologists of the 1930s and 1940s insisted on the primacy of
the language of physics, albeit extended appropriately to include organiza-
tional and dynamic aspects of mind. The perceptual process, for example, had
to be understood as a result of autonomous creation of order in the perceptual
system itself. Kéhler's field-theoretical model of perception viewed the brain
not as a complex network of many different interacting neurons working
together, but as a homogeneous conductor akin to a container full of water.
This view was, I'm afraid, hopelessly wrong. What was not wrong in my
opinion was Kohler’s emphasis on order formation, his adherence to the meth-
odology of natural science, and his insistence that physical or physiological
explanation be paired with the reality of phenomenal experience.

Scholars such as William Epstein and Gary Hatfield in the US, and Michael
Stadler and Peter Kruse in Germany recently reappraised the Gestalt pro-
gram.'* Epstein and Hatfield quite correctly, I think, note that neither the
technological nor the conceptual tools available to Kéhler and his school were
up to the task they set themselves. Brain imaging techniques were nonexis-
tent, and the physics of open, nonequilibrium systems had not yet appeared
on stage. The German scientists, although perhaps not entirely unbiased (for-
giveably so), argued that Gestalt theory anticipated some of the concepts of
complex, nonlinear systems presented in chapter 1. Faimess dictates, however,
that we recognize that the latter were in no way inspired by Gestalt theory.
Nevertheless, I am quite sure that the founders of Gestalt theory would be
positively disposed to efforts to establish that brain and overt behavior follow
natural laws of self-organization.

Ecological Psychology
Of course, it's not only the nervous system of people and animals that is

potentially subject to laws of self-organization. Consider, as the perceptual
psychologist James Gibson did, how we drive an automobile.’® For Gibson



>

N E‘//’
N \\\1/ / 7
s
//“//7}-8&\\?:\\:“—-
////// A \ ~ _
/// /l \\\
/ / ! \
/
8 Vo,

Figure 2.2 (A) Optic flow relative to the focus of expansion (FOE). (B) Optic flow relative to
the focus of contraction (FOC). (C) Optic flow for a bird flying in a straight line. (From reference
15.) .



and his followers, including Michael Turvey, Peter Kugler, and Robert Shaw,
an essential construct is the optical flowfield that specifies properties about the
car’s motion in relation to the environment. This flow, like a fluid, spreads out
as an object is approaching us or we are moving toward a surface (figure 2.2).

From the rate of divergence of optical flow it is possible to detect a simple
parameter, tau (7), that specifies time to contact.!® How we slow down or
speed up the car is determined by how we move in relation to the optic
flowfield. Moving forward on a straight line produces radial expansion of the
flowfield, moving backward radial contraction. Ask yourself how gannets (the
large seabirds that plunge dive in such places as the Firth of Forth in bonny
Scotland) or_your regular housefly “know” when to close their wings or
extend their legs as they approach a surface. In all these and many other cases
such as long jumping, catching a fly ball, running over rough terrain, and
driving a car, timing is controlled in a direct fashion by using .

Of course, this is a much longer and more detailed story than I want to
pursue here (see chapter 7). Gibson’s essential point is that information must
be meaningful and specific to the control and coordination rgg&h;e_r.n\e_ris_o_f_\
action. Rather than grounding perceptual theory on brain states or as compu-
tational rules that generate three-dimensional forms from two-dimensional
images on the retina, the Gibsonian program asks how structured energy
distributions are lawfully related to the environments and actions of animals.
Note that the flowfield and the information it contains are independent of the
particular visual system that occupies the moving point of information. That's
why the gannet, the fly, Carl Lewis (the Olympic long jumper), and Juan
Fangio (for many years the world’s top race car driver) all use the same
macroscopic optical quantity to guide their action.

Perhaps then, this teasing quote from Gibson’s 1979 book (published after
his death), The Ecological Approach to Visual Perception, is not entirely out of
place, setting the stage for what is to come:

The rules that govern behavior are not like laws enforced by an authority or
decisions made by a commander; behavior is regular without being regulated.
The question is how this can be. (p. 225)

What? No deus ex machina? No skeleton in the elevator? No élan vital? No
entelechy? How can this be?

ARE ACTIONS SELF-ORGANIZED? IF SO, HOW?

Here's the basic two-pronged problem. The human body is a complex system
in at least two senses. On the one hand, it contains roughly 107 joints, 10°
muscles, 10° cell types, and 10** neurons and neuronal connections. As Otto
Réssler once said, finding a low dimension within the dynamics of such a
high-dimensional system is almost a miracle.!” On the other hand, the human
body is multifunctional and behaviorally complex. When 1 speak and chew,
for example, I use the same set of anatomical components, albeit in different



ways, to accomplish two different functions. Sometimes, against the wishes of
my sainted mother, I do both at the same time. Next time you watch a film,
observe the rapidly flowing and shifting scene of sound and motion. Where
does one event begin and another end? Where are the boundaries separating
the flow of events? When the voice lowers, when the eyes look askance, when
the face flushes, when the head turns aside, when the hands fidget, what does
all this have to do with what is being said?'® Referring back to the first
chapter, the joint challenges of compositional complexity and pattern complexity
seem to confront us again with a vengeance.

The great Russian physiologist Nikolai Bernstein (1896—1966) proposed an
early solution to these problems.'® He lived in the Soviet Union during the
time that Pavlov’s views were considered the only ideologically correct expla-
nation of higher brain functions. But he was dead against the notion that the
function of the brain could be understood in terms of combinations of condi-
tioned reflexes. One of his chief insights was to define the problem of coordi-
nated action as a problem of mastering the many redundant degrees of free-
dom in a movement; that is, of reducing the number of independent variables
to be controlled. For Bernstein, the large number of potential degrees of free-
dom precluded the possibility that each is controlled individually at every point
in time. How, he asked himself, does coordination arise in a system with so
many degrees of freedom? How do we take a multivariable system and con-
trol it with just one or a few parameters?

The Synergy Concept

The resolution to this problem offered by the Bernstein school contained two
related parts. The first was to propose that the individual variables are orga-
nized into larger groupings called linkages or synergies. During a movement,
the internal degrees of freedom are not controlled directly but are constrained
to relate among themselves in a relatively fixed and autonomous fashion.
Imagine driving a car or a truck that had a separate steering mechanism for
each wheel instead of a single steering mechanism for all the wheels. Tough,
to say the least! Joining the components into a collective unit, however,
allows the collective to be controlled as if it had fewer degrees of freedom
than make up its parts, thus greatly simplifying control. Peter Greene, a
computer scientist-mathematician who did much to promote the work of the
Bernstein school in the US in the early 1970s, likened this idea to an army
general saying, “Take hill eight,” with the many subordinate layers of the
military (subsystems) carrying out the executive command.?°

For the Russian scientists, later led by the eminent mathematician Israel
Gelfand, synergies constituted a dictionary of movements in which the efforts
of the muscles were the letters of the language, and synergies combined these
letters into words, the number of which was much less than the number of
combinations of letters. For Gelfand and colleagues, the language of synergies



was not just the external language of movements but also the internal lan-
guage of the nervous system during the control of movement.?!

The second, absolutely crucial aspect of the synergy concept is that it was
hypothesized to be function or task specific. The notion of synergy is actually
an old one, but earlier ideas associated synergies with reflexes. The reflex,
in fact, was considered the basic building block of behavior. As one of its
greatest advocates, Charles Sherrington, said in the early 1900s “simple re-
flexes are ever combined into greater unitary harmonies, actions which in their
sequence one upon another constitute in their continuity what might be
termed the ‘behavior’ of the individual as a whole.”2? Shades of Isaac Newton.
For Bernstein, the reflex didn’t contribute to the solution to the coordination
problem. Instead, it was part of the problem. The reflex was just another piece
that had to be somehow glued together with other pieces; fancy words like
“great unitary harmonies” weren’t much of a glue.

Testing the Synergy Hypothesis

Bernstein’s hypothesis was not about hard-wired anatomical units; rather,
synergies were proposed to be functional units, flexibly and temporarily as-
sembled in a task-specific fashion. How might this hypothesis be tested? A
stringent test would be to perturb the synergy by challenging only one of its
members. If the organization is really a synergy, then all the other functionally
related members should readjust immediately and spontaneously to preserve
the functional goal.

A good deal of research has gone into identifying these functional
synergies in such tasks as maintaining upright posture, walking, and grasping
an object.2® The experimental examples I like best involve coordinated move-
ments of both arms and the production of speech. I like them because, in the
first case, they are so simple you can do them yourself sitting in an armchair.
In the case of speech, they are technically very difficult to do but are well
worth the effort. Both experiments helped put the synergy hypothesis on
solid ground.

Pick two targets, one for each hand, that are a different distance away. The
task is to reach for them when given a “go” signal. It is well known that the
movement time for a single limb depends on the distance the limb has to
move and the precision requirements of the target. What happens when the
two hands must move very different distances to targets whose precision
requirements also differ? This question came up in a graduate seminar I taught
in 1977. 1 well remember one of my students, Dan Southard, using two pieces
of curtain material as targets and showing that the limbs reach both targets
practically simultaneously. In other words, the brain coordinates both limbs as
a single functional unit. This is revealed only when you do high-speed film
analysis of the movements,2* which in those days was extremely time con-
suming. I use the word “functional” because obviously the nervous system
does not have to control both limbs as a single unit. Only under the task



requirement to do two things at once does it create a functional synergy out
of its myriad participating elements.

Speech, of course, is a complex system par excellence. The production of a
single syllable requires the interaction among a large number of neuromuscu-
lar elements spatially distributed at respiratory, laryngeal, and oral levels, all
of which operate on very different time scales. We breathe in and out roughly
once every 4 seconds, the larynx vibrates at a fundamental frequency of about
100 times a second, and the fastest we can move our tongues voluntarily is
about 10 repetitions a second. Yet somehow despite (or maybe because of)
these complications the sound emerges as a distinctive and well-formed pat-
tern. For a baby to say “ba” requires the precise coordination of approxi-
mately thirty-six muscles. The brain must have some way to compress all this
information into something relevant.

Betty Tuller, Carol Fowler, Eric Bateson, and 1 considered speech to be a
prime candidate for testing the synergy hypothesis.?® But how to test it? First
we had to construct a device to perturb an important speech articulator.
We chose the jaw, in part because it moves up and down (and sometimes
sideways) for all kinds of sounds, and earlier work by John Folkins and James
Abbs showed that it was possible to perturb the jaw and obtain interesting
results.?® The very fact of “pipe-block” speech suggests that some kind of
synergizing process is going on. Freeze the jaw’s motion by putting a pipe in
your mouth, and you still don't disrupt speech. (Pipe and cigar smokers do it
all the time: a functional analogue to the stiff upper lip). However, one might
argue that a lot of learning goes into producing speech with a pipe in your
mouth. The strongest test of the synergy hypothesis would be to perturb a
person’s jaw suddenly during speech and see if other remote members of the
putative synergy spontaneously compensated the very first time the perturba-
tion was applied. Remember, the synergy concept refers to a functionally, not
mechanically, linked assembly of parts. Any remote responses observed
should be specifically related to the speech sound actually being produced.

We used infrared light sensors to transduce movements of the lips and jaw.
Fine wire electrodes were inserted into speech muscles such as the genioglos-
sus, a major tongue muscle, to monitor electromyographic (EMG) activity.
With the help of Milt Lazanski, an orthodontist, designed a special jaw
prosthesis made of titanium for the two subjects. Gaps for missing teeth due
to old rugby injuries enhanced the ability to set the prosthesis firmly into the
subject’s mouth.

The results were stunning. When we suddenly halted the jaw for a few
milliseconds as it was raising toward the final {b] in [b @ b] (thymes with lab),
the upper and lower lips compensated immediately so as to produce the [b]
but no compensation was observed in the tongue. Conversely, when we
applied the same jaw perturbation during the final [z] in the utterance b a z,
rapid and increased fongue muscle activity was observed exactly appropriate
for achieving the tongue-palate configuration for a fricative sound, but no
active lip compensation.



In short, the form of cooperation we observed in the speech ensemble was
not rigid and sterotypic; rather, it was flexible, fast, and adapted precisely to
accomplish the task. The many components of the articulatory apparatus
always cooperated in such a way as to preserve the speaker’s intent. The
functional synergy, as it were, revealed.

FROM SYNERGIES TO SYNERGETICS

Synergies correspond to some kind of collective organization that is neurally
based. They simplify control, or, as Bernstein would have it, they render
control of a complex multivariable system possible. But how are synergies
formed? What principles govern their assembly? Bernstein saw coordination
as the organization of the control of the motor apparatus. Just as the theoretical
concepts of self-organized pattern-formation in open systems were not avail-
able to the Gestaltists, so it was with the Bernsteinians. Nevertheless, both
groups looked to the future possibilities of “antientropic processes” in open
systems to account for autonomous order formation in perception and action.
In his last book, The Coordination and Regulation of Movements (Oxford:
Pergamon, 1969), Bernstein foresaw the end of the honeymoon between the
sciences of cybernetics (servomechanisms and the like) and physiology, and
Kohler intuited that the general systemic tendency toward equilibrium of
inanimate matter (linear thermodynamics) was not really applicable to the
organism.

Michael Turvey, long an advocate of Bernstein’s approach to motor control
and Gibson's ecological approach to visual perception, summed up the re-
search conducted in the context of Bernstein’s formulation of the degrees of
freedom problem as the first major round of theorizing and experimentation on
coordination.2”. The second major round revolves around some of the ques-
tions that 1 have raised above. In a sense, round 2 really started with a pair
of papers published in 1980 by Peter Kugler, Turvey, and me. More con-
cretely, it began with a rather vague and unsubstantiated claim, namely, that
a functional synergy is a dissipative structure “that expresses a (marginally)
stable steady state maintained by a flux of energy, that is, by metabolic
processes that degrade more free energy than the drift toward equilibrium.”?®

A somewhat controversial Nobel Prize (aren’t they all) had just been
awarded in 1977 to llya Prigogine for his theory that, as a system is driven
away from thermodynamic equilibrium, it may become unstable and then
evolve new, coherent, dissipative structures. As 1 mentioned earlier, Hermann
Haken introduced the term synergetics in the late 60s to describe an entire
interdisciplinary field dealing with cooperative phenomena far from equilib-
rium. (Synergetics, by the way, is not a cult, but rather Haken's theory of how
pattern-formation phenomena that arise in different contexts and disciplines
are related, e.g., in the laser, chemical reactions, and fluid dynamics.)

If 1 may digress just a bit, the approaches of Haken and Prigogine (and
for that matter, Rene Thom's catastrophe theory) are actually very different,



even though they've often been bundled together in popular treatments.
Prigogine’s original theory was heavily weighted toward equations of a
thermodynamic character that describe the behavior of ensemble averaged
macroscopic quantities. Haken’s work, from its very beginning, always in-
cluded an essential role for, and explicit treatment of, microscopically gener-
ated fluctuations. This is also where it deviates from Thom’s completely
deterministic theory.?® Fluctuations, as we will see, turn out to be quite cru-
cial, both conceptually and methodologically, to our understanding of self-
organization in living things.

Kugler and Turvey>? stress the relationship between the stability and re-
producibility of oscillatory movements and dissipative structures. One of their
major goals is “to explain the characteristic quantities (emphasis theirs) of a
rhythmic behavior—for example, its period, amplitude and energy per cycle
(emphasis mine) [which] cannot be rationalized by neural considerations
alone” (p. 4). In a series of experiments in which subjects oscillated a pair of
hand-held pendulums whose length and mass could be independently varied,
they and their colleagues discovered a number of fascinating relationships
between these “characteristic quantities.” For example, the pendulum period,
over variations in the masses and lengths of pendulums, was proportional to
mass to the 0.06 power and to length to the 0.47 power. They were able to
match these empirical results with a model in which the characteristic fre-
quency was that of the free, undamped motion of the pendulum with a spring
attached a short distance away from the pendulum’s axis of rotation. The
spring represents muscles and tendons that elastically store and release me-
chanical energy. In their words, the wrist-pendulum system is a “macroscopic
mechanical abstraction ... in which ... the only forces at work in the abstrac-
tion are the gravitational force (F,) and an elastic force (F,)" (p. 178).

A rather amazing feature of this macroscopic mechanical abstraction is that
it helps explain certain features of quadruped locomotion, specifically the limb
frequencies of animals (large and small) moving about the Serengeti plains.
When plotted against limb length or mass, the stepping frequency, from
Thompson’s gazelle to the black rhinoceros, falls on three straight lines, one
for each locomotory mode. Kugler and Turvey's pendulum-with-spring
model, which represents the joint effects of gravity’s tendency to return the
limb to its equilibrium position and the spring's stiffness or restoring torque,
fits the data remarkably well. In fact, for each animal cruising across the
Serengeti they found that the ratio of spring torque to gravity’s restoring
torque was unity for walking, six in trotting, and nine in cantering. As Turvey
elegantly points out, there is universality to the design of locomotion, a
particular exploitation of nature’s laws.3!

But which laws are we talking about? Everything that has been empirically
established thus far in hand-held pendulum studies appears to be consistent
with Newtonian physics. The limbs of an animal (or person) behave like an
inverted pendulum coupled to a spring. Colin Pennycuick, who collected the
Serengeti locomotion data, uses them to support the following claim:



[Alt the intermediate scales of biology, Newtonian physics still works as well
as it ever did. The reason is that Isaac Newton was himself a medium-sized
animal, and naturally discovered laws that work best over the range of scales
which he could perceive directly. ... Biology occupies that range of scale in
which Newtonian mechanics can account for physical processes to a level of
precision appreciably higher than that to which most biologists are accus-
tomed. In biology, if not in physics, Newton still rules.*?

From the point of view of self-organization in complex systems in which
dynamic instabilities play a central role, nothing could be farther from the
truth. In the context of coordination in living systems, appropriate observables
are not usually provided by Newtonian mechanics but have to be discovered.
The Kugler-Turvey research program stressed scaling laws among (averaged)
physical quantities such as mass, length, and frequency of oscillatory move-
ment, and produced some important results. But such quantities tell us nothing
about how the limbs are coordinated (e.g., in a walk as opposed to a trot or
gallop), or the principles of neuromotor organization through which such
coordinative modes spontaneously arise, stabilize, and change. Entirely new
quantities are necessary to capture the coordination of living things as a
self-organized phenomenon. Dynamic instabilities, long at the core of pattern
formation in open nonequilibrium systems, provide a way to find them. In
summary, if coordinated action is based on functional synergies and if func-
tional synergies are indeed self-organized, most if not all of the criterial fea-
tures of self-organized, synergetic systems—multistability, bifurcations, sym-
metry breaking fluctuations, etcetera—should be found in behavior itself.
How, then, do we go from a potentially fruitful analogy to experiments at the
bench? How can behavior be understood as a consequence of self-organizing
processes? Obviously we have to find an experimental model system that may
give some of these ideas a concrete and precise meaning. Such a model system
should be simple and accessible, yet still retain the essentials of the coordina-
tion problem. A tall order indeed.

REQUIREMENTS OF A THEORY OF SELF-ORGANIZED BEHAVIOR

Theory is a good thing but a good experiment lasts forever.
—Peter Leonidovich Kapitsa

The front page of the January 1993 issue of the American Psychological
Association’s Monitor contained the following headline:“Chaos, chaos every-
where is what the theorists think.” According to the article, psychologists
picked up on the chaos idea in the early 1980s and “have been applying it
with a vengeance ... to both hard core scientific aspects of psychology and
clinical psychology, including both family and individual therapy.”

I am not going to comment on the rhetoric surrounding the buzzword
chaos and how it provides a more holistic view of human life, except to say,
chaos of what? What are the relevant variables that are supposed to exhibit



chaotic dynamics? What are the control parameters? And how do we find
them in complex living systems where many variables can be measured, but
not all are relevant? Certainly, if we are so inclined we can use the word chaos
to explain everything, but how do we find the nonlinear equations of motion,
whether continuous or discrete, in the first place? What is the x in nonlinear
equations of the type ¥ = f(x, 1), the derivative of a variable x with respect to
time is a function of x and a parameter, A? What are the attractors? What does
the bifurcation diagram look like? Are these concepts and mathematical tools
even relevant? How does one establish them, even in a single case?

All the hype about chaos and fractals tends to sweep these questions under
the rug while everyone admires the nice pictures. Don't get me wrong, I like
chaos and fractals. Some of my best friends do this stuff. I also like numerical
simulation and computer graphics—couldn’t do without them, in fact. They
allow you to see inside a mathematical theory. But, as a scientist, I want to
know what these pictures represent; I especially want to know that the mathe-
matical equations represent (some small portion of) reality. There has to be
some connection between mathematical formulae and the phenomena we are
trying to understand. Without this connection, as the popular song goes,
we're “p___ing in the wind.” Establishing a connection between theory and
experiment is one of the canons of science that the “chaos, chaos everywhere”
crowd seems to ignore.

Once Again—Dynamic Instabilities

Unlike the fluid patterns and chemical reactions described in chapter 1, or
Haken’s famous laser example where the microscopic level of molecules or
atoms is well-defined, in biology and psychology the path from the micro-
scopic dynamics (e.g., the brain with 10'* neurons and neuronal connections)
to collective order parameters for macroscopic behavior is not readily accessi-
ble to theoretical analysis. So how might the spontaneous formation of pat-
tern—self-organization—Dbe studied? What kind of dynamical law gives rise
to the self-organization of behavior? The answers to these questions are
rooted in the notion of instability of motion.

What's so special abouirst, they provide a special entry
point because they allow a clear distinction between one pattern of behavior

and another. Instabilities demarcate behavioral patterns, thereby enabling us

to identify the dimension on which pattern change occurs, the so-called collec-
tive variable or order parameter concept of synergetics. As I mentioned
earlier, very many observables may, in principle, contribute to a description of
behavior even if observation is restricted to a single level. If we study a
system only in the linear range of its operation where change is smooth, it's
difficult if not impossible to determine which variables are essential and which
are not. Most scientists know about nonlinearity and usually try to avoid it.
Here we actually exploit qualitative change, a nonlinear instability, to identify
collective variables, the implication being that because these variables change
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abruptly, it is likely that they are also the key variables when the system
operates in the linear range.

Second, instabilities open a path into theoretical modeling of the collective
variable dynamics. In other words, they help us find the equations of motion.

The idea is to map observed patterns onto attractors of the collective variable.
Instabilities, as we have seen, are created by control parameters that move the
system through its collective states. Candidate control parameters have to be
found, and instabilities offer a way to find them. Collective variables and
control parameters are the yin and yang of the entire approach, separate but
intimately related. You don't really know you have a control parameter unless
its variation causes qualitative change; qualitative change is necessary to iden-

tify collective variables unambiguously.
Third, instabilities provide a means to evaluate predictions about the non-

linear, collective variable dynamics near crisis or critical points. Two predicted
features of synergetics concern critical fluctuations and critical slowing down. In
the former, values of collective variables undergo large fluctuations as instabil-
ity is approached. Fluctuation enhancement, in fact, may be said to anticipate
an upcoming pattern change. Critical slowing down refers to the ability of the
system to recover from a perturbation as it nears a critical point. This recovery
process takes longer and longer the closer the system is to a critical state.
Measurement of the time it takes to return to some observed state—local
relaxation time—is an important irwﬂjﬂind its loss when patterns
spontaneously form.

Finally, on a more conceptual level, instabilities are hypothesized to be one
of the ge’n_e_r_ic/mgghggisms for flexible switching among multiple attractive

states; that is, for entering and exiting patterns of behavior. Thus, although
transitions may be realized or instantiated in a multitude of ways on many
different levels, the generic mechanism of instability is universal to all of them.
To summarize briefly, we have tried to rationalize instabilities on both
methodological and conceptual grounds as a fundamental mechanism underly-
ing self-organization. All that remains now is to establish their existence in
human brain and behavior, speifically, in the experimental laboratory.

The Phase Transition Story

I must admit that how the next sequence of events unfolded is still a bit of a
mystery to me. It’s a strange mixture of intuition and serendipity. Or, as Louis
Pasteur was purported to say, luck favors a prepared mind. The background is
this. ] was aware through reading Haken's work that when macroscopic pat-
terns of behavior change qualitatively, the dynamics of the entire system may
be dominated by one or a few order parameters: when rolling motion starts in
Bénard cells there is an enormous compression of information. I was aware
also of Schrodinger's order-order transition principle as his proposed new
physical principle of biological organization. So some rather vague form was
circulating in my mind. But how to create an experimental way to study these



ideas so that they might no longer be vague but mathematically exact? To
want the rules of behavior to be self-organized is one thing, but finding a
means to realize one’s desires is another issue entirely.

Ore intriguing idea was that gait transitions—when an animal shifts from,
say, a trot to a gallop—might be analogous to the simplest form of self-
organization known in physics, namely, the nonequilibrium phase transitions
analyzed by Haken. Unfortunately, no one had studied gait transitions in this
way, and it was quite impossible to conceive of doing the experiments at
Haskins Laboratories, which is world famous for its research on speech, not
animal locomotion. Imagine, then, the following scene.

It is the winter of 1980 and I'm sitting at my desk in my solitary cubicle late
at night. Suddenly from the dark recesses of the mind an image from an ad for
the Yellow Pages crops up: “Let your fingers do the walking” To my amaze-
ment I was able to create a “quadruped” composed of the index and middle
fingers of each hand. By alternating the fingers of my hands and synchro-
nizing the middle and index fingers befween my hands, I was able to generate
a “gait” that shifted involuntarily to another “gait” when the overall motion
was speeded up. Talk about the spontaneous formation and change of ordered
patterns! .

On hindsight, the emergence of this idea was itself a kind of phase transi-
tion reminiscent of the kind experienced by my favorite sleuth, Philip Trent.
As his friend, Dr. Fairman explains: “‘What Trent means is to put it quite
simply, that a certain concept had planted itself in his subconsciousness, where
an association of ideas had taken place which abruptly emerged, quite sponta-
neously and unsought, in the sphere of consciousness.” The Inspector gazes
grimly at the speaker for some moments. Oh! If that’s all he means, why
couldn't he say so? You have relieved my mind. He turned to Trent, “You had
a brain-wave—is that it?' "33

The effect was unbelievably compelling, a real party trick, as one reviewer
from the journal Nafure said. I quickly found that the situation could be
simplified even further to involve just the two index fingers. Was this a
paradigm that perhaps might provide a window into self-organization in
biology and behavior, that might take us from a potentially fruitful analogy to
experiments at the bench? As my colleague Pier-Giorgio Zanone (whose work
with me on learning you'll see more about in chapter 6) is fond of remarking,
“I can't believe it!” Neither, frankly, could I. The next step was to establish the
reproducibility of the phenomenon in a series of experiments. That’s just a first
step, of course, but here’s the gist of what I did.

A Phase Transition in Human Hand Movements

My original experiments involved rhythmical behavior.>* There are a lot of
good reasons why rhythmical movements are a good place to start. Rhythmi-
cal behaviors are ubiquitous in biological systems. Creatures walk, fly, feed,
swim, breathe, make love, and so forth. Rhythmical oscillations are archetypes
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Figure 2.3 One version of the bimanual phase transition paradigm. Subjects move their index
fingers rhythmically in the transverse plane with the same frequency for the left and right
fingers. The movement is monitored by measuring continuously the position of infrared light-
emitting diodes attached to the fingertips. The electromyographic (EMG) activity of the right
and left first dorsal interosseus (DI) and the first volar interosseus (V1) muscles are obtained with
platinum fine-wire electrodes. (Drawing by C. Carello.)

of time-dependent behavior in nature, just as prevalent in the inanimate world
as they are in living organisms. Although they may be quite complicated, we
have the deep impression that the principles underlying them should possess
a deep simplicity. Ordering or regularity in time is important also for techno-
logical devices, including computers. '

The task for my subjects, initially colleagues at the lab who wondered what
on earth I was up to, was to oscillate their index fingers back and forth with
the same frequency of motion in each finger (figure 2.3). Subjects can stably
and reproducibly perform two basic patterns, in-phase (homologous muscle
groups contracting simultaneously) and antiphase (homologous muscle
groups contracting in an alternating fashion). Using a pacing metronome to
speed up finger twiddling, oscillation frequency was systematically increased
every few seconds from 1.25 cycles per second (Hz) to 3.50 Hz in small steps.
Figure 2.4 shows a time series when the subject was instructed to begin
moving her fingers in the antiphase mode.

Before going too much further, I should say a bit more about the instruc-
tions 1 gave because they are important. Subjects were required to produce
one full cycle of movement with each finger, for each beat of the metronome.
Furthermore, if they felt the pattern begin to change, they should not con-
sciously try to prevent it from happening but rather adopt the pattern that
was most comfortable under the current conditions. “If the pattern does
change,” I told them, “don't try to go back to the original pattern but stay in
the one that's most comfortable. Above all, try to keep a one-to-one (1:1)
relationship between your rhythmical motions and the metronome beat.” My
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Figure 2.4 (A) The time series of left and right finger position shows the transition from
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antiphase movement to in-phase movement. From left to right the movement frequency, (F),
was increased. (B) The point estimate of relative phase (obtained from the relative position of
the left finger's peak extension in the right finger’s cycle) changes from fluctuating around 180
degrees to fluctuating around 360 degrees. (C) A more refined measure of relative phase is the
continuous estimate, obtained from the difference of the individual finger’s phases that were
calculated from the phase plane (x, 1) trajectory. (D) The EMG record of left and right first DI
muscles also shows the change in phasing.



reasons for all this will become clearer later on when we consider the role of
volition or intentionality in the self-organization of behavior (chapter 5). For
now, it's important to establish the mechanisms underlying involuntary or
spontaneous pattern formation and change.

As figure 2.4 clearly reveals, around a certain frequency of movement (the
critical region), subjects spontaneously switch from the antiphase parallel mo-
tion of the fingers to an in-phase symmetrical pattern. No such switching,
however, occurs when the subjects start in the in-phase mode. They stay there
throughout the entire frequency range. Thus, while people can produce two
stable patterns at low frequencies, only one pattern remains stable as fre-
quency is scaled beyond a critical point.

I devised a way to monitor the transition behavior by calculating the phase
relationship between the two fingers. A point estimate of relative phase is the
latency of one finger with respect to the other finger’s cycle time or period,
determined from its peak-to-peak displacement. When the latency, f, of one
finger, (x,), is divided by the period, T, of the other (xz) and multiplied by 360
degrees, we obtain the relative phase in degrees (figure 2.5A). This measure
evaluates coordination at only one point in each cycle. I also made a continuous
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Figure 2.5 (A) Calculation of relative phase as a point estimate from two time series.
(B) Calculation of the continuous relative phase from phase plane trajectories (see text).



estimate of relative phase by calculating the relative phase at the sampling rate
of 200 times a second. Figure 2.5B shows how this was done. The phase plane
trajectory (a plot of each finger's velocity, , versus its position, x) of each
finger is shown. Normalizing the finger oscillations to the unit circle, the
phases, ¢, and ¢, of the fingers are obtained simply from the arctangent,
(x/x), if x is the normalized position. The continuous relative phase is then just
the difference (¢, — ¢g) between these individual phases at every sample. In
figure 2.4 we see that the relative phase fluctuates before the transition and
stabilizes thereafter. Amazing!

I first formally reported the result at a major meeting of experimental
psychologists in the United States, the Psychonomic Society, in 1981. My talk
wasn’t very well attended. In those days, self-organized phase transitions
in psychology were hardly in vogue. A little later, in March 1982, Ammold
Mandell and Gene Yates invited me to a conference they were organizing at
Ray Kroc's ranch (the late Ray Kroc of McDonald’s hamburger fame) in Santa
Barbara called “Nonlinearities in Brain Function.” With all the hoopla about
chaos in the brain—not to speak of other body parts—in the last few years,
Mandell and Yates are seldom mentioned. In my opinion, history will reveal
them as visionaries, far ahead of their time.

I will never forget the Kroc conference. It was one of the intellectual
highlights of my life. Arriving at the ranch after a bus journey through the
Santa Barbara hills (during which Mandell, referring to the latest work in
nonlinear dynamical systems, told me excitedly, “You ain’t seen nothin’ yet!”),
we quenched our thirst at a huge sideboard containing individual dispensers
of every drink imaginable. This Irishman’s dream.

But when it came to proposing theoretical models of my phase transition
experiments, the well, so to speak, was dry. And this well included some of
the top theoretical physicists and applied mathematicians (as well as neuro-
biologists) in the world. For example, I roomed with a young theoretical
physicist from Los Alamos, Doyne Farmer, who was later featured promi-
nently in James Gleick's book Chaos. Farmer was and is right at the forefront
of the nonlinear dynamics business, and a brilliant teacher to boot. I felt
embarrassed to show my little toy model borrowed from catastrophe theory.
Little did I know at the time that the picture I'd formed was a reasonably good
guess, but hopelessly wrong in detail. It was only an image, a vague analogy,
at best. Here are my notes from 1982, word for word, describing this crude
picture which was resurrected from my files (figure 2.6):

Think of an asymmetric potential well; choose the initial condition by ap-
plying a “force”(?) favoring the left-hand well [the antiphase pattern]. As this
potential system is scaled(?) the right hand well [the in-phase pattern] becomes
strongly favored, i.e., the depth of the right-hand well relative to the left is
increased. When the left-hand well is somewhat flat, the system is particularly
influenceable such that any increase in “dissipative noise” will effect a shift
into the right-hand well (a favored mode).
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Figure 2.6 The original phase transition model presented by the author at the Kroc Founda-
tion conference on “Nonlinearities in Brain Function.”

Brackets are added to clarify the meaning of left- and right-hand wells. The
question marks are in the original notes and reflect my uncertainty about
which words to use. More sophisticated alternatives to figure 2.6 were sug-
gested to me at the Kroc meeting—Niemark bifurcations, forced Duffings,
and the like. Although I didn’t fully understand them at the time, these turned
out to be wrong too. ’

One person who was unable to attend the Kroc conference due to illness
was the theoretical physicist Hermann Haken. Although I didn't know it (or
him), he was just the person I was looking for.

To cut a long story short, after reading a draft of my experimental paper
that I had sent to him for comments, Haken invited me to come to Stuttgart
in the summer of 1983 to work with him and his co-workers on a theoretical
model of phase transitions in human hand movements. From that point on,
a strategy evolved in which perceptual-motor coordination was viewed no



longer as a fairly peripheral (to some) topic of study in its own right, but as a
window into biological self-organization. The mystery is that none o_f this
would have happened had I not imagined my fingers as walking.

From Phenomena to Theory

To recap, the main features of my experiment were fourfold. First was the
presence of only two stable coordination patterns between the hands. Which
one was observed was a function of the initial conditions, meaning how
subjects were instructed to move their hands at the beginning of the experi-
ment. The fact that humans can stably produce, without a lot of learning (see
chapter 6), only two simple coordination patterns between the hands remains
for me an absolutely amazing fact. A complex system of muscles, tendons, and
joints interacting with a much more complex system composed of literally
billions of neurons appears to behave like a pair of coupled oscillators. A truly
synergetic effect! Later, Betty Tuller and I showed that even skilled musicians
and people who have had the two halves of their brain surgically separated to
control epileptic seizures are still strongly attracted to these two basic pat-
terns.3® That is not to say that other timing patterns are impossible; only that
people have a great deal of difficulty producing them. Second was the abrupt
transition from one pattern to the other at a critical movement frequency.
Third was the result that beyond the transition, only the symmetrical pattern
was stable. Fourth, when cycling frequency was reduced, subjects did not
spontaneously return to the initially prepared antisymmetrical pattern but
stayed in the symmetrical one.

Now that we are in possession of the main facts, the next step is to identify
candidate collective variables and control parameters. Since the fingers are
moving at a common frequency, one candidate order parameter for coordina-
tion might be the relative frequency or frequency-ratio between the time-
varying components. But frequency-related measures are inadequate because
they refer to events occurring in an individual component, not between com-
ponents. As | emphasized before, to understand coordinated behavior as self-
organized, new quantities have to be introduced beyond the ones typical of
the individual components. Also, we need a variable that captures not only
the observed patterns but transitions between them. Only the phase relation
appears to fulfill these requirements.

Unlike many other possibilities, it is relative phase that reflects the coopera-
tivity among the components and embodies the kind of circular causality
typical of synergetic systems. Thus, on the one hand, the interaction of the
subsystems (here the individual finger motions) specifies their phase relation,
and on the other, phase specifies the ordering in space and time of the individ-
ual subsystems. Also, as figure 2.4 shows, the phase relation changes far more
slowly than the variables describing the behavior of the individual compo-
nents that are oscillating to and fro—another typical feature of the collective
variable or order parameter concept. But the most important reason why



phase is a suitable order parameter is that it changes abruptly at the transition
and is only weakly dependent on the prescribed frequency of movement
outside the transition region. Since frequency of movement induces a qualita-
tive change in phase, it may be considered an appropriate control parameter.
The final step is to develop a theoretical model that captures the main
qualitative features of the data. If we can do that, quantitative predictions may
be expected to follow. But extracting a law of coordination from a set of
measurements is not so trivial. The big plus here is that we've done a simple
experiment that contains many of the desirable features of biological systems
that we want to understand, such as stability, flexibility, switching capability,
and so on, yet at the same time prunes away many of the real life complica-
tions typical of naturally occurring behaviors. Just as Galileo used an inclined
plane (which he could manipulate) to understand the free fall of objects (which
he could not), so this phase transition situation allows us to understand how
coordinated actions are self-organized. Now the aim is to obtain a precise
mathematical description of coordination, stripped down to its essentials.

A Brief Digression

I promised myself as well as the reader that I would limit the number of
mathematical equations in this book, relegating them to the technical litera-
ture. But the main equation describing coordination is about to appear on
center stage, and to develop it I need a few elementary concepts from the field
of dissipative dynamical systems. A dynamical system is simply an equation or
set of equations stipulating the evolution in time of some variable, x. In our
case we are interested in the temporal evolution of our hypothesized collec-
tive variable, relative phase. How does it change from moment to moment as
the control parameter varies?

A dynamical system lives in a phase space that contains all the possible
states of the system and how these evolve in time. A dissipative dynamical
system is one whose phase space volume decreases (dissipates) in time. This
means that some places (subsets in the phase space) are more preferred than
others. These are called attractors: no matter what the initial value of x is, the
system converges to the attractor as time flows to infinity. For example, if you
stretch a spring or displace a damped pendulum, they will eventually wind
down and stop at their equilibrium positions. The attractor in each case is a
fixed point or simply point attractor.

Some people say that point attractors are boring and nonbiological; others
say that the only biological systems that contain point attractors are dead
ones. That is sheer nonsense from a theoretic modeling point of view, as it
ignores the crucial issue of what fixed points refer to. When I talk about fixed
points here it will be in the context of collective variable dynamics of some
biological system, not some analogy to mechanical springs or pendula. Other
kinds of attractors than fixed points also exist, such as limit cycles and chaotic
attractors, but we'll discuss them more fully as they emerge in specific exam-
ples later on.



An important concept related to the idea of attractors is the basin of attrac-
tion. For a given attractor, this refers to the region in phase space in which
almost all initial conditions converge to the attractor. Several attractors with
different basins of attraction may also exist at the same time, a feature called
multistability. Multistability, the coexistence of several collective states for the
same value of the control parameter, is, of course, an essential property of
biological dynamics. When a control parameter changes smoothly, the attrac-
tor also usually changes smoothly. However, when the parameter passes
through a critical point, a qualitative change in the attractor may take place.
This phenomenon, as mentioned before, is called a bifurcation, the mathemati-
cal term used in dynamic systems theory, or nonequilibrium phase transition, the
term preferred by physicists because it includes the effects of fluctuations.

Finally, when the direction in which the control parameter varies is changed,
the system may remain in its current state or switch at a later point, thereby
exhibiting hysteresis. This means that an overlapping region exists where,
depending on the direction of parameter change, the system can be in one of
several states. As we have stressed, bifurcations and hysteresis are hallmarks
of nonlinearity in complex biological systems.

The Haken-Kelso-Bunz Model

What, we asked ourselves, is the layout of attractor states in our hand move-
ment experiments, and how is that layout altered as a putative control param-
eter is changed? Answers to these questions rest on the nature of the collec-
tive variable relative phase, ¢, which turns out to possess an amazing
symmetry in both space and time. A symmetry is simply a transformation that
leaves the system the same afterward as it was before. What can systems with
symmetry do? Imagine your fingers walking again. If you look in the mirror
while you do the antiphase and in-phase movements, you can exchange left
or right hands and the phase relation does not change. In other words, a spatial
symmetry exists. Similarly, the hand motions are periodic, repeating at regular
intervals in time. If we shift time by one period forward or backward the
relative phase stays the same. Periodicity, in other words, constitutes a tempo-
ral symmetry. The fact is that the only phase relations possible under left-right
exchange and a phase shift of 2z are in phase (¢ = 0) and antiphase (¢ = *n).
It almost suspends belief that these silly hand movement experiments reveal
the existence of a spatiotemporal symmetry that govems the way individual
components (here the fingers) interact in space and time.

Of course, much of the action will come when we break or lower this
spatiotemporal symmetry, which nature does all the time! But for now, the
task is to postulate the simplest mathematical function that could accommo-
date space-time symmetry, bistability, and the observed bifurcation diagram
in the walking fingers experiments. Let’s call this function, V, now known in
the literature after Haken, Kelso, and Bunz as the HKB model.® Since V'is
time symmetric (periodic), we can write



Vg + 27) = V(g).
Since V is mirror image or space symmetric (left-right exchange) we can write
V() = V(—¢).

The first condition allows us to express a function, V, as a Fourier series.
According to Fourier, any periodic function, and indeed many functions nor-
mally encountered in physics, can be made up as the sum of simple harmonic
components such as sines and cosines. The second condition eliminates sines
from the function, since only cosines are invariant when ¢ is replaced with
—¢. Any intrinsic left-right asymmetry, of course, requires the inclusion of
sines. For now, to accommodate all our observations we need include only the
first two terms of the Fourier series:

V= —acos¢ — bcos2g,

where the minus signs allow us to interpret the function, V, as a landscape
with attractor states for positive values of  and b.

The behavior of the system is easy to visualize by identifying ¢ with a
black ball moving in an overdamped fashion in the landscape defined by the
function, V. By changing the ratio b/a, inversely related to frequency in my
experiment, we can travel through the evolving landscape as shown in figure
2.7. When we initially prepare the system in a state illustrated by the black
ball in the upper left panel (¢ = =+ ) and decrease the ratio b/a (equivalent to
shortening the period of the rhythmical coordination pattern) we obtain a
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Figure 2.7 The HKB model of coordination. The potential, V(g), as the ratio b/a is changed.
The little ball illustrates the behavior of the system initially prepared (upper left comer) in the
antiphase state. White balls are unstable coordinative states; black balls are stable.



critical value where the ball falls to the lower minimum corresponding to
$=0.

This means that the hand movements exhibit a transition from the anti-
symmetrical (¢ = +7) mode into the symmetrical (¢ = 0) mode. Notice that
when we now reduce the frequency of motion, reversing the direction of
parameter change, starting in the lower right portion of figure 2.7 the system
will stay in the symmetrical in-phase mode even past the critical point. Theo-
retically (and experimentally) ¢ = 0 is the deepest minimum of the function
and therefore the most stable coordination pattern. But even more important
is that our theory contains the experimentally observed and essentially non-
linear hysteresis effect.

We have built up a theoretical model of the phase transition without any
discussion of differential equations. Differential equations arise whenever a
law is expressed in terms of variables and their derivatives, or rates of change.
Our coordination law may therefore be expressed in terms of the derivative
of the collective variable, ¢, which we denote as 4. This is simply the negative
derivative of the function, V, with respect to ¢.

. v
7
= —asing — 2bsin 24.

A beautiful way to intuit this basic coordination law is to plot the deriva-
tive of ¢ (called phi dot or ¢) against ¢ itself for different parameter values.
This is called the vector field of the relative phase dynamics and is shown in
figure 2.8. Note that our coordination law contains stationary patterns or
fixed points of ¢ at places where ¢ is zero and crosses the ¢-axis. When the
slope of § is negative at the abscissa, the fixed points are stable and attracting.
When the slope is positive, the fixed points are unstable and repelling. Arrows
are drawn in figure 2.8 to indicate the direction of flow. Thick solid lines
correspond to stable fixed points; dashed lines represent the unstable fixed
points. As one travels from bottom to top in this figure, decreasing the ratio
b/a, the stable fixed point at ¢ = m eventually disappears, leaving only one at
¢ = 0. The bifurcation, appropriately enough, is called a pitchfork in the
jargon of dynamical systems: the stable coordination pattern at ¢ = 7 is
surrounded by two unstable fixed points delineating its basin of attraction,
only to be annihilated at a certain critical point.

Notice again the terribly important fact that there is no one-to-one relation
between the parameter value and the coordinative patterns. Both modes coexist
for the same parameter value, necessitating nonlinear models. This is what 1
meant earlier by the need to formulate a coordination law that is simple, but
not too simple. Our elementary coordination law possesses a remarkable
symmetry and contains multistability, bifurcation, and hysteresis as primitive
behavioral properties.
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Figure 2.8 The HKB model of coordination expressed as a vector field, arrows indicating the
direction of flow (see text for details). Thick solid and lighter dashed lines correspond to
attractive and repelling fixed points of the collective variable dynamics. Note the inverse
pitchfork bifurcation as the control parameter b/a is decreased.

... And Back Again?

All the main features of my experiments—the presence of only two stable
relative phase or attractor states between the hands; transitions from one
attractor to another at a critical cycling frequency; the existence of only one
attractor state beyond the transition; even hysteresis—have been theoreti-
cally modeled, but so what? What makes us think that HKB theory is any
more than a compact mathematical formulation? If the experiment is a really
crucial one, we still have to prove that our approach has primacy over others,
notwithstanding that it can describe our results well.37 1 have to admit that
one of the main motivations behind these experiments was to counter the
then dominant notion of motor programs, which tries to explain switching (an
abrupt shift in spatiotemporal order) by a device or a mechanism that contains
“switches.” This seems a cheap way to do science, kind of like attributing
thunder to the Norse god Thor. I have the same problem with ascribing words
such as “schizophrenic,” “alcoholic,” and “depressive” to genes, but that's
another book. :

The real power of the synergetic theory of self-organization lies in the
central concept of stability, which is important because stability can be lost.



That is exactly what happens at nonequilibrium phase transitions where pat-
terns form or change spontaneously with no specific ordering influence from
the outside (and no homuncular motor program inside). The hallmark features
of such instabilities are, as I mentioned before, a strong enhancement of
fluctuations (critical fluctuations) and a large increase in the time it takes the
system to relax from a perturbation (critical slowing down). As we will see,
our specific theoretical model of hand movements contains these predictions,
thus allowing us in principle to transcend mere description.

Critical slowing down is easily intuited from the pictures of the evolving
attractor landscape and its corresponding vector field (figures 2.7 and 2.8). In
the former, notice how the potential around ¢ = = deforms, the minimum
in question becoming shallower and shallower as the parameter reaches a
critical point. If perturbed away from its minimum, the little black ball will
relax slowly compared with when the slope around the minimum is steep (top
left). Similarly, in figure 2.8 the slope around ¢ = 0 is greater than the slope
near ¢ = 7 (180 deg.), which progressively gets shallower and hence less
attracting as the parameter approaches criticality. There, the system is poised
to change state by just the slightest little nudge.

Critical fluctuations arise because all real systems are subject to random
fluctuations of various kinds, such as the environment and the multitude of
microscopic components, that produce deviations away from the attractor
state. Imagine a soccer team kicking our little black ball entirely at random.
When the slope of the hill is steep, the ball can’t be kicked very far away from
its equilibrium position. When the slope flattens, however, the same magni-
tude of kick will cause the ball to move much farther away. As a result, near
the critical point the attractor state suffers wild critical fluctuations.

I tested these predictions in the bimanual coordination paradigm with the
help of John Scholz. I had already noted in the original publications that the
phase relation between the limbs became much more variable near the transi-
tion, and discussions with Haken encouraged me to look in detail at the fine
structure of fluctuations.

Scholz and [ measured fluctuations in the two basic coordination patterns
as subjects increased movement frequency by calculating the standard devia-
tion from the relative phase time series. Dramatic increases in fluctuations
were noted for the antiphase, but not the in-phase pattern before the transi-
tion. After the transition, the previously unstable antiphase state (now in-
phase) fluctuated at the same low level as the stable in-phase state, a striking
confirmation of the prediction.® :

We tested critical slowing down by applying a little torque pulse to perturb
briefly and unexpectedly one of the subject’s oscillating fingers. This knocked
the fingers away from their established phase relation and allowed us to
calculate the time taken to stabilize the phase again at its value before the
perturbation. In agreement with theory, we found that as the critical point
neared, the relaxation time in the antiphase mode increased while it remained
constant or decreased in the in-phase mode. Also we found that perturbations



near the critical transition frequency often caused transitions from one mode
to the other, exactly what one might expect from a complex dynamical sys-
tem poised near an instability.*®

Perhaps 1 should say a word or two about how to calculate the theoretical
model parameters a and b. As we know, the ratio |b/a} in the HKB model
corresponds to the control parameter, movement frequency, in the experi-
ment. From another viewpoint, the ratio expresses the relative importance of
the phase-attractive states at 0 and + 7 (we remind the reader that for |b/a| >
0.25, the system is bistable; as the ratio approaches a critical value the anti-
phase state loses stability and for |b/a| < 0.25, the system is monostable at
the in-phase state (see again figure 2.7). Therein lies the secret to calculating
the parameters of our theoretical model. But to do this, we have to take
fluctuations into account explicity. Technically speaking, we have to study the
transition behavior by adding a fluctuating force to the HKB model. This
means solving the stochastic dynamics of ¢ by transforming it into a Fokker-
Planck equation (apologies for the technical jargon). This equation describes
the time evolution of the probability distribution for a system described, like
the HKB model by a potential, V. Gregor Schéner, an expert in stochastic
dynamics, collaborated with Haken and me on this problem.

One outcome of Schéner’s analysis was that it allowed us to determine the
model parameters, @ and b, as well as how strong the noise is in the system,
using experimental information on local relaxation time and variability mea-
sures of the patterns in the noncritical parameter regime. For example, the
relaxation times were predicted as:

Tra,0 = 1/4b + a; Tn = 1/4b — g,

where 0 refers to the in-phase mode and = to the antiphase mode. Similarly,
we were able to estimate the noise strength in the system using measures of
phase variability in the two modes before the onset of the transition.

I should stress that this is not just a parameter-fitting exercise, but rather it
allowed us to check the consistency of the entire approach. Moreover, the
stochastic theory contained another feature that we were able to examine
experimentally, namely, how long the transition should take from antiphase to
in-phase, a variable we called the switching time. An excellent agreement be-
tween the stochastic version of the HKB model and the experimental data was
observed, in terms of both the mean switching time and the shape of the
distribution of switching times.

Obviously, a lot of mathematical details have been left out of this descrip-
tion. Mathematics, as one wag said, is like sex, better performed in private
than in public. However, I did not want to leave the issue of parameter
estimation dangling, as if parameters were left freely blowing in the wind
(as they sometimes are in theories). A conceptually important result of our
analysis is that not just control parameters but fluctuations are instrumental in
effecting transitions, probing the stability of coordinated states and pushing
the system over the edge from unstable to stable states. Confirmation of
theoretical predictions regarding critical fluctuations, critical slowing down,



and switching times reveals that the emergence of coordinated behavior may
be understood in considerable detail in terms of the physics of nonequilibrium
processes. These same effects have now been observed in many other experi-
mental model systems, attesting to the general validity of the theory (see
chapters 3 and 4).

On the lighter side, two real world examples of fluctuation phenomena are
shown in figure 2.9. One picture, under the headline “Nightmare,” shows the
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Figure 2.9 Two real world examples of fluctuations: {A) economic (Reprinted with permis-
sion from Knight-Ridder Graphics Network), and (B) political. (Copyright © 1992 by the New
York Times Company. Reprinted by Permission)



fluctuations in the stockmarket before the big drop of nearly 200 points on
October 13, 1989. Are they critical? The other (“Switch, Don’t Fight, Mr.
Perot,” New York Times, September 18, 1992) shows the independent candi-
date for U.S. president, Ross Perot, on the brink, trying to decide whether to
stay in the race or not. So what pushed him to stay in?

Relating Levels. I. The Components

A key feature of our approach is to characterize coordinated states in terms of
the dynamics of collective variables, in this case, with relative phase as an
order parameter. Obviously, it is possible to study the system on yet another
level of description, namely, that of the individual limb or finger's dynamic

A

Figure 2.10 (A) Limit cycle attractor. (B) Torus or quasi-periodic attractor. (C) Chaotic
attractor.



behavior. Thus we may choose each limb’s position, x;, and velocity, x;
(i = 1,2), as collective variables; collective now with respect to the next lower
level of description, such as the coordination of neuromuscular activities (see
below). The stable and reproducible rhythmic performance of each hand may
now be modeled as an attractor in the phase plane, (x;, x;), in this case a limit
cycle. When the hand is on its limit cycle, it oscillates with a certain frequency
and amplitude that are functions of parameters only, not of the initial condi-
tions. The stability of this attractor is revealed by the fact that trajectories
originating outside the limit cycle spiral inward, whereas trajectories inside
spiral outward toward the limit cycle (figure 2.10A).

The stability of the limit cycle and its persistent, self-sustaining character
are fundamentally due to a balance between excitation and inhibition (from
the nervous system) and dissipation. Dissipation predominates outside the
limit cycle, causing the amplitude to decrease; excitation predominates if x;
and #, are small and inside the limit cycle, causing the amplitude to increase.

Bruce Kay, Elliot Saltzman, and I sought kinematic relations that might
allow us to identify the form of the limit cycle characterizing each oscillating
limb.*! For example, in studying individual hand movements we found that
amplitude of movement decreased monotonically as frequency was experi-
mentally increased. We were able to map this and other observed kinematic
relations onto a limit cycle attractor that combined features of the well-known
Rayleigh and van der Pol oscillators. In performing this mapping, the concept
of stability was once again at the heart of theory. We measured the stability
of the attractor using perturbation techniques similar to those described for
the coordinated case. Trajectories perturbed away from the limit cycle return
more rapidly to strong attractors than weak ones.

Another assumption of limit cycle models is that the oscillation is essen-
tially autonomous. The basic idea is that the phase of an autonomous time-
invariant oscillator is marginally stable, unlike that of a driven oscillator that
is locked to the driving function. A way to check this is to perturb the hand
at different phases of its oscillation and see if and how the phase is reset or
shifted. To assess the pattern of phase shift that the rhythm exhibits, we
constructed and analyzed phase-resetting curves that plot the old phase where
the cycle is perturbed against the new phase at which the cycle stabilizes after
the perturbation.*?> We found that the oscillation tended to be phase-advanced
by a perturbation, thereby producing a consistent phase-dependent shift in
pattern. From these phase resetting results we concluded that central timing
elements in the nervous system responsible for generating rhythms (see chap-
ter 4 and below) are affected by the biomechanical properties (e.g. stiffness,
damping) of the limb being controlled.

A final assumption of limit cycle attractors is that they are effectively one
dimensional, forming a simple closed curve in phase space. However, real
biological systems—and our hand movements are no exception—are not
mathematically ideal, perfectly periodic systems. When plotted on the phase
plane, a thythmic movement trajectory appears instead as a band around some



average closed curve. But how many degrees of freedom are actually in-
volved? If the variability is due to stochastic noise, it is an infinite number—a
daunting prospect. If the band of variability is produced by additional defer-
ministic sources, for example, oscillations having frequencies that are incom-
mensurate with the main frequency, the attractor should be m-dimensional,
one for each oscillatory process. Topologically, such a quasi-periodic attractor
is defined by a m-dimensional torus (T™). Figure 2.10B shows an example for
m = 2. Bands of variability on the phase plane may also be produced by
deterministic chaotic processes that exhibit fractional or fractal dimension*?
(figure 2.10Q).

Using a computational method** that allowed us to estimate the dimen-
sionality of hand movement trajectories directly, we found evidence for two
processes, one at a global scale and one at a small scale. The global process
was a low-dimensional limit cycle attractor entirely consistent with earlier
kinematic results showing stability in the face of perturbation. The small scale
process was essentially infinite-dimensional, that is, stochastic noise. Model
simulations on a computer confirmed this result. The main point is that once
again, although now at the level of the individual components, we can take a
complex dynamic behavior and map or encode it onto a dynamical model
whose veracity can be checked experimentally. By such methods (and I know
how time consuming they are) it is possible to reach an understanding of the
coordination dynamics on different levels.

Relating Levels. II. Coupling

What is the relation between the limit cycle attractors of one hand and the
phase entrained coordination dynamics of two hands working together? Co-
ordinative and component levels of description can now be related by cou-
pling the latter to create the former. This is not as trivial as it sounds. The
simplest kind of coupling is obviously linear, for example, making the cou-
pling a function of the amplitude differences between the oscillators. This
doesn’t work, at least if the goal is to derive all the features observed at the
coordinative level. It turns out that not only do the oscillatory processes have
to be nonlinear, so also does the coupling. Minimally, coupling functions have
to contain terms that are products of individual oscillator amplitudes and
velocities, that is, time derivatives. It is important to emphasize that the
coupling is quite unspecific with respect to the patterns of coordination that
emerge. That is to say, different coupling functions can give rise to the same
coordination patterns.*> Also, changes in coordination can be brought about in
a variety of ways.

Figures 2.11a through c show Lissajous curves of our nonlinearly coupled
nonlinear oscillator model of basic coordination. The different widths and
slopes of the tracings reflect the phase difference between the oscillators. In
each case, the initial conditions of each oscillator are identical, and all that is
done in the computer simulation is to increase the intrinsic frequency of
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Figure 2.11  Computer simulations of nonlinearly coupled nonlinear oscillators. Arrows indi-
cate the starting antiphase state. The coupling is of the form ali, — ;) + Bla, — 1)@ — 1)
where x, and x, refer to the oscillators, and & and p are coupling coefficients. A noise term, F(f),
is added to the coupling. (A) Fixed coupling parameters and noise. (B) Increase in coupling
strength with noise the same strength as A. (O) Coupling parameters same as A, but noise
strength is increased.

oscillation. In figure 2.11a the coupling parameters and the noise level are
constant, and a transition occurs as frequency is increased. In figure 2.11b the
coupling strength is increased, and the transition occurs almost immediately.
A similar result is evident in figure 2.11c, but here the coupling parameters are
as in figure 2.11a, and only the noise level parameter is increased.

A nice way to summarize the entire phenomenon is through the torus plots
displayed in figure 2.12. The state spaces of the two oscillators (x,,%; and
x3,%,) (figure 2.10A) are plotted against each other. For a rational frequency
relationship between the two oscillators, in the present case 1: 1, the relative
phase trajectory is a closed limit cycle and corresponds to a phase- and
frequency-locked state. Figure 2.12a shows a stable antiphase limit cycle tran-
siting (figure 2.12b) to a stable in-phase trajectory (figure 2.120). A flat repre-
sentation of the torus displays the phase of each oscillator in the interval
(0, 2m) on horizontal and vertical axes. The constant relative phase between
the oscillators is reflected by straight lines.

In the flat representation shown in figure 2.13a the phase relation is 7; that
is, one oscillator’s phase is zero and the other is x. The apparent discontinuity
is not real, but is due to the 27 periodicity of the phase. Thus, when you fall
off the top edge of the plane in figure 2.13a you reappear at the bottom.
Figure 2.13, parts b and ¢ show the transition to the in-phase relationship {(zero
phase lag between the oscillators).

The conclusions from experiment and theory are inescapable. First, the
same behavioral patterns may be obtained from very different kinds and
strengths of couplings among the components. In other words, invariance of
function is guaranteed despite reconfiguration of connections or couplings
among component elements. Second, and related, several patters (here for
convenience, two) may be produced by the same set of components and
couplings. Such multifunctionality is an intrinsic property of the present ap-
proach. Third, one can see how difficult it is in complex biological systems to



Figure 2.12  Same transition as in figure 2.11 but now displayed on the torus. As coupling is

varied a stable antiphase trajectory (a), loses stability (b), and switches to a stable in-phase
trajectory (c).

attribute the system’s collective or coordinative capabilities to couplings per
se. Many mechanisms, both physiological and mathematical, can instantiate
or realize the same function. The conspicuous lack of a one-to-one relation-
ship between self-organized coordination patterns and the structures that
realize them is a central feature of the present theory, and surely constitutes

one of the basic differences between living things and mechanisms or
machine.*®
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Figure 2.13 Flat representation of the torus displaying the phase of each oscillator on the
horizontal and vertical axis. The transition is the same as shown in figure 2.12.

The Tripartite Scheme—Once More with Feeling

It may be possible to carry out this level-independent analysis when we step
down to other scales, such as that of neurons and neuronal assemblies (see
chapter 8). But for now, let’s pull together the main conceptual themes that
emerge from the walking fingers example. Figure 2.14 represents the linkages
between phenomena and dynamic pattern theory (horizontal mapping) and
between levels of description (vertical mapping). Here are the key points to
keep in mind.

« A minimum of three levels (the task or goal level as a special kind of
boundary constraint, collective variable level, and component level) is re-
quired to provide a complete understanding of any single level of description.

« Mutability exists among levels. For instance, the component level defined
here in terms of nonlinear oscillators may be viewed as a collective variable
level for finer-grained descriptions such as the way agonist and antagonist
muscles generate kinematic patterns.

. Patterns at all levels are governed by the dynamics of collective variables.

In this sense, no single level is any more important or fundamental than any
other.

« Boundary constraints, at least in complex biological systems, necessarily
mean that the coordination dynamics are context or task dependent. I take this
to be another major distinction between the usual conception of physical law
(as purely syntactic, nonsemantic statements) and the self-organized, semanti-
cally meaningful laws of biological coordination. Order parameters and their
dynamics are always functionally defined in biological systems. They therefore
exist only as meaningful characteristic quantities, unique and specific to tasks.

Reprise

[ have demonstrated that simple behavioral patterns and considerable pattern
complexity may arise from the process of self-organization, as emergent con-
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Figure 2.14  The tripartite scheme applied to understanding coordination: the bimanual coor-
dination example (see text for details).

sequences of nonlinear interactions among active components. Ironically, the
very aspect of behavior that scientists, especially psychologists and biologists,
usually try to avoid—instability of motion—turns out to be the key generic
mechanism of self-organization. The very many neurons, muscles, and joints
act together in such a way that the entire system acts as a single coherent unit.

The discovery and consequent analysis of phase transitions in human hand
movements introduces a new paradigm into biology.*” It appears also that a
comparison of nonequilibrium phase transitions in physics and discontinuities
in coordinated action goes beyond mere analogy.*® Of course, in physics,
phase transitions remain objects of concentrated research. But the basic events
that we have found in voluntary human hand movements, critical fluctuations
and critical slowing down, occur over and over again in nonequilibrium sys-
tems, and suggest that the same laws and principles are in operation. The step
we have tried to take in this chapter, albeit a baby step, is from the identifica-
tion and descriptive language of functional synergies in action, to synergetics,
a theory of how synergies are created, sustained, and dissolved. This is the
conceptual and methodological foundation on which I believe a scientific
psychology should be built, a science that bridges mental, brain, and behav-
joral events.



