Extending the Basic Picture:
Breaking Away

I play with arrangements that lie on the brink of instability to achieve lyrical
motions.

—George Rickey, sculptor

Coordination and other similar function words such as integration and orches-
tration do enormous scientific duty in the behavioral and brain sciences. The
word “coordination” seems to hold the key to everything that is going on at
nearly every level of description. Although coordination is a word that often
carries the onus of explanation, in my opinion it is a word that demands
explanation. It trips off the tongue so easily as a way to connect things that,
because of the natural tendency to focus on the things themselves, the signi-
ficance of the coordinative relations between things is lost. One is reminded
again of the words of the French mathematician Henri Poincaré, the discoverer
of what we now call chaos, that “the aim of science is not things themselves,
as the dogmatists in their simplicity assume, but the relations among things;
outside these relations there is no reality knowable.”! As a nonmathematician,
I'd say we need both, mindful of the possibility that what is a thing at one
level may be relations among (different) things at another.

The aim of this chapter is to build on and elaborate the basic picture of
coordination that emerged from our hand movement experiments in chapter
2 and the various generalizations described in chapter 3. There we saw in an
enormously complex living system (the human being) contraction of the dy-
namics to an evolution equation involving the relative phase alone. I have to
admit, although I find it quite beautiful, the picture drawn in chapters 2 and 3
is a bit idealized. This may be a natural, even mandatory, step on the road to
understanding.

To a large degree all scientific progress rests on idealizations. Physics uses
nature’s simplest atom, hydrogen, to illustrate the power of quantum mechan-
ics. Chemistry and biology have their idealizations, too. The unit of inheri-
tance is a very large molecule, DNA, which takes the geometrical form of the
famous double helix deduced by Crick and Watson. The genome itself is far
more complicated and dynamic than the static geometrical structure of DNA
might lead us to believe. But none of this minimizes the significance of the



98

hydrogen atom and DNA as means of revealing important physical and bio-
logical insights at their respective levels of description.

So too, when we come to the problem of understanding coordination
in complex living things, our torus with a coordination dynamics running
around inside is a very simple idealized structure. But not so simple that it
lacks essential properties. Already we've seen the importance of concepts such
as symmetry (in determining basic modes of coordination), multistability (the
coexistence of several coordination modes for the same parameter value),
hysteresis, switching between modes at critical points, transition pathways,
and all those predicted phenomena associated with fluctuations and dynamic
instabilities. They allowed us to arrive at a primitive nonlinear structure for
coordinated behavior. Now it is time to expand it.

To take the next step, imagine the following situation. An adult is walking
along the beach with a small child. The two are not physically coupled
(though they might be if they held hands), and they are not necessarily
biologically coupled (though they probably are). Let’s say, rather, that they
are informationally coupled. Perhaps they are talking to each other, or one is
telling the other a story. To remain together (coordinated), either one or both
must adjust their step frequency and/or stride length. Unlike experienced
lovers and dancing couples, synchronization is difficult unless one or both
spontaneously adjust to the circumstances. For example, to keep up, the child
may sometimes skip a step or the adult slow down just so the two can remain
together. This form of coordination is far more variable, plastic, and fluid than
pure phase locking. Certainly, fendencies toward phase and frequency synchro-
nization are still present, but sometimes the phase slips before it is reset again
to some regular rhythm.

How can we go about understanding this less rigid, more flexible form of
coordination? The brilliant German physiologist Erich von Holst (figure 4.1)
coined the term relative coordination for this kind of behavior:

Relative coordination is a kind of neural cooperation that renders visible the
operative forces of the central nervous system that would otherwise remain
invisible.?

In relative coordination, an affraction to certain phase relations among coor-
dinating components may exist (which von Holst called the magnet or M
effect) but it is offset by differences between the components themselves: In
other words, individual biological components possess intrinsic properties
that tend to persist even when the components are coordinating with each
other (von Holst called this the maintenance tendency). Thus, relative coordi-
nation was the outcome of a latent and never-ending struggle between main-
tenance and magnet effects.

Given this beautiful but somewhat qualitative description, I believe that the
phenomena von Holst discovered are enormously important in at least two
senses. First, in modern-day jargon, relative coordination falls under the head-
ing of correlated neuronal activity, which is suspected of playing a highly
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Figure 4.1 Eric von Holst (1908—-1962) in a picture taken in 1958. Von Holst was one of
the most original systems physiologists and was a friend of K. Lorenz and the physicist
W. Heisenberg. (Reprinted with permission from MIT Press)

influential organizing role in functions such as perception, memory, and learn-
ing, as well as the development and plasticity of structural-functional linkages
in the nervous system.® Striking coordinative relations also exist within and
among cardiovascular, respiratory, and vegetative functions.* Second, and
more important at present, is that relative coordination suggests that biologi-
cal systems have access to other dynamical mechanisms (beyond bifurcations
or phase transitions) for going in and out of coherent states.

I connect the phenomenon of relative coordination to a generic feature
of dynamical systems called intermittency. The difference between intermit-
tency and phase transitions is that the phase transition mechanism uses an
active process (a parameter change or fluctuation) to switch the system from
one stable state to another. The intermittency mechanism does not. Rather,
the system is poised near critical points where it can spontaneously switch in
and out. Strictly speaking, in the intermittent regime it no longer possesses
any stable states at all.

In this chapter I will show how intermittency may be built into the elemen-
tary laws of coordination. A great advantage of living near but not in phase-
locked states is that the system is (meta)stable and flexible at the same time. I'll
explain what this means shortly. However, before we get too far ahead of
ourselves, let me explain what relative coordination is in a bit more detail.
Then I'll show, by way of a specific experimental example, how to model it.

Extending the Basic Picture: Breaking Away
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There won’t be much fancy mathematics here; only a way of looking at old
phenomena from a new point of view.

RELATIVE COORDINATION

The time series displayed in figure 4.2 show the essential difference between
absolutely and relatively coordinated behavior. The former, rigid and
machine-like, involves phase relationships that are constant. The correspond-
ing histogram has a single large peak concentrated at a single relative phase.
Relative coordination, in contrast, displays all possible relative phase values in
the S-S interval spanning 360 degrees (0—2n radians) even though a common
phase characteristic of absolute coordination is still present. I have drawn a
box around the relative coordination time series to show how easy it is to
make a mistake and confuse the two classes of coordination. (One always has
to ward against the unconscious tendency to display the data that look the
most orderly.) It would be quite easy, for example, to cut up the time series,
as I have, and claim that mode locking or absolute coordination (phase and
frequency synchronization) is observed!

But relative coordination is not mode locking. In particular, inside the box
we see a progressive and systematic slippage in the phase relation between
the components, and then when we increase the time scale of observation, the
insertion of an extra step to keep the components together. It's just like the
adult and child walking together. Rigid entrainment (absolute coordination),
which reflects asymptotic convergence to a mode-locked attractor, may be
more a feature of biological oscillator models than of reality.

(Broken) Symmetry Again

How ubiquitous is relative coordination in natural systems? The list is likely
to be endless, in large part because the phenomenon is possible in any system
containing two or more components whose frequencies couple nonlinearly.
Yet by far the greatest attention has been given to absolute coordination or
frequency locking, which was discovered over 300 years ago by Dutch physi-
cist Christian Huygens when he noted that two pendulum clocks placed near
each other tended to synchronize due to tiny coupling forces transmitted by
vibrations in the wall on which they hung. Physicists James Glazier and Albert
Libchaber have provided a representative list of the “almost bewilderingly
common” occurrences of frequency locking in the natural world.’ It includes
in mechanics, the damped driven pendulum; in hydrodynamics, the vortices
behind an obstacle in a wind tunnel or an airplane wing, the dripping of a
faucet, our familiar convective rolls, and the oscillations of acoustically driven
helium; in solid-state physics, Josephson junctions and oscillations in other
materials; in chemistry, the Belousov-Zhabotinsky and many other reactions;
and in biology, cardiac rhythms, brain rhythms, slime molds, and menstrual
cycles.® To this one could add electrically stimulated giant squid axons, neural
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a Relative Coordination

b Absolute Coordination

time

Figure 4.2 (a) Relative coordination. (Top) The distribution of possible phase relations be-
tween two signals. (Boftom) The corresponding time series from which the phase relation is
extracted. The distance from S to S on the abscissa spans the phase interval 0 to 2z rad. The
signals come from pectoral (upper time series) and dorsal (lower time series) fin movements of a
fish. (b) Absolute coordination. Distribution of phase relations and corresponding time series as
described in (a). (Adapted from reference 2.)

and muscle membrane oscillations, locomotor-respiratory rhythms, speech-
hand movement patterns, and cell populations in primate and cat visual, audi-
tory, and sensorimotor cortex, to name just a few examples in neuroscience
and psychology.”

But how is this more plastic and fluid form of organization called relative
coordination to be understood? The basic reason for relative (rather than
absolute) coordination is that the component parts of complex biological
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systems are seldom identical, thereby introducing broken symmetry into coor-
dination dynamics. Nature thrives on broken symmetry for its diversity, and
coordination it turns out, is no exception. As we'll see, any influence that
causes the components of the system to differ is a potential source of symme-
try breaking. Handedness and hemispheric differences in the brain are obvious
examples.

Coordination often occurs between different structural components, as in
the case of speech, for example, or between the same components put to-
gether for different functions (e.g. playing the piano versus playing the flute).
In general, symmetry breaking occurs when different (neuro)anatomical struc-
tures, each possessing a different intrinsic frequency, must to be coordinated.
Alternatively, task requirements may dictate that some response must be
coordinated in a particular fashion with an environmental event. Just this
situation provided an experimental insight that enabled my colleagues and me
to understand relative coordination as a consequence of broken symmetry in
the coordination dynamics, and to formulate the corresponding law.®

Action-Perception Patterns: An Example

I once described this experiment to a professor of music who told me that I
had (re)discovered a test used at the Juilliard School in New York City to
evaluate musical talent. I have no idea whether this is true or not. According
to my source, sometimes it is difficult to decide between two prospective
pupils so the following test is conducted. “Clap between the metronome
beats,” the student is instructed, as the teacher turns the knob on the metro-
nome, making it go faster. The one who keeps out of time the longest wins!

In our experiment the task for the subject was to synchronize peak flexion
of the index finger with a metronome in two modes of coordination: on the
beat and off the beat. For each mode, the pacing frequency was monotonically
increased (or, in another condition, decreased). Figure 4.3 shows representa-
tive plots of the relative phase between the metronome and the hand for
the off the beat, syncopated condition. Several different kinds of patterns are
observed.

The subject shown in figure 4.3A would win no prizes at Julliard. Beginning
in syncopation (strict syncopation would fall on the dotted line, ie., relative
phase = £ ), spontaneous switching to synchronization (relative phase = 0)
occurs near the end of the first plateau. He can't keep time for very long, at
least, off the beat. After that, the subject sustains synchronization (on the beat,
in phase with the metronome) for the remainder of the run. The time series
shown in figure 4.3B is similar: here again there is a transition from one mode
to the other, but at higher frequencies a new phenomenon occurs. Synchroni-
zation is lost and the relative phase “wraps” continuously in the interval
between 0 and 27 radians. This means that the subject can no longer maintain
2 one-to-one relation with the metronome. In figure 4.3C the subject keeps the
syncopation mode very stably until at higher frequencies the relative phase
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Figure 4.3 Representative plots showing relative coordination between hand and metro-
nome in the Juilliard experiment of Kelso, Del Colle, and Schéner.® Relative phase is normal-
ized to the unit interval [0, 27] and the plot is duplicated in the interval [~ 2=, 0]. The tendency
for phase attraction persists even though the oscillatory components exhibit different periodic-
ities. The characteristic features are interspersed intervals of strict mode lockings, occasional
phase wandering, and longer epochs of phase wandering as metronome frequency is increased.
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starts to slip. Notice that this is a directed, not random, drift with brief pockets
(the little flat parts) of nearly mode-locked behavior. Finally, in figure 4.3D we
observe syncopation followed by slow drift and eventual synchronization.

The phenomena shown in figure 4.3B through D are typical of relative
coordination or what a dynamicist would call loss of entrainment (phase and
frequency desynchronization). The tendency is for phase attraction to persist
even though the oscillatory components exhibit different periodicities. Typi-
cal features associated with desynchronization are interspersed intervals of
nearly mode-locked behavior and occasional phase wandering, with longer
epochs of phase wandering as the system is forced to coordinate itself at
higher movement frequencies.

One’s belief in the scientific method is enhanced when a given set of
findings is confirmed or replicated by others, especially if it happens to be in
a slightly different paradigm. In this case, Wimmers, Beek, and Van Wieringen
used a visual tracking task rather than an auditory-motor task, but found the
same basic transitions as reported here, including critical fluctuations. They
didn’t, however, look for any relative coordination effects.’

RELATIVE COORDINATION EXPLAINED

By now the reader will have noted the similarity among coordination of hand
movements, coordination between people, and coordinating one’s action with
an environmental event. Comparing these cases one can appreciate that bio-
logical coordination is essentially a synthetic process; it deals with how the
components are coupled together independent of the material structure of the
components themselves and the physical nature of the coupling. This is not to
say that the specific components do not constrain or shape coordinative pat-
terns and the pattern dynamics. In the action-perception case, metronome and
limb are obviously different components. As a consequence, we can no longer
assume symmetry of the dynamics under the operation ¢ - —¢. The fact is
that any situation that creates differences between the interacting elements is
a potential source of symmetry breaking.'® Moreover, as we will see in later
chapters different functional requirements arising, for example, due to envi-
ronmental demands, intentionality and learning (chapters 5 and 6) break the
symmetry of the relative phase dynamics.

To accommodate relative coordination effects in the action-perception ex-
ample requires only a single, apparently trivial change in the HKB symmetric
coordination law described in chapter 2. The manifcld consequences of this
symmetry-breaking step, however, tumn out to be subtle and nontrivial. The
sole change we have to make is to include a term, dw, that takes into account
intrinsic differences between the frequency that the moving limb generates
spontaneously (call it @) and the metronome frequency (call it w).** This term
is derived, of course, from a detailed (coupled) oscillator analysis, which the
reader is spared here. When uncoupled, the individual components behave
according to their respective (natural) frequencies. If dw is the frequency differ-
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ence, the rate of phase change between the components is just this difference.
When coupled, the modified, symmetry-breaking version of the phase dynam-
ics reads as'?

é = dw — asing — 2bsin 2¢.

It is easy to see that if S = 0, this is just the original symmetric-coordination
law. For small values of éw one can obtain phase locking as before, but the
fixed points are slightly shifted away from the pure in-phase and antiphase
patterns of coordination.

Our new equation corresponds to motion in a potential

V(g) = — 46w — acos$ — bcos 29,

which is plotted in figure 4.4. (The minus signs allow us to interpret the
potential as a landscape with attractor states at the minima for positive éw, 4
and b.) This picture and others that follow tell the whole story.

The effect of the first (linear) term is to tilt the whole curve along the line
V = — ¢dw. For a given movement frequency, as dw is increased, there is a
point at which the curve loses its stable fixed points (minima of the potential),
the system is no longer phase locked—synchronization is lost, and running
or wrapping solutions predominate. The exact point at which the detuning
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Figure 4.4 The potential, V(¢), of the coordination dynamlcs with broken symmetry. The
region around each local minimum acts like a well that weakly traps the system into a coordi-
nated state (see text). Black balls correspond to stable minima of the potential, white balls
symbolize unstable states.
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parameter, 4w, causes the running solution to appear, and whether it appears
at all, depends on the other parameters,  and b. This simply reflects the fact
that both the frequency difference, dw, and the basic frequency of coordination
affect the onset of the running solution.

The reader will remember from our previous analysis that the ratio b/a
expresses the relative importance of the intrinsic phase attractive states at
¢ =0 and ¢ = =, or 180 degrees. Note that in figure 4.4 the local minima
serve to trap the system into one of the intrinsic phase states, depending on
the initial condition. Then as parameters are changed, only the coordination
mode near ¢ = O remains, until eventually, when even that localized well
becomes shallow (figure 4.4, bottom), the system escapes and runs. This be-
havior is especially interesting because even though all the stable fixed points
are gone, remnants of the minima remain. One can imagine the system re-
siding in these valleys for variable times before continuing to run depending
on the curvature of this washboard potential.

Figure 4.5 shows the behavior of the relative phase in time corresponding
to the potential pictures of figure 4.4. The running solutions have a fine
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Figure 4.5 Running solutions in which there is still a tendency to maintain preferred phase
relations. (a) The system is closer to a stable fixed point (mode-locked state) and therefore stays
longer than in (b), where the plateaus are of shorter duration.
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structure, spending more time at those relative phase values where the force,
the derivative of ¢ with respect to time (4) is minimal. This reproduces exactly
the phenomenon of relative coordination. Although there is no strict mode
locking and the system is nonstationary, it displays a partial form of coordina-
tion in between rigid mode locking and completely uncoordinated behavior.
The reason there is a longer flat portion in figure 4.5a than figure 4.5b is that
the system is closer to the stable fixed point near ¢ = 0, 27, 47, and so on in
the former than the latter. The closer the system is to the fixed point, the
longer it hangs around. And the reason, of course, that the system runs (¢ ever
increasing) is that the component frequencies are no longer the same. Eventu-
ally, one component takes an extra step, and then both are nearly, but never
totally, locked again.

The Bifurcation Structure

The phenomena of relative coordination can readily be understood in dynamic
language. Consider the plot of ¢(dg/df) versus ¢ (figure 4.6) for a fixed fre-
quency difference, dw, as the coupling ratio b/a is varied. (It might be useful
to compare the same plot for the symmetric case; see figure 2.8). Once again,
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Figure 4.6 The broken symmetry version of the coordination dynamics with the parameter,
dw # 0. When the symmetry of the coordination dynamics is broken, inverse saddle node
bifurcations are seen. Eventually no stationary solutions exist (see text for definitions and
discussion).
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the system contains stationary patterns or fixed points of ¢ where the time
derivative ¢ is zero and crosses the ¢ axis. When the slope of ¢ is negative,
the fixed points are stable and attracting; when the slope is positive, the fixed
points are unstable and repelling. Arrows in figure 4.6 indicate the direction of
flow. Thick solid and dashed lines signify stable and unstable fixed points that
establish the boundaries of the system’s basin of attraction.

Now the multiple manifestations of broken symmetry in the coordination
dynamics emerge. The bifurcations in this asymmetric system are called saddle
node bifurcations (“saddle” referring to the repelling direction, “node” to at-
tracting direction). On the right side of the figure around ¢ ~ 180 degrees,
stable and unstable fixed points coalesce onto a tangent, causing a transition
to the only other stable fixed point available near ¢ = 0 and then, by exactly
the same mechanism, the last remaining stable fixed point disappears.

The broken symmetry law generates rich dynamics. Whereas the stable
fixed points in the symmetric case do not change their value as the control
parameter is varied (cf. figure 2.8) systematic drift is evident in the asymmetric
case as parameters change. Moreover, due to the greater slope of the function
surrounding the fixed point near ¢ = 180 degrees, it is theoretically easier for
the system to transit to the other stable fixed point in one direction (¢ in-
creasing from ~ 180 deg) than the other. Experiments by Jeka confirmed these
drift and transition path predictions by directly manipulating the asymmetry
between arms and legs using different loads applied to the limbs. Dagmar
Sternad and colleagues used the hand-held pendulum paradigm to establish

the systematic effect on relative phase due to frequency differences between
the limbs.*?

Loss of Entrainment

In figure 4.6 it is easy to see that as the function is flattened by decreasing a
control parameter, stationary solutions eventually disappear. In this regime
(exemplified by the solitary arrow at the top of the figure) there is no longer
any phase or frequency locking, a condition called loss of entrainment or
desynchronization. Such desynchronization is not present in the symmetric ver-
sion of the coordination dynamics, but is again a consequence of symmetry
breaking. Desynchronization does not always mean irregular behavior; its
magnitude depends on how close the system is to its critical points, which
depends on all three parameters, w, a, and b (see figure 4.4). This simply
reflects the fact that in broken symmetry coordination dynamics, both the
frequency difference between components and the basic frequency of coordi-
nation are control parameters affecting the onset of the running solution.

Intermittency

When the saddle nodes vanish, indicating loss of entrainment, the coordina-
tion system tends to stay near the previously stable fixed point. It's as though
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the fixed point leaves behind a remnant or a phantom of itself that still affects
the overall dynamical behavior. Thus, in figures 4.4, 4.5, and 4.6 there is still
attraction to certain phase relations even though the relative phase itself is
unstable (¢ > 0). Such behavior is especially significant because it shows that
although there is no longer any strict mode locking, a kind of partial coordina-
tion exists in which the order parameter is temporarily trapped. Motion
hovers around the ghost of the previously stable fixed point most of the time,
but occasionally escapes along the repelling direction (phase wandering). A
histogram of the phase relation in this intermittent regime of the coordination
dynamics contains all possible phase values, but concentrates around preferred
phase relations (the previously stable fixed points) exactly as shown in figure
4.2 and 4.3 for relative coordination!'*

As a scientist, there are occasions—usually few and far between—when
one gets an insight or reaches a level of understanding about a problem that
gives one a feeling of genuine delight and satisfaction. One of them was when
I realized the theoretical connection between relative coordination, which I'd
studied for many years, and the dynamical mechanism of intermittency, one
of the generic processes found in low-dimensional dynamical systems near
tangent or saddle node bifurcations.'> What's the excitement about? Well,
there are a few reasons.

One is that relative coordination has been described for over sixty years
without a satisfactory explanation. So an intermittency mechanism for relative
coordination seems like an idea whose time has come, and is certainly worth
exploring. Another reason is that the connection between relative coordina-
tion and intermittent dynamics suggests that biological systems tend to live
near the boundaries separating regular and irregular behavior. They survive
best, as it were, in the margins of instability. Several authors, notably the
theoretical biologist Stuart Kauffman, have proposed a similar idea indepen-
dently in an entirely different context, namely “rugged fitness” models of
adaptive evolution. I'm coming from a direction that Kauffman admittedly
eschews—whole organisms acting in their environment—but, as others have
pointed out, the similarities are quite compelling.'®

Why should a biological system occupy the strategic position near bound-
aries of mode-locked states rather than residing inside them? The answer
given by the intermittency theory of relative coordination is that by residing
near the edge, the system possesses both flexibility and metastability. There is
attraction (the ghost of the fixed point), but no longer any attractor.

ABSOLUTE AND RELATIVE COORDINATION UNIFIED

Both relative and absolute coordination fall out of the broken symmetry
version of the coordination dynamics. Obviously, the solid lines in figure 4.6
depict absolutely coordinated phase- and frequency-locked states. Relative
coordination exists in the intermittent regime, just beyond mode-locking re-
gions, where stable (attracting) and unstable (repelling) fixed points collide.
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The symmetric version of the coordination law sires only absolute coordina-
tion; the asymmetric version provides a single coherent theory of both abso-
lute and relative coordination. Which version holds depends on the system’s
symmetry. These basic coordinative forms emerge as two sides of the same
coin, inhabiting different regimes of the same underlying law.

The broken symmetry dynamics encompasses all the effects we encoun-
tered in chapter 3 where the coordinative interactions were mostly among
dissimilar components, including multistability, the coexistence of several co-
ordination modes for the same parameter value; switching among modes at
a critical parameter value due to dynamic instability; and hysteresis, where
the coordination mode observed depends on which direction parameters are
changing and so forth. But in addition to these effects—in some sense as
vestiges of them—there is a further transition from absolute to relative
coordination,

The individual components now express themselves freely, and/or the cou-
pling between them is not strong enough to suppress their individuality
completely. Only tendencies to coordinate in a strict fashion remain. When
coordination slips, extra steps have to be inserted to keep the pattern cohe-
sive. And then, if it’s pushed further, the whole system breaks up and becomes
desynchronized. Only a shadow of its previous coordination remains. Like in
some marriages attraction fades, here due to the weakened curvature of a
mathematical function. The mind boggles.

RELATED MODELS: FIREFLIES, LAMPREYS, AND LASERS

Nancy Kopell and Bard Ermentrout are two applied mathematicians who have
worked extensively on coupled nonlinear oscillator models of biological sys-
tems. Their goal is to develop a body of mathematics that can help biologists
decide whether differences they observe are crucial or not. Their approach is
complementary to that taken here: these investigators work with so-called
robust classes of equations and, within that framework, sort out which features
are essentially universal and which depend on further structure. “Further struc-
ture” means adding more terms to the equations. Coming more from an
experimental background that is inspired by the physical concepts of synerge-
tics, 1 look for robust phenomena and seek a minimal, bare-bones set of
principles (mathematically instantiated, of course) that embraces as many of
the phenomena as possible. Although simplicity is an admirable sought-after
property of mathematical models, a fine line exists betwween the goal of sim-
plicity and omitting important details. Nevertheless, it is generally agreed that
the best theories are those that explain the known facts and predict new facts
of the same kind. Insight isn't necessarily gained by making mathematical
models more complicated. Again, it comes down to determining variables that
are essential and their dynamics. Here I'll describe two situations in which an
identical model successfully captures certain key phenomena, although cer-
tainly not all the particulars. Then I'll make some remarks about the relation
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of these models to our coordination dynamics, although by the end it should
be pretty obvious.

The astute reader may have connected many of the coordinative pheno-
mena discussed thus far with one of the most spectacular sights in all of
nature: the synchronous flashing of huge swarms of fireflies that occurs in
places such as Malaysia and Thailand. These insects have the ability to syn-
chronize their flashing with either an outside signal or with other fireflies
of the same species. A propensity for rhythmic communication is evidently
shared by humans and fireflies. Of course, on a cellular level, as we'll see, such
behavior is not only ubiquitous but important, as in the case of pacemaker
cells that coordinate their electrical activity to maintain the heartbeat.

Ermentrout and John Rinzel consider firefly entrainment as a problem of
entraining the free-running firefly oscillator (of a certain periodicity) with a
stimulus (a Zeitgeber) of a different period.'” Fireflies differ considerably in
terms of their flashing periodicity, but the typical interval between flashes is
about a second. As long as the periods of the firefly and the Zeitgeber are close
enough, the creature will entrain and flash at a distinct phase of the stimulus
cycle (exactly like my Juilliard experiment). But if the periods (the inverse of
frequency) are too different, the firefly reaches the limit of its entrainment
ability, and desynchronization occurs. In many cases, this loss of entrainment
is only transient (intermittency?), but in other cases, the firefly-stimulus phase
difference may cycle repeatedly through all values, a phenomenon known as
phase walk-through in the firefly literature (see figures 4.3 and 4.5). Phase
walk-through, of course, occurs because the discrepancy between the natural
period of firefly flashing and the Zeitgeber period is too large.

Ermentrout and Rinzel model firefly entrainment, its transient loss, and
phase walk-through with the following one-variable model for the phase
dynamics:

$ = dw — asin(g),

where dw is the frequency difference, and a4 measures the relative influence of
the Zeitgeber on the firefly. Figure 4.7 shows the phase dynamics when en-
trainment occurs (top) and when the entrainment limit is reached, giving rise
to phase walk-through (bottom). In the former case, ¢ has a stable fixed point
near zero (where ¢ crosses the x-axis); in the latter, due to increasing o, the
function is lifted off the line and entrainment (the stable fixed point) is lost.
Note, however, that the relative phase changes very slowly close to the
horizontal axis, increasing beyond the shaded interval. Note also that the
bifurcation is a saddle node, stable and unstable fixed points moving toward
each other, colliding, and then disappearing, exactly as in the analysis of my
Juilliard experiment.

Ermentrout and Rinzel's model is even simpler than our coordination
dynamics, because, at least as described, it does not exhibit multistability,
bistable to monostable phase transitions, or hysteresis. Nor does it consider
the role of stochastic fluctuations. Nevertheless, it is a beautiful little model
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Figure 4.7 Dynamics of phase relation in Ermentrout and Rinzel's model of firefly entrain-
ment. (A) Entrainment occurs at ¢, where stimulus and pacemaker periods are close. When the
function lifts off the horizontal axis (B) there is no longer any stable phase relation. Phase
walk-through occurs, and ¢ continually increases, although slowly in the shaded interval.
(Reprinted by permission from the American Physiological Society.)

that occupies its own niche in the spectrum of possible mathematical models.
I like it because it prunes away all the details, including all the physiology and
anatomy of these tiny creatures, but captures the essence of their relation to
each other and to the environment.

Of course, the model leaves out many subtle aspects of firefly synchroniza-
tion. Recent work addressed some of these, including how synchronization
occurs in a very large population of fireflies regardless of when they start
flashing.'® This research shows that synchronization is the rule in a system of
numerous identical oscillators regardless of initial conditions. But many ques-
tions remain. For example, what happens when the population of oscillators is
not identical? Do traveling waves occur? What is the nature of the coupling
mechanism? and so forth.

The lamprey is a strange beast: it's a bona fide vertebrate like humans; and
it swims like a fish, but lacks fins and other complicated appendages. As far as
we know, the lamprey swims with just one basic pattern of alternation be-
tween local opposing muscles. It turns out that neurobiologists, like Avis
Cohen and Sten Grillner, can isolate the animal’s spinal cord and keep it alive
in a bath containing various compounds that acts as neurotransmitters.!® This
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makes the lamprey a great preparation for studying how the vertebrate ner-
vous system generates patterns of neural activity (see chapter 8). The motor
patterns of the intact lamprey and the isolated spinal cord are basically the
same, raising hopes that the study of this creature might help us better under-
stand spinal cord injuries in humans.

The overall organization of lamprey pattern generation is believed to be
that of a chain of segmental neural oscillators coupled across the creature’s
spinal cord. This gives the strict alternation pattern that produces a traveling
wave up and down the cord. The lamprey needs only four segments to
generate the traveling wave (the adult has about 100) and two to produce
alternating activity. So, as far as theoretical modeling is concerned, we're back
in the ballpark of nonlinearly coupled oscillators. Cohen, Kopell, and col-
leagues are world-famous for their work on modeling central pattern genera-
tion using systems of coupled oscillators.?® There’s more to this than meets
the eye, but what I like is that they have come up with a remarkably simple
model for the lamprey that is formally similar to that of firefly entrainment.
Considering each pair of segmental oscillators, they show that a phase-locked,
alternating pattern will occur if the difference between the oscillator frequen-
cies is small relative to the coupling between them. They also show transitions
from drifting to phase-locked motion between two oscillators of different
frequencies, , and w,, when the coupling is increased. Their model reads as
follows:

¢5 = (0, — ;) — (a;, + a,;)sing,

where ¢ represents the phase lag between the oscillators, and a;; is the cou-
pling between them.

Notice that the lamprey model is of exactly the same form as the firefly
entrainment model, but the coupling is different. Whereas the Zeitgeber to
firefly coupling is one-way (the Zeifgeber drives the firefly but not the other
way around), the segmental oscillators of the lamprey are mutually coupled,
each affecting the other’s behavior. Thus, in the Rand et al. model, if the net
coupling (a,, + a,,) is positive or excitatory, oscillator 1 (the faster one)
leads. If the coupling is negative or inhibitory, the slower oscillator leads. This
model provides a mechanism for reversing direction of motion from forward
to backward by simply changing the relative frequencies of the oscillators.

I don't know if lampreys swim backward, but I do know why I find these
models of firefly entrainment and lamprey coordination interesting. First, they
are simple and aesthetically pleasing. Second, they show that the same basic
principles of coordination are in operation for very different kinds of things.
Third, they exhibit the same behavioral patterns—phase locking and en-
trainment, relative coordination, and desynchronization—but by very differ-
ent physiological mechanisms. All the patterns of firefly entrainment and
lamprey pattern generation boil down to mathematical patterns of symmetry
breaking in coupled oscillators. Was it Einstein or Wigner who asked why
mathematics works so well to describe nature?
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Excerpt from—Haken, H. et al, (1967).

Theory of laser noise in the phase-locking region.

Zeitschrift fiir Physik, 206, 369—393.

The essential noise source in lasers is so-called spontaneous emission noise which is of
quantum mechanical nature. We have shown in previous papers (Haken, 1965) that
spontaneous emission noise may be introduced from first principles by using quantum
mechanical Langevin forces. In the present paper, we derive for the most complicated
example, namely the self-mode locking, the basic equation for the relative phase in-
cluding noise. As we will show, this equation has the form

¥ =06~ Bsiny + f()
where the fluctuating Langevin force f(f) represents white noise and is gaussian. The
treatment of one example makes clear that this force is quite universally determined for all kinds
of frequency locking phenomena (italics mine) (p. 371).

Chronology aside, why didn't Haken, Bunz, and I use the simpler coordina-
tion law characteristic of lampreys and fireflies to model the basic forms of
observed coordination within persons, between persons, and between organ-
isms and environments? The equation is well known to Haken. Nearly thirty
years ago he and his colleagues derived it from quantum mechanics (see box).
But the simpler equation does not exhibit multistability, the fact that the two
basic modes of coordination, in-phase and antiphase, may be produced for the
same parameter value. Nor does it produce order-order transitions, For this
the sin 2¢ term is necessary. Multistability, as I've stressed, is the dynamical
equivalent of multifunctionality in biology: organisms meet the same func-
tional or environmental requirements in different ways. How else might one
imagine writing one’s name with one’s hand, one’s big toe, or one’s nose?

INSTABILITY AND THE NATURE OF LIFE: THE INTERMITTENCY
MECHANISM EXPOSED

The title of this section, at least the part before the colon, is stolen from an old
paper by Arthur Iberall and Warren McCulloch, each one a seminal thinker.2!
Their article, which reads like a primitive poem, resonates with the intermit-
tency theme that I want to expand in this section. I will quote only a few
sentences to convey the essence:

An essential characteristic of a living system is its marginal instability. ... As
a result, the motor systems of the organism are plunged into intermittent
search modes to satisfy all of its hungers.

The living system unfolds its states, posture by moment. In each posture (the

‘action of the body on the body) the system is temporarily locked into an

orbital constellation of all its oscillators. The psychological-physiological
“moment” then changes from instant to instant.

The function of the central nervous system with its memory, communications,
computational and learning capabilities is to ... modulate the system into
behavioral modes.
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This language must seem terribly outdated and vague to the sophisticated
reader, but to me it has a solid ring of truth, nay, inspiration. McCulloch and
Iberall’s admittedly qualitative emphasis on instability, nonlinearity, informa-
tion compression, and collective behavioral modes was ahead of its time. Of
course, my primary reason for including them here is that I like the idea that
organisms are “plunged into intermittent search modes.” One of the goals
now is to put more clothes on the frame of intermittency because it will be
crucial later when I discuss perception (chapter 7) and the brain (chapter 9).
The other is to deal with “orbital constellations” of oscillators whose fre-
quencies are not locked one to one (1: 1).

So far all the situations I've described deal with one-to-one coordination
between the interacting components. Yet in many cases in living systems the
components are not so coordinated. Staying within the context of rhythmic
activity, it's possible for the components to be coordinated stably with other
frequency ratios, such as 2: 1 or 3 : 2, or the frequency relation may even be
irrational, giving rise to quasi-periodicity. How do we understand these multi-
frequency situations, and where does intermittency come in? Our coordina-
tion law as it stands doesn’t handle such situations, which are actually quite
widespread.

From Continuous Flows to Discrete Maps

Our coordination dynamics is written as an ordinary differential equation
(ODE), the conventional way in which many physical laws are stated. Of

Figure 4.8 Poincaré surface of section for an ODE (see text).
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course, it's possible to extend this law to accommodate oscillations of different
frequencies, but this is quite complicated, technically speaking. Earlier, I men.
tioned an important class of dynamical system called difference equations or
maps. It is this tool that I will use here as a simpler way to gain understanding
of multifrequency processes and intermittent behavior in neurobiology and
behavior. Instead of flowing continuously, as in ODEs, time is a discrete
integer in maps. Maps and ODEs are intrinsically related to each other. In
particular, Poincaré comes up again because the way they are related is named
after him (Poincaré return maps and Poincaré cross-sections).

Just to get the idea, figure 4.8 shows a smooth trajectory A of an ODE. The
plane S is designated as a surface of section and is pierced every time the
trajectory cuts it, shown as the points P,, P,, and P; in the figure. Obviously,
the point P, is related to the point P, which is related to P, and so on. Thus,
amap G exists such that F,,; = G(P,). We can learn a lot from such maps—
physicists and mathematicians already have—because they can capture many
important aspects of the real situation. Of course, the map that we will use is
for the relative phase, ¢, the collective variable that captures the coordination
between nonlinearly coupled components. We call this the HKB or phase-
attractive map because it’s a reduction of the nonlinear oscillator model formu-
lated by Haken, Bunz, and me (see box).

Instead of studying the entire trajectory on a 2-frequency torus, we simply
encode the entire dynamics in the form of a map, ¢,., = F(4,). This return
map is a map of the circle onto itself. It is easy to study by plotting ¢, versus
¢, as parameters are varied. The best way to do that is on a computer. Some
people even believe that because we have computers, differential equations,
especially in areas such as biology and the social sciences, might be sup-
planted by discrete maps, which are better suited to the digital computer.
Whether this happens or not, of course, hinges on how well such maps model
the phenomena of interest.

The Discrete Nature of Coordination

In our case, we don't need the digital computer to motivate introducing the
phase-attractive map. The reason is that coordination itself is often of a dis-
crete nature. For example, when we look at bursts of activity in muscle or
brain recordings (and, incidentally, many other kinds of records), event onsets
in different components are often related to each other. In other situations, it
may be a well-defined peak of activity that enables analysis of coordination.
The way we calculate relative phase is usually but not always discrete and
local (see figure 2.5). In such cases, detailed trajectory information is disre-
garded because the essential information for coordination is localized around
discrete regions. In our studies of multilimb coordination in humans, Jeka and
I found that the relative phase converges only at certain points for a trot or a
pace. Peter Beek noticed the same feature in skilled jugglers.
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FROM FLOWS TO MAPS

How may a pair (or a system) of N-coupled nonlinear oscillators be reduced to a map for
the relative phase only? The phase of each oscillator, 8;, is viewed as living on a circle,
0 < 6; < 2, rotating at a frequency, w;, and a period, 2n/w; (figure 4.9). Since motion is
confined to a circle, there is no distinction between one oscillation and the next. The
shape of the waveform and its content, which may be important at the oscillator level,
is ignored. That is one price that has to be paid in this kind of analysis. A system of N
oscillators will inhabit N circles, but here I just show two (step 1). Mathematically, the
product of N circles is an N-dimensional torus T". For the case of N = 2 the state space
is a 2-torus, T2 (step 3). The bridge between steps 1 and 3 is a square (step 2) in which
the phase of each oscillator is displayed on the horizontal and vertical axes in the
interval [0, 2n]. A constant relative phase, ¢, between the oscillators, (¢ = 8, — 6,), is
reflected by a straight line: this is called phase locking. It is quite possible, even usual,
for each oscillator to complete a cycle in the same time, but the phase difference between
them may not be constant. This is called phase entrainment. The vertical plane in step 4
cuts the torus at some reference time, “freezing,” as it were, the motion of one oscillator,
but allowing us to see where its partner strikes it every time it traverses the torus. Each
strike makes a point on the circle, allowing the entire dynamics to be encoded in the
form of a return map in which each iteration takes a point, ¢,, on the circumference of
the circle to the next point, 4,,. The problem of coupled oscillators is thus reduced from
a flow on the torus to the study of a map from the circle to itself, ¢,., = F(g,)-

We might expect coordination with the external environment to be of a
discrete nature in situations where there are heavy constraints on timing; for
example, when getting on an escalator one has to step at the right moment or
one can fall on one’s nose. Even on neurobiological grounds, a discreteness
assumption seems valid. Neurons either fire or they don’t. And they com-
municate with each other by releasing discrete packets of neurotransmitter in
a quantal fashion.

Treating the dynamics in terms of a return map is tantamount to saying the
system is highly dissipative. All other variables are subservient, as it were, to
the collective variable. Discrete phase dynamics therefore represents the con-
traction of a higher- to a lower-dimensional space. Even our bagel—the two-
oscillator torus—is reduced from a state space of four variables (x and x for
each oscillator) to just one, the relative phase.

With these preliminaries over, we can get down to business. Our phase-
attractive circle map

bus1 = f(d,) = ¢, + Q — K/2n{1 + Acos(2ng,)} sin(2nd,) (mod 1)

turns out to be a function of three parameters, the meaning of which is
inferred from general properties of circle maps as well as corresponding
parameters in the continuous differential form of the coordination dynamics
proposed by Haken et al. Thus, Q is the frequency ratio of the components, K
is the strength of coupling between components, and the parameter A is a
measure of the relative stability of the intrinsic phase states, = 0 and ¢ =
n.22 The way the map works is illustrated in figure 4.10. One feeds some
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Figure 4.9 From flows to maps (see box for steps 1 to 5).
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Figure 4.10 How iteration of the phase-attractive circle map works. See text for explanation.

initial phase, @,, as input into the function, then computes the output, ¢,,,,
which is then fed back into the function in an iterative fashion. In short, by
studying the properties of our phase map we can more readily understand
how coupled oscillators behave, especially when the component frequencies
are different and the coupling is subject to change.

Multifrequency Stability

Everything that we've observed for 1:1 coordination (e.g. bistability to
monostability phase transitions) can be reproduced by the map. But there’s a
wealth of other phenomena besides, due to the presence of the Q and K
parameters. Consider, for instance, the ubiquity of low-order frequency ratios
in physiology, neurobiology, and psychology.?® Just to get the idea across,
try tapping 2 : 1 with your two hands. Some people find it easier than others,
and it depends on which hand beats the faster thythm. (By now the reader has
become an experimental psychologist and has tried these tasks with left-
versus right-handers; musicians versus nonmusicians; brain-damaged versus
normals; under the influence of alcohol ... ad infinitum.) Many studies of
temporal organization in humans, especially by Michael Peters in Canada, Jeff
Summers in Australia, Peter Beek in Holland and Diana Deutsch and others in
the United States, have shown that the low-order ratios (1:1,2: 1, 3: 2, etc)
are easier to perform than higher-order ones (4:3, 5:3 ...). I confess to
feeling a secret pleasure with such results. Here is the most complex system
of all, the human brain, yet a typical person is only able to perform, stably at
least, low-integer frequency ratios between the hands!

Ignoring questions about skilled musicians and learning for the moment,
the fundamental reason for this restriction has to do with the structural stability
of the rational frequency ratios.** Structural stability means that slight modifica-
tion of the system does not alter the stability of ratios. It accounts for similar
behavior across very different systems, such as clock mechanisms, moon-earth
phase locking, walking and breathing in humans, electrically stimulated nerve
membranes, frequency locking in mammalian visual cortex, and so on.
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Numerical studies of coupled oscillators or circle maps allow us to calculate
the size of mode-locked regions. Technically, the asymptotic value of the
frequency ratio is called the winding number, W, and is, in fact, the measured
frequency ratio between the oscillators. When W is a rational number, the
underlying oscillations are mode-locked or frequency synchronized. When W
is irrational, which means it cannot be expressed as the ratio of two integers,
the oscillations are desynchronized. The outcome is either quasi-periodicity or
chaos.

Figure 4.11 (see also plate 3) shows why low-integer frequency ratios are
ubiquitous in nature and why they are the easiest for humans to perform. The
wedges emanating from the horizontal axis, called Arnol'd tongues after the
Russian mathematician who first described them, correspond to pure mode
locking. Tongues represent regions of the (K, Q) parameter space that have
asymptotic solutions to our phase map equation. In between these tongues are
quasi-periodic regions where the frequency ratios are irrational. As K increases
above zero, the width of each locking increases, culminating in a situation
where locked states fill the entire interval (see below). The widest mode-
locked regions correspond to low-frequency ratios and are the most (structur-
ally) stable and attractive. Because of their width, any parameter variation
inside these larger Amol'd tongues will not kick the system somewhere
else. As a consequence, fat Amol'd tongues containing the 2:1, 3:1,
3:2 ... coordination modes are relatively easier to perform than slim ones
(4:3,5:2 )28

The Farey Tree: Hierarchical Complexity

Notice in plate 3 and to a lesser extent in figure 4.11 how the widths of the
mode-locked regions are ordered. Scanning from left to right, the biggest
tongues order as

0/1,1/4, 1/3, 1/2, 273, 3/4, 1/1.

This Farey sequence represents an increasing succession of rational numbers p/g
such that g < n where n = 4 in this case. It is possible to order the mode-
locked regions (the rational numbers between 0 and 1) into a hierarchy called
the Farey tree. The power of mathematics shows up again: the branching
structure of the tree encapsulates all the possible mode-lockings in this entire
class of dynamical systems. To grow the tree, start with the parents 0/1 and
1/1. Add the numerators and denominators together according to the formula
p/lg@®p'/q =p+ p'/q+ g, forming successive levels as follows:

Figure 4.11 Amol'd tongues for the phase-attractive circle map showing mode-locked re-
gions for some of the lower-order (non-1:1) mode-locked regions. (2) A = 0 yields the familiar
result for the sine circle map. (b) A = 0.5 produces a widening effect on the tongues. In both
cases, the relative widths of the tongues provide a basis for the differential stability and
complexity of multifrequency coordination. Quasi-periodic dynamics exists between the
tongues.
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Level 1 is created by the Farey sum 0/1 @ 1/1 = 1/2. The branches of
level 2 are given by 0/1@ 1/2 =1/3 and 1/1 @ 1/2 = 2/3 ... .and so on.
Notice in figure 4.11 and plate 3 the lowest denominator tongues are the
widest. No wonder they are the easiest to get into and stay in. In our theory,
pattern stability and complexity are related to the level in the Farey tree
hierarchy and are inversely proportional to tongue width.

Multifrequency Transitions

How does the Amol'd tongue structure envisage transitions in coordination
between multifrequency states? How does the rhythm change? In principle, all
the system has to do is cross from one tongue to the other. This might sound
easier than it looks. It is clear, for example, that a system buried deep inside
one of the tongues is pretty stable despite parameter changes or the influence
of noise. As I said before, this fact is significant for rationalizing the dominance
of the low-order frequency ratios. But it is also obvious that the width (stabil-
ity) of the mode-locked regions plays a role in determining which patterns are
easiest to switch into and out of.

In our experiments, spontaneous transitions are far more likely from the less
stable frequency ratios to the more stable frequency ratios than vice versa, just
as the Farey tree would predict.2® This may be one of the reasons why people
(even the best musicians) have to practice so hard to produce intricate rhythms:
any little noise will kick the system into one of the more stable (“easier”)
Arnol'd tongues. Learning complex rhythms in this context involves stabi-
lizing higher-order frequency ratio states (there’s much more to it than that, of
course, as we'll see in chapter 6). Just getting into these thin Arnol'd tongues
is tricky. The fat ones are far stickier.

Between the tongues sprouting from K = 0 in figure 4.11, the dynamics are
quasi-periodic, the frequency ratio is irrational. As K increases, the Arnol'd
tongues widen and eventually touch each other on the critical surface. Above
the critical surface, the tongues overlap and the system can display chaos (see
box and plate 3).

Tongue overlapping is a necessary but not sufficient condition for chaos.
For example, as you can see in plate 3, it is possible to stay in a 2 : 1 ratio far
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THE CASE OF THE CRINKLED TORUS

The most irrational ratio or winding number is the golden-mean, (\/g — 1)/2), which is
the easiest place to observe quasi-periodicity experimentally. Why? Because it’s the least
likely to lock into a low denominator tongue (rationality, as it were!). The golden mean
therefore is the last exit before irrationality turns into chaos. A beautiful physical experi-
ment by Albert Libchaber—one of my favorites ever—was conducted on Rayleigh-
Bénard convection in a small mercury-filled rectangular cell.2” After an oscillatory instabil-
ity was set up, producing a well-defined frequency of rolling motion (£,) in the cell,
Libchaber et al. injected a small alternating current of a certain amplitude and frequency,
£,. The experiment resembles someone stirring a pot of soup while heating it on a stove.
Since f, is time independent, locking behavior can be studied by manipulating current
amplitude and £,. The entire Amol'd tongue structure can then be beautifully mapped
out and all the circle map predictions tested. By far the strongest image imprinted on my
mind is near the critical surface where the two frequencies have been set up at the golden
mean and the nonlinear coupling (by the current amplitude) increased. The 2-torus
‘starts to break down, and the attractor becomes stretched and crinkled, indicating the
onset of chaos (figure 4.12). Extra dimensions start to make themselves felt. Turbulence
(high-dimensional behavior) is just over the horizon, and you can feel it in this picture.

beyond the point at which the tongues overlap. Notice, however, how the
shape of the Arol'd tongues and the overall complexity of the space depends
on parameters. For instance, for fixed K and Q, the variation of the intrinsic
parameter, A, raises and lowers the critical surface, hence affecting the onset
of chaos. The variation of these parameters determines the width of the stable
mode-locked regions consequently delaying or accelerating irregular behav-
ior. A familiar (by now) message appears in a different guise: where the system
lives in parameter space dictates the complexity of its behavior.

The Devil's Staircase

A universal feature of maps such as our phase-attractive circle map is that at
the critical surface the mode-locked tongues fill up the line. This is called the
Devil's staircase.*® The reason is that if you blow up or magnify any piece of
it, you see the same thing. So, in some sense, dear pilgrim, you'll never make
it to the top! Tom Holroyd did an interesting numerical experiment calculat-
ing the widths of the tongues in our map by plotting the winding number
against Q for various values of A and K. Below the critical surface, the length
of the mode-locked regions is less than 1, and so the Devil’s staircase is
incomplete. But the smaller the steps you take the smaller the gap between
mode lockings, until, at criticality, there is no longer any room for quasiper-
iodicity, and the staircase is said to be complete.

Figure 4.13 shows the complete staircase for three sets of different parame-
ter values for our map. The similarity between the staircases is compelling,
attesting to the universality property of these kinds of dynamical systems.
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Figure 4.12 The crinkled torus observed in Libchaber's Bénard convection experiment.
The winding number is close to the golden mean, and breakdown of the torus is imminent.
(Reprinted with kind permission of The Royal Society)

Physicists take universality to be crucial, because without it they would not
be able to predict the results of experiments in systems in which the underly-
ing map (the dynamics) is unknown. Of course, this is usually, if not always,
the case in biology and behavior.

When one examines these staircase plots in figure 4.13 one sees differences
as well. In particular, the relative width of the tongues changes with the
phase-attractive term, A, our intrinsic parameter. find it interesting that a
parameter derived from our phase-transition experiments that reflects the
bistability of the phase states at ¢ = 0 and = changes the size, for example, of
the 2 : 3 ratio relative to 1: 2.

Although it’s well-nigh impossible to manipulate all the Amol'd tongues in
any biological experiment, never mind on humans, some years ago Gonzalo
DeGuzman and I obtained results that are at least consistent with the mode-
locking picture?® (see below). Very similar results were obtained recently
using different procedures.>® Taken collectively, this work demonstrates the
potential power of the dynamical account of multifrequency coordination. But
a lot more could be done to unpack further Iberall and McCulloch’s “orbital
constellations.”

Life at the Edge

The greatest flexibility is afforded a coordinative system when it is near the
tongue boundaries where transitions to other modes are easily effected. The
reason is that mode lockings in the phase-attractive map are created and
destroyed through tangent or saddle node bifurcations that occur at the
boundaries of Arnol'd tongues (cf. chapter 1). In other words, for motion on a

Figure 4.13 The Devil's staircase. At the critical surface, Amol'd tongues completely fill the
Q-axis, except for a set (the Cantor set) of measure zero. The width of the mode-locked
intervals is dependent on the parameters A and K (@) A=0 K=10;(b) A=10K=05;
QA= —10,K=0.888...
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torus, transition pathways are by intermittency, the dynamical mechanism |
proposed earlier for relative coordination. What does intermittency look like
in our map, and does it really produce the relative coordination effect? For 3
change, let's do the analysis quantitatively with numbers.

I present an example in figure 4.14 in which I vary the values of Q near the
period 1 boundary, that is, near a 1:1 phase and frequency-synchronized
state. The boundary in this case (A = 0) is defined by K = 27Q. For K = 0.6,
the saddle node bifurcation occurs at Q, = 0.6/2n ~ 0.0455. Figure 4.14a
shows the function f(¢) intersecting the diagonal line at two points: ¢~ and
¢*, where ¢ is a fixed point (mode locked) attractor and #* is a fixed point
repeller (Q = Q, — 0.03). Initial conditions other than exactly ¢ = ¢* con-
verge to ¢~ as n — 00. As Q increases, ¢~ and ¢* approach each other and
coalesce when Q = Q, (figure 4.14b). For Q = Q, + 0.01 beyond the bound-
ary of the Amol'd tongue, ¢~ and ¢* cease to exist (figure 4.14c), and the
system exhibits either mode lockings with higher-frequency ratios or quasi-
periodic motion, depending on the exact location of Q. If Q is decreased, then
the reverse sequence of events is observed.
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Figure 4.14 Intermittency in the phase-attractive map. Shown is the function f(#) for three
values of Q. ¢~ and ¢* correspond to stable and unstable fixed points of the map. Notice in (b)
the two coalesce at a saddle node bifurcation and then lift off in (c), giving rise to intermittent
dynamics (see text).
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The narrow corridor between the function f(¢) and the diagonal line in
figure 4.14c induces what the French physicists Yves Pomeau and Paul
Manneville call type I intermittency.3' The dynamical behavior is as follows.
Inside the channel, iterates of the map move very slowly, giving rise to the
impression that the fixed point attractor was already in place (from the point
of view of decreasing Q). After exiting the channel, the trajectory takes large
strides for a number of times before reentering the channel. That is, phase
slippage occurs and there is no longer any mode locking, because the fixed
points have disappeared. Only a faint trace of them remains.

The appearance of phase slippage means that between two channel cross-
ings one of the oscillators gains a period: exactly the phenomenon of relative
coordination (see again figure 4.2a). Slips in phase occur because of the unstable
direction: the system escapes to explore other regions of its space before
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Figure 4.15 Intermittency in the chaotic regime of the phase-attractive circle map. In (a) there
is a stable fixed point on the right lobe which attracts initial conditions (see arrow). (b) same as
(a) except attraction is to a fixed point on the left lobe. (c) When the function is lifted off
the diagonal, spontaneous switching between the fixed points occurs via a chaotic transient, as
shown by the time series in (d).
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wandering back into the channel (due to the 2r periodicity of ¢), where it
visits once more the remnant of the fixed point. It is just like the father
walking along with his small child who, because of their intrinsically different
cycle periods, must either slow down (father) or add steps (child) to keep pace
with each other. The father-child system is poised near the ghost of mode-
locked states (fixed points), relatively but not absolutely coordinated. The
main dynamical mechanism (figure 4.14b) is the coalescence of stable (at-
tracting) and unstable (repelling) directions in the coordination dynamics.
Both stabilizing and destabilizing processes must, it seems, coexist.

When we move into the chaotic region of the dynamics the same basic
mechanism is present. In figure 4.15 I show the map in the noninvertible
region beyond the critical surface, where the torus breaks down. For Q = 0.5,
that is, a 2 : 1 frequency ratio, and strong coupling there is a double “hump,”
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Figure 4.16 Chaotic-chaotic transitions in the phase-attractive circle map. (a) shows a chaotic
attractor in the left lobe of the state space, (b) shows a different chaotic attractor in the right
lobe, and (c) shows a connection between them, creating a two lobed attractor in which motion
jumps spontaneously from one lobe to the other. Note in the time series (d) that motion is
chaotic in each lobe.
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each containing a stable fixed point. Which one is observed depends on initial
conditions (figure 4.15a and b). When the function is lifted slightly off the line
(figure 4.15¢) the system escapes through a portal, jumping between the two
nearly mode-locked states, via a chaotic transient. Figure 4.15d shows the
corresponding time series. Such a process may well underlie the kind of per-
ceptual switching that occurs when observers view ambiguous figures like the
Necker cube (see Chapter 7) as well as the intermittent switching observed in
ion channel kinetics (see chapter 8).

Finally, our map may possess two chaotic attractors with independent basins
of attraction.>? A random initial condition falls into one of the attractors and
stays there (figure 4.16a and b). With a small parameter change, a single
two-lobed attractor emerges, composed of the two original attractors con-
nected through small portals in the phase space. A chaotic trajectory is fol-
lowed inside one of the lobes until it escapes and falls into the other lobe
(figure 4.16c). The time series in figure 4.16d illustrates the way the system
switches randomly back and forth between these states. Although fluctuations
are obviously important in biological systems, these switches are actually
deterministic and not the result of noise. The slightest parameter change
causes escape from the basin of one chaotic attractor to the other, reminiscent
of conceptual leaps.*?

Experimental Windows on Intermittency

Much of von Holst's work on the nature of order in the central nervous
system was performed on Labrus, a fish distinguished by the fact that it swims
smoothly using rhythmic fin movements but keeps its main body axis immo-
bile. Von Holst referred to this preparation, in true Germanic style, as his
precision apparatus (italics his). The time series shown in figure 4.2 are from
Labrus. The coordination is either at (absolute) or near (relative) 1:1 mode
locking.

I have a “precision apparatus” too, custom made and especially configured
for driving and monitoring the movements of the two hands simultane-
ously.3* In a series of experiments done with Gonzalo DeGuzman we
manipulated the frequency ratio between the two hands. It is very difficult to
require a subject to produce high-order frequency ratios on demand. My idea
was to drive one finger passively using a torque motor while the other finger
maintained a base rhythm. This allowed us to scan the frequency ratio in small
steps (0.1 Hz) every 20 seconds or so from just below 1: 1 to just above 2: 1.
We found beautiful evidence for intermittent dynamics in the human sensori-
motor system.

A typical time series from the experiment is shown in figure 4.17. The
required frequency ratio is set near 2: 1, not 1:1 as in figure 4.2. The input
signal used to drive the torque motor is on top. The actual trajectory of the
driven hand is in the middle. Notice it does not exactly follow the driver. The
free hand, moving at its base rhythm, is on the bottom. Enhancement of the
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Figure 4.17 Relative coordination near a 2:1 required frequency ratio. Trajectories of the
input signal used to drive the torque motor (fop), the actual motion produced by the driven
hand (middle), and the free hand (bottom). Enhancement of the peaks near in-phase regions points
to the discrete nature of the coordination. Occasional but systematic slips are evident when the
enhanced peak extends beyond the broadened peak of the free hand (3 steps instead of 2).

Figure 4.18 Phase space portrait of a 2:1 case in the Kelso and DeGuzman experiment. 6,
and 6, correspond to the angular position of the left and right hands; 6, is the angular velocity
of the left hand. the dark bands show phase concentration around 0 and =. The length of these
bands is due to flattening of the right-hand trajectories at the crests and troughs.

peaks near in-phase coordination attests once more to the discrete nature of
coordination. More important here, however, is that the driven hand adjusts
its trajectory to sustain the natural tendency to be in phase with the slower
free hand. Follow the vertical lines on figure 4.17 from left to right. Occasional
slips occur when the position of the enhanced peak extends beyond the
broadened peak of the free hand. Three steps instead of two! This experimen-
tal system, our little window into life, resides on the edge of the mode-locked
state, not in it.
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Figure 4.18 shows a 3-D plot of a 2 : 1 condition in which the position and
velocity of the driven hand occupy the x- and y-axes, and the position of the
free hand is plotted continuously on the z-coordinate. The reason a nice limit
cycle is observed is because the driving torque is sufficiently large that the
hand has to follow it. Two bands of phase concentration on the driven cycle
show up clearly around ¢ = 0 and 7. This is because in this case the free hand
visits these states for prolonged periods of time before wandering away. The
length of the dark bands is due to flattening of the free hand trajectories at the
crests and troughs of its motion. Here we see the same relative coordination
effect produced in a different way that nevertheless attests to the mutual
cooperation between the components.

When 1 first presented these results in 1987 at one of Hermann Haken’s
famous Elmau meetings (this one on neural and synergetic computers) I
remarked, paraphrasing Arnold Mandell:

Neurobiological dynamical systems lack stationarity: their orbital trajectories
visit among and jump between attractor basins from which (after relatively
short times) they are spontaneously “kicked out” by their divergent flows.

Using the map, it is easy to plot the relative phase distributions correspond-
ing to mode-locked and intermittent regimes of the coordination dynamics.
One look at these distributions strengthens the theory that absolute and
relative coordination, the two basic dynamic forms, correspond to mode lock-
ing and intermittent regimes of the coordination dynamics. The reader can
prove this by iterating our map on a computer and plotting a histogram of the
phases visited. That's what is displayed in figure 4.19 for parameters that are
set near 2: 1 (i.e., Q@ & 0.5). The map is iterated 10,000 times and plotted after
removal of any initial transients. Three distributions are shown, with the same
number of data points in each. Relative phase [0, 27] is on the horizontal axis
expressed on the unit interval [0, 1]. As the frequency ratio parameter is
brought closer to 2: 1, the peaks near ¢ = 0 (~0.1) and ¢ = 1 (~0.5) be-
come higher and narrower. The system still visits all possible phase states, but
less so than when it is farther away from the mode-locked state. Were one to
enter the 2 : 1 Arnol'd tongue without adding a little noise, two straight lines
exactly at the absolutely coordinated phase states would be observed with
approximately the same number of points (~ 5000) in each. Comparison with
von Holst’s phase distributions in figure 4.2 is irresistible.

Anticipation ...

The trajectories displayed in figures 4.2 and 4.17 exhibit a phenomenon that
one might call, for want of a better word, anticipation. Notice as the vertical
lines progressively strike the broadened peaks in figure 4.17 (third row) they
reach a point at the edge where we know an extra step is going to be inserted.
The system itself is clearly sensitive to the fact that if it doesn’t adapt quickly,
coordination and communication will be lost. Literally, in our system, it will
behave irrationally. How do we understand this anticipatory effect?
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Figure 4.19 Histogram of the relative phase distributions in the intermittent regime of the
phase-attractive map near a frequency ratio of 2:1 (Q = .5). Notice the peaks become smaller
and more dispersed as the frequency ratio moves away from the 2:1 mode-locked state.

Referring back to figure 4.14¢, note that close to the tangent bifurcation,
the relative phase concentrates and slows. Phase attraction persists because
the iterates are trapped in the corridor separating the function and the 45-
degree line. Obviously, as the system approaches closer and closer to the
fixed point, the time spent in the channel gets longer and longer (critical
slowing in another guise!). This phase gathering has an anticipatory quality
about it. Even though the motion is quasi-regular, it is easy to predict where
and when the mode-locked state is going to reveal itself.

A good way to see this is through the corresponding bifurcation diagrams
shown in figure 4.20. The bifurcation parameter, K, in this case, is varied along
the x-axis and the relative phase, ¢, is on the y-axis. The fuzzy area corre-
sponds (mostly) to quasi-periodic motion because the frequency ratio between
the components is irrational. By the way, the gaps inside the fuzziness are
higher-order, very thin, mode-locked regions. Notice, however, that the pro-
gressive darkening anticipates the upcoming stable solution (the single line),
which indicates that coordination is trapped or mode locked 1:1 in figure
4.20a or 2 : 1 in figure 4.20b.
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Figure 4.20 Anticipation? Bifurcation diagram showing the phase behavior when crossing
the Amol'd tongues at (a) 1:1 and (b) 2:1 for fixed A and increasing K. Progressive darkening
“anticipates” upcoming stable solutions (single lines), which indicate that coordination is
trapped or mode locked.

The main point is that the system spends more time near a particular phase
as it approaches a critical point, giving rise to an enhanced phase density that
specifies the locus of the upcoming state. Critical slowing (the darkening
effect) is thus a predictor of upcoming transitions. Somewhat facetiously (but
not entirely), I refer to this aspect of the coordination dynamics as an anticipa-
tory dynamical system (ADS).>* An ADS stays in contact with the future by
living near critical points.

POSTSCRIPT

For me, there can hardly be a more powerful image of the central thesis here
—that materially complex biological systems may exhibit low-dimensional,
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but complex dynamical behavior—than the demonstrated tendencies for
humans to exhibit limited forms of spatiotemporal organization among
themselves or their components. Although I hesitate to use the heady
language of universality, nevertheless, a remarkable, possibly quite profound,
connection seems to exist among physical, biological, and psychological
phenomena. “Phenomenon” is often a dirty word in the softer sciences,
somehow suggesting failure to come to grips with “mechanisms” and settling
instead for “description.” Often mechanisms for a given phenomenon
are sought at lower levels in the interior workings of the system. That
view may be flawed if lower levels also turn out to be governed by the
same kinds of self-organized dynamical principles or generic mechanisms
shown to be at work here.

In this book, I use the word phenomenon very much in the style of physics,
to refer to observations obtained under specific circumstances including an
account of the entire experiment.>® This does not mean one cannot go be-
yond the specifics of the experiment to some deeper theoretical framework.
The phenomena of absolute, and, to a lesser degree, relative coordination have
been around a long time: their connection to concepts of self-organization in
nonequilibrium systems and their expression in terms of dynamical laws is, I
think, quite recent. Up to now, the early discoveries of von Holst and his
generally valid descriptions of biological coordination, even though widely
recognized, were not accompanied by a successful theoretical treatment. This
had to wait for the concepts of synergetics to handle cooperative interactions,
and the appropriate mathematical tools of nonlinear dynamical systems to
formalize them.

In this chapter it has been difficult to contain my excitement at the recogni-
tion of unity between features of complex coordination phenomena that pre-
viously appeared quite unconnected. Absolute and relative coordination, the
two basic dynamic forms, correspond to mode locking and intermittency, now
unified in a single theory. Both absolute and relative coordination spring from
a basic symmetry in the collective variable, relative phase. Symmetries run the
laws of physics and are always tied to conservation principles. The mathemati-
cal language of symmetries dominates all the way from the conservation of
momentum and energy in classical physics to the fundamental particles of
quantum mechanics. Does a new conservation principle underlie coordination?
Perhaps. The concept of stability seems equally if not more important, be-
cause, as shown here, coordinative states may possess equivalent symmetry
yet not be equally stable. '

It is the breaking of symmetry that gives rise to the complex of phenomena
collectively called relative coordination. Phase slippage and the injection of
additional steps correspond to the intermittent regime of the coordination
dynamics. The main generic mechanism is the coalescence near tangent bifurca-
tions of stable (attracting) and unstable (repelling) fixed points in the coordina-
tion dynamics. In this flexible, intermittent regime, systems exhibit phase
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attraction but not phase locking or phase entrainment. The collective variable
is nonstationary, it does not converge asymptotically.

When Mozart wrote to his father about three piano concertos he had just
completed, he is reported to have said, “They are exactly between too hard
and too easy: the connoisseurs will find satisfaction, but the nonexperts will
feel content without knowing why.” That'’s relative coordination, in between
the hard and the easy, the regular and the irregular where the creative
pulse beats.
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