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Organisms function in particular environments, the properties of which are reflected
in the structure of their nervous systems. Therefore, sensory information may directly
specify motor behaviors. We argue that such specification involves the coupling of
sensory information into appropriately structured control systems that generate ac-
tion. The nature of this coupling as well as the structure of the control systems reflect
properties of the environment. This is most dramatically demonstrated when adaptive
processes adjust the underlying control system in response to changes in the environ-
ment. Experimental and modeling work on posture in perturbed visual and haptic en-
vironments is reviewed to provide evidence for these arguments. Theoretical model-
ing and autonomous robotics work that goes beyond the posture example of
perception—action coupling is briefly discussed, primarily to point out that the integra-
tion of multiple behavioral constraints is a nontrivial problem that has received too lit-
tle attention.

Gibson’s (1958/this issue) article, which we celebrate here, discusses three circles of
ideas, which we briefly discuss to position our own contribution.
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STIMULATION IS CONSTRAINED ECOLOGICALLY

Patterns of sensory stimulation are not arbitrary physical signals. They are physical
signals that arise from the outer world in which the organism is immersed. Optic stim-
ulation originates typically from light reflected from surfaces, for instance. These sut-
facesare often at rest relative to each other and are often rigid. Light sources are often
at rest. Acoustic stimulation often originates from physical events that are localized
in space. Tactile stimulation typically results from touching surfaces, again often
rigid, sometimes at rest. Perception is apparently sensitive to these properties of the
outer world. The perception of depth, of shape, of motion, and so forth is to some ex-
tent invariant under changes of the conditions of stimulation such as changes of the
distributions of light sources or changes of the aspect of the viewer, and so forth.

This hypothesis, that perception is sensitive to properties of the outer world, was
expressed by Gibson in his 1958 article and in more elaborate form later (as well as
by others). Modem robot vision is in large part based on this view, most explicitly
in the domain of active vision (e.g., Aloimonos & Rosenfeld, 1991), although an
intellectual heritage from Gibson is not typically acknowledged and historically
these ideas might have arisen independently in robot vision. Perceptual science is
also largely influenced by such ideas, although again they are not always traced
back to Gibson (and might not always be traceable in this way). A major criticism
of Gibson’s view of perception is aimed at his implied denial of the need to analyze
the processing of the stimulus that leads to the representation of invariant informa-
tion. In the 1958 article, this denial is not actually apparent. Qur work on the vi-
sual and haptic control of posture is, of course, based on this view, as is the work on
the visual elicitation of action and the autonomous robotics work.

PERCEPTION-ACTION BEHAVIORS

The fact that sensory stimulation is constrained by the way it arises from the envi-
ronment makes it possible to extract specific information from the sensory array
with which a number of basic locomotory behaviors of animals can be controlled.
This was Gibson’s second idea. His analysis implied, although this was not explicitly
stated, that such information can often be obtained without first segmenting the
sensory pattern. That means that the sensory array need not be segmented into
foreground and background, or into separate subsets that are matched onto objects
in the outer world. Information relevant to the control of locomotory behavior can
be obtained from the “raw” sensory array. A recent study by Warren and Saunders
(1995) provided evidence that humans perceive heading direction from an unseg-
mented visual array.

This idea is used quite naturally today in a number of applications in autono-
mous robotics. The fundamental optic flow equation, for instance, is used to ex-
tract information about the motion state of a moving observer that can then be
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used to control observer motion (cf. Neven & Schéner, 1996; Sandini, Gandolfo,
Grosso, & Tistarelli, 1993). Realizations of such systems have been obtained only
over the last 10 years or so, in part, because the computational problems encoun-
tered when this information must be extracted from image sequences have become
tractable in real time only with improved embedded computation.

In psychology, this idea is most prominently pursued within the paradigm of
ecological psychology, to which this journal is dedicated. Of the many different
proposals listed by Gibson, the control of posture by optic flow and the initiation of
action in response to optic flow information have been most intensely studied. By
contrast, obstacle avoidance based on optic flow, homing, and so forth, have re-
ceived little attention, although robotic implementations demonstrate the feasibil-
ity of these proposals.

This article aims to examine these proposals. By reviewing our own experimen-
tal and theoretical work on the stabilization of posture by unsegmented visual and
haptic information as well as theoretical work on the control of movement initia-
tion by optic flow, we provide evidence in support of two hypotheses: (a) Coupling
to unsegmented sensory information is the basis of simple action—perception pat-
terns, and (b) adaptive change of the motor control system into which such infor-
mation couples reveals that action—perception patterns are not the result of a
feed-forward computational system in which the stimulus array drives the action
but are adaptive behaviors in which the system changes so as to tune its parameters
to incoming sensory information. Adaptive refers to motor responses that do not re-
sult simply from the reduction of an error signal. For instance, during posture in a
moving optic environment, the postural control system changes its eigenfrequency
to match the frequency of imposed oscillation.

The first of these two points is probably in line with Gibson’s views as expressed
in the 1958 article. The notion of control is implicit. It is thus useful for us to clarifv
to which extent control theory is an appropriate theoretical framework to formalize
this aspect of Gibson's program. We comment on this issue on several occasions
and devote a section on a necessary extension of the control theoretic framework.
There is an aspect, however, of ideas in perception that are somewhat inspired by
Gibson's program, but that may be in conflict with the importance we attribute to
coupling. We refer to the notion that based on assumptions about the outer world,
particular parameters may be “computed” from the sensory array, which then
“specify” a particular motor act. This notion is neither sufficient (because the stabi-
lization of a perception—action linkages is a nontrivial aspect that goes beyond
specification in this sense), nor necessary (because perception—action patterns may
be stabilized without explicit estimation of underlying parameter values). We com-
ment on this problem in the Discussion section while reviewing “less simple per-
ception action patterns.”

The second point is probably less in line with Gibson’s proposals, as it empha-
sizes the dependence of perception—action patterns on other factors than the sen-
sory array, here, the internal state of adaptive processes.
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SPATIAL ORIENTATION

The third circle of ideas acknowledges explicitly the need for other types of pro-
cesses to account for discrimination and identification. These ideas reach into cog-
nition. It is interesting to note that Gibson arrived at the insight that such ideas are
necessary, as this aspect is not often emphasized within the framework of ecological
psychology. This circle of ideas is, however, the least developed, and one might
wonder to what extent Gibson or his students have contributed to this domain. Gib-
son’s stance might need to be interpreted more in relation to behaviorist ideas still
topical at the time. For lack of space, we briefly allude to the relation between our
dynamic ideas and this problem in the Discussion. This is, however, one point at
which we depart from the program of ecological psychology by emphasizing that
representations can become quite independent of the sensory array.

THE DYNAMIC APPROACH

Our emphasis on coupling and adaptation requires a framework in which the system
that sensory information couples into and that adapts can be characterized. That
framework is provided by ideas from a dynamic approach to understanding coordi-
nated movement (e.g., Schoner & Kelso, 1988). The central concept is stability,
which captures the capacity of perception—action systems to maintain particular
states in the face of the various types of perturbations to which the system is contin-
uously exposed. Continuous variables characterize such stable states and excur-
sions from those states. Such variables are chosen to accommodate different ob-
served stable states of the system. In contrast to the theory of control, the choice of
state variables is not based on an attempt to divide the system up into a plantand a
controller. That latter distinction is problematic for nervous control, in particular,
when the presumed plant changes in response to the experienced control signals.

The dynamic approach deals naturally with situations in which multiple stable
states of a system coexist. Multistability, but also change of stability, constrain the
choice of dynamical variables used to characterize the system. The different stable
states must be describable by the chosen variables, and changes of stability must be
captured by the dynamics of these variables. Classical control theory deals with sys-
tems that have a unique set point (stable state), the deviation from which is the con-
trol variable. Such a control variable cannot be defined if there are multiple
simultaneous states (deviation from which set point?). We report later on some
preliminary data and a speculative model to illustrate a case where the dynamic ap-
proach clearly departs from classical control theory.

DYNAMIC MODEL OF POSTURE

During posture the body is maintained upright in the gravitational reference frame.
This is one of the simplest whole-body motor behaviors and is an important element
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of all locomotory behaviors. Multiple sources of sensory information are known to
contribute to postural behavior including vestibular, visual, and somatosensory in-
formation, but also more indirect factors such as efference copy or central set
(Horak, Diener, & Nashner, 1989). Much of the postural literature attempts to dis-
cermn the role of different subsystems (e.g., vestibular system, particular muscle
groups, etc.) or different biomechanical components (e.g., head vs. trunk) in overall
postural control.

Modeling postural behavior within the dynamic approach does not aim at an
absolute description of the postural system valid under any experimental condi-
tion. Instead, postural behavior is characterized with respect to particular behav-
ior situations. This reflects the view that the fundamental otganization of the
nervous system is not in terms of anatomical or physiological subsystems, but in
terms of elementary behaviors. We define elementary behaviors as classes of be-
haviors. As long as a behavior changes continuously and remains stable as envi-
ronmental conditions are changed, it continues to belong to the same class. A
new elementary behavior is encountered whenever a behavior goes through an
instability. For example, the effect on postural sway of a optic array of random
dots moving coherently is strongly dependent on the number of dots in the dis-
play. A small number of dots has a negligible effect on sway. The moving dots
are interpreted as object motion in the environment. As the number of moving
dots increases, a dramatic change occurs, as postural sway entrains to the moving
visual display (Brandt, Wist, & Dichgans, 1975). This change signifies the inter-
pretation of object (foreground) to environmental (background) motion, each of
which may be considered an elementary behavior that reorganizes the response
of the nervous system. From this perspective, physiological or biomechanical
subsystems are not in themselves separable units, even though they are often an-
alyzed in this manner. Multiple subsystems may be recruited to interact as single
units in terms of the elementary behaviors.

We have been studying postural behavior involving small sway amplitudes for a
number of years. Under such conditions, normal participants move as a rigid body,
such that a single degree of freedom for anterior—posterior and a second degree of
freedom for medial-lateral sway characterize sufficiently the movement state of the
body. These position variables are candidate behavioral variables because the sta-
ble states obtained by postural behavior can be expressed as constant values of
these variables. The dynamics of these variables is plausibly at least a second order
differential equation, because oscillatory components of body sway are frequently

observed. The simplest (i.e., linear) dynamical model of a stable postural state is
thus

i+ox+@x=0 (1)

Here, only one positional degree of freedom, x, is taken into account. When pertur-
bations are applied to either anterior—posterior or to medial-lateral sway, we assume,
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FIGURE 1 The analysis of the postural control system into its different sensory and motor
components is based on the idea that when a particular type of sensory information is varied (in
Figure 1, visual and somatosensory), then observed changes of postural behavior can be attrib-
uted to the properties of particular sensory-motor channels (the two boxes outside the hatched
region). The ensemble of other modules (hatched region) is assumed independent of the varia-
tions induced in the chosen channels. If this is not the case, this approach loses its predictive
power: Each time environmental conditions are changed, a new system is confronted. Note that
such changes go beyond adaptation in the simplest control theoretic sense, which is also typically
restricted to a single sensory channel (e.g., Kalman gain).

that these two components of sway can be analyzed separately.! The postural vari-
able x refers to the matching degree of freedom. The two parameters of this linear
model are the eigenfrequency, ®, and the damping coefficient, . These names are
chosen in analogy to the meaning of the corresponding parameters in the dynamic
equation of physical oscillators. They do not have any deeper meaning than that.
This equation simply describes the overall effect of the various control systems
contributing to postural stability, not giving any particular prominence to the me-
chanical contributions to that stability. The fact that, mathematically, this is the
equation of a damped harmonic oscillator suggests an analogy with the dynamics of
a damped pendulum. Qur formulation has, however, nothing to do with the
biomechanical description of posture as an inverted pendulum problem. That de-
scription does not address how the mechanically unstable inverted equilibrium so-
lution is stabilized. Conversely, the present model does not address how the
different effector degrees of freedom are coordinated to generate rigid “pendulum”
motion. It should be noted that the same mathematical model has been hypothe-
sized to underlie postural control by Johansson, Magnusson, and Akesson (1988).
What are different constituents of this control system? The typical procedure to
answer this question involves varying the conditions of one particular sensory
channel and studying its effect on postural control. This leads to systematic identi-
fication of the postural control system if the postural control system remains con-

'This does not mean that the dynamics of the different degrees of freedom are independent. In the ex-
periments summarized here, we have not looked for such a coupling across degrees of freedom, and
therefore, we do not include such couplings in our models.
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stant while the sensory situation is changed (Figure 1). The assumption of a
constant control system turns out to be wrong, however, as we illustrate later. We
have shown this for postural control while varying two sensory inputs independ-
ently: vision and somatosensation. In both cases, in the best Gibsonian manner, we
have not presented arbitrary stimuli based on a complete representation of stimuli
(e.g., “white noise”), but stimuli that correspond to a well-defined situation in the
world: a virtual “moving wall” from which visual information is obtained and a
physically moving contact surface from which somatosensory stimulation derives.

Posture in the Visual World

The contribution of vision to postural behavior can be studied in the moving room
paradigm introduced by Lee and colleagues (Lee & Aronson, 1974; Lee & Lishman,
1975). What can be expected? For anterior—posterior motion, amoving observerina
stationary environment senses a velocity field (optic flow) that is zero whenever the
observer is at rest. It changes sign (from expansion to contraction) whenever the ve-
locity of the observer in the visual frame changes sign. This is therefore a potential
control signal for posture (in the sense of visual serving). Visual expansion as such
does not specify the gain (how much to react to particular levels of flow). The desir-
able gain depends on the depth of the scene. At large depths only small flows are gen-
erated and high sensitivity is needed; at small depths, large flows are generated and
only low sensitivity is need. Moreover, flow increases in amplitude with distance
from the focus of expansion~contraction. Do all locations of the visual array contrib-
ute equally orappropriately weighted with eccentricity? The visual expansion rate

a0 __d0 )

) d(r)

is the ratio of optic flow, r, at eccentricity, 7, with eccentricity itself.2 Under the as-
sumptions of geometrical optics, it is equal to the inverse ratio of the rate of change
of visual depth, d, and visual depth, d. This measure of visual motion is, under some
conditions, homogeneous across the visual array (e.g., at constant visual depth
across the array). Lee (1976) first introduced this ratio, proposing that this parame-
ter could be used by organisms to control their approach to surfaces. Schoner
(1991) hypothesized that for anterior-posterior postural sway, this ratio was the
form in which visual information couples into the postural control system

4 ox + wx = —ce(t) (3)

IStrictly speaking, 7, by itself is the visual expansion rate, while e(t) is the ratio of visual expansion rate
and eccentricity. This ratio is independent of the size of the patch, the expansion of which is considered.
For simplicity we use the term visual expansion rate to refer to this ratio.
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The visual expansion rate is coupled negatively into the postural dynamics so that
an expanding flow (e > 0) accelerates the body backwards; a contracting flow accel-
erates the body forwards. This models a control behavior in which body sway tends
to reduce optic flow.

The visual expansion rate has a contribution that is monotonically related to
the velocity, x, of the body in the outer frame. In a static optic environment, an out-
flow is generated (e > 0) when the body moves forward (x > 0); an inflow is gener-
ated (e < 0) when the body moves backward (x < 0). Coupling the expansion rate
into the postural dynamics thus accounts for the stabilizing effect of visual informa-
tion on posture. In fact, for large optic distances (d > x), the expansion rate in a
static optic environment can be approximated as

i —
x+d

ot) = “

o=

In this case, the visual contribution has the form of a linear damping function,
which increases the effective damping to & = 0t +¢/d:

x+0x+0x=0 (5)

One way to probe this coupling structure is to induce perturbations into the op-
tic environment. In the simplest case, the optic environment may be moved sinu-
soidally in depth: d(t) = do + Adsin(wat). Under such conditions, there are two
contributions to optic flow—the flow created by movement of the body and the
flow created by the moving optic scene:

_ % _@,Adcos(@,t) (6)
VLT 4

Again we assumed that the average visual depth of the scene (do) is much larger
than the sway amplitude and the amplitude of visual motion, Ad. The dynamic
model of postural control is then simply a driven damped harmonic oscillator:

X+ 0x+0'x =7 cos(w,t) )

with effective coupling strength T =cw, Ad/d,.

Qualitatively, this is consistent with the early experiments in which participants
were exposed to an oscillatory optic environment and exhibited typical driven os-
cillator behavior (e.g., van Asten, Gielen, & Denier van der Gon, 1988). We can
be more precise, however. First, the assumed coupling to expansion rate predicts
more specifically that the strength of the driving force generated by a moving optic
scene decreases with increasing visual depth (because d; appears in the denomina-
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tor of the driving term). Second, the stabilizing effect of vision is likewise predicted
to decrease with increasing visual depth (same argument of the effective damping
term).

These predictions were tested in the experiment of Dijkstra, Schéner, and
Gielen (1994). Quietly standing participants were exposed to a optic scene (ran-
dom dots lying on a virtual “moving wall”} that moved in depth with moderate am-
plitude (4 cm) around different mean depths (25, 50, 100 and 200 cm) at a
frequency (0.2 cycles/sec) that approximately matches typical postural frequen-
cies. Depth was defined both by stereoscopic cues as well as by motion parallax
generated in a virtual reality setup, in which measured head position served to up-
date the display consistent with a particular visual depth (see Figure 2).

What happens in this experimental setting is that participants sway rhythmi-
cally, approximately in-phase with the oscillatory optic environment. The first ob-
servation to make is that the spatiotemporal coupling between visual motion and
induced postural sway is remarkably tight. Dijkstra, Schéner, and Gielen (1994)es-
timated the stability of the coupling of postural sway to visual motion both by com-
puting the variability of the relative phase between visual motion and sway and by
perturbing the visual motion and measuring relaxation time to the stable phase

video projecto
camera l

graphics
workstation
SUN4/260 CXP

position registration
system (WatSmart)

FIGURE 2 The setup for studying visual control of pos-
ture. Participants viewed a translucent screen through
red/green stereo goggles. A video projector projected a
stereogram onto the screen. Participants wore a helmet on
which infrared markers were mounted. From these markers
the positions of the eyes in space was calculated in real-time.
These positions were used by a graphics workstation to up-
date the visual scene so as tc be consistent with a wall of ran-
dom dots at a specific distance from the participant.
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locking pattern. Both measures are expected to teveal the effective damping of the
postural control system. As predicted, both measures varied with distance in a
manner consistent with decreased stability for increased visual depth. Moreover,
the gain of the visually induced sway decreased with increasing visual distance as
predicted. That decrease was quantitatively weaker than expected; that is, gain
dropped off far less than expected as visual distance was increased. This raised the
issue of whether the parameters of the postural control system (i.e., damping,
eigenfrequency, coupling strength to vision) are constant and independent of the
optic environment.

That issue was addressed in a second experiment (Dijkstra, Schéner, Giese, &
Gielen, 1994; Giese, Dijkstra, Schéner, & Gielen, 1996), in which the oscillation
frequency of the optic display was varied (0.05, 0.1, 0.2, 0.3, 0.4, and 0.5 cy-
cles/sec), while keeping peak visual velocity constant. Although the dependence
of sway amplitude and relative phase between sway and visual motion was quali-
tatively consistent with a linear driven oscillator model, the observed resonance
structure was too weakly developed to be quantitatively consistent with the
model. Amplitude did not peak sharply when the system was driven at its pre-
ferred frequency of sway, nor did the relative phase between sway and visual mo-
tion change abruptly near that frequency. By estimating the model parameters
trial by trial it was possible to show that these parameters do vary with the fre-
quency of the oscillatory optic scene (although the fits confirmed, at the same
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FIGURE 3 The dependence of eigenfrequency of the postural control system
on modulation frequency of the optical surround.
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time, the linear model structure)! The eigenfrequency of the postural control
system (f = 2mw) matched the optic driving frequency up to about 0.3 cy-
cles/sec, where it leveled of {see Figure 3).

In other words, even when only visual information was manipulated, the
eigenfrequency of the postural control system depended on that visual informa-
tion. This may best be understood as a result of an adaptive process, in which the
sway generated by oscillatory optic stimulation leads to adjustments in the
nonvisual part of the postural control system that make the postural control system
more responsive to visual stimulation (by adjusting eigenfrequency). This is, appar-
ently, how the postural control system achieves better than predicted coupling to
the moving optic environment (e.g., larger gain at high frequencies). The adapta-
tion of eigenfrequency cannot be modeled as a minimization of the error between
driving frequency and eigenfrequency, as would be standard in control theory.
First, such an error-minimizing model would be specific to periodic motion and
thus would not work for more general movements of the environment. Second, it
would not capture the observed leveling off of adaptation beyond driving frequen-
cies of 0.3 Hz. The adaptation calls into question the strategy of analysis, in which
each sensory channel is studied in isolation. The control system for posture cannot
e separaas G SEUYY -dmt movur COTPOTTENTTS.

Posture in the Haptic World

Does this result imply that visual input to the postural control system is dominant,
so that posture in the visual frame overrides posture in the inertial frame? The an-
swer is probably in the negative, supported by some experimental work on
somatosensory driving of postural sway.

Lightly touching a stationary surface with a fingertip stabilizes posture in the ex-
perimental setup shown in Figure 4. (Jeka & Lackner, 1994, 1995). Jeka and col-
leagues exploited this fact to study the dynamic coupling of somatosensory
information from touch into the postural control system. An oscillatory “tactile”
environment was created by moving the surface (touch bar), on which the index
finger rested, sinusoidally at very small amplitudes (3—32 mm). The frequency of
this tactile motion was varied from 0.1 to 0.5 cycles/sec at constant amplitude in
one experiment (Jeka, Schéner, Dijkstra, Ribeiro, & Lackner, 1997) and from 0.1
to 0.8 cycles/sec at constant peak velocity in another experiment (Jeka, Oie,
Schoner, Dijkstra, & Henson, 1998). In all cases, touch was light: Applying more
than one Newton set off an alarm that participants successfully suppressed.

The results of these experiments were likewise analyzed from the perspective
of a (linear) dynamic control model. In which way might haptic information cou-
ple into postural control? The requirement to minimize the transmitted force at
the fingertip may lead to the acquisition of a sensory-motor mapping that permits
participants to maintain the fingertip immobile in the’outer frame even as the
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FIGURE4 A participant depicted on the force platform with
his right index fingertip on the touch plate positioned at waist
level. The plate moved sinusoidally in the medial-lateral plane at
different frequencies (0.1-0.8 Hz) in the moving plate condi-
tions. For the sake of illustration, the alarm is sounding due toan
applied force on the touch plate of greater than IN (about 100
grams). This occurred on less than 5% of all experimental trials.

body sways. Such a map would provide information about the position of the
body in space given the current sensory signal at the fingertip. Its contribution to
postural control could be modeled by a coupling term that is linear in body posi-
tion. On the other hand, a velocity might be directly sensed at the fingertip. This
velocity is the relative velocity between the body and the touch surface. If, in a
first approximation, the finger moves with the body, this velocity is thus the dif-
ference between the velocity of the body in the outer frame, x, and the velocity,
d, of the touch surface in that frame. In summary, the simplest model has two
coupling terms

F+0x+0x = —¢ x—c,(x—d) ®)

The signs are chosen so as to express that touch tends to counteract movement rela-
tive to the touch surface.
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FIGURES Overlaid time series of center of pressure (CPX), head (HX), and
touch bar (TBX) displacement when the touch plate was (a) stationary and (b)
moving at 0.5 Hz. Note how head and body sway entrain to the touch plate move-
ment in (b) while in {(a) body sway has no characteristic frequency.

The simplest, but perhaps most remarkable result is shown in Figure 5. Lightly
touching an oscillating surface induces periodic sway, which is coupled remarkably
tightly to the surface motion. This can be established by observing the coherence
between sway and touch bar motion, which is high (> 0.9 at all frequencies), simi-
lar to the visual case although the touch bar amplitude and hence the sway ampli-
tude is smaller here. We have argued that relatively small driving amplitudes lead
to high coherence with postural sway because the amplitude is compatible with
sway amplitudes typically produced by the nervous system. Strong coupling is also
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evidenced by the low variability of the relative phase between touch bar position
and postural position.

More specifically, the relative phase between sway and touch bar motion as well
as the gain (i.e., the ratio between the amount of sway motion and touch bar mo-
tion at the driving frequency) both display qualitatively the typical pattern of a lin-
ear driven oscillator. Figure 6 shows how relative phase decreases with increasing
frequency, while gain has a maximum at intermediate frequencies, matching the
typical frequencies of sway in stationary environments.

A closer, quantitative look reveals some interesting details and problems, how-
ever. Assuming that the model parameters damping, eigenfrequency, and the cou-
pling constants do not depend on the frequency of the touch bar, these parameters
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FIGURE 6 (a) Mean relative phase of the center of mass (CMX) versus touch plate dis-
placement for all participants at each frequency of touch plate movement. (b) Mean CMX
gain for all participants at each frequency of touch plate movement.
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can be estimated by fitting the predicted relative phase and gain to the experimen-
tally obtained phase and gain functions. The quality of the fits and the systematic
errors (deviations that are clear functions of touch bar frequency) can then be in-
terpreted.

First, such fitting enabled Jeka and colleagues (1998) to determine that both
coupling to touch bar position and to touch bar velocity was necessary. If one of the

_two coupling coefficients was set to zero, the best fit remained bad. Essentially, the
fact that phase lags beyond 90° implies that coupling to position must be taken into
account. Similarly, the fact that positive relative phases occur (so that sway motion
“anticipates” touch bar motion) implies that velocity coupling must be taken into
account. This contrasts with the situation in which sway was driven by visual mo-
tion in depth. In that case, coupling to position did not emerge as a necessary com-
ponent of the model. It is quite natural to assume that visual motion in depth does
not clearly define a positional spatial reference frame, whereas somatosensory mo-
tion does. Constructing a reliable depth estimate from visual information is clearly
a much more difficult problem than computing positional information from touch
sensors. In the first case, a number of fundamental problems in vision must be re-
solved, whereas the latter depends merely on a model of the touch sensor, which
the nervous system may have learned.

A second observation from these fits is that adaptation might likewise take
place in this haptic scenario as in the visual case. Evidence for this arises somewhat
more indirectly as fitting the parameters of the linear model trial by trial is not yet
complete. The systematic deviations from the constant parameter linear model in
phase and gain make it possible, however, to obtain some intuition about these
adaptive changes. Thus, for instance, is the gain typically underestimated in the
model at high frequencies. This is consistent with an adaptation of eigenfrequency
similar to the one observed more directly in the visual case. Moreover, the relative
phase is estimated as a less pronounced function of frequency than that observed
(Jeka et al., 1998). This is also consistent with an adaptation of eigenfrequency.
Thus, the assumption that the parameter values of the linear postural model re-
main constant as the touch bar frequency is varied is clearly violated. We con-
firmed this by fitting higher order models to the data, which did not produce better
results.

Overall, the weak resonance structure (i.e., no clear peak of gain at any fre-
quency) and high level of the gain at all frequencies as well as the strong cou-
pling (i.e., high coherence) at all frequencies indicates that adaptive changes in
response to a moving touch surface make the system more sensitive to
somatosensory information. This result calls into question the strategy of analyz-
ing the different sensory channels separately. As the haptic channel is analyzed,
the control system changes central parameters such as eigenfrequency and
damping, which presumably are shared by other sensory channels. Moreover, this
outcome shows that these adaptive changes are not reflective of some inherent
dominance of particular sensory input channels. Although the cited results were
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obtained when participants held eyes closed, recent unpublished data of Jeka’s
group have revealed the same pattern for phase and gain when eyes were open in
a stationary environment.

BEYOND CONTROL THEORY:
SWITCHING COUPLING MODE IN
RESPONSE TO PERCEIVED MOTION

We have touched on differences between the control-theoretic viewpoint and the
dynamic approach. The fact that postural behavior was modelled as having a single
stable state (upright posture mapped onto x = 0 by choice of coordinates) has not
made those differences apparent at the level of the mathematical modeling. Here
we describe an attempt to model a phenomenon that lends itself to analysis within
the dynamic approach, but less easily from a control-theoretic viewpoint. The phe-
nomenon consists of a change in control mode as a moving stimulus is either per-
ceived as background or as foreground motion. This change may be controlled, for
instance, by the amplitude of visual motion. Because we only have very preliminary
data on the problem, the modeling is more speculative in nature. The goal is to illus-
trate the principles, rather than to provide an accurate account.

The stimuli used in the Dijkstra, Schéner, Giese, et al. (1994) experiments
had rather small amplitudes of motion (a few centimeters in the visual case, a
few millimeters in the haptic case) whereas most other studies used larger ampli-
tudes (e.g., 50 cm or more in van Asten et al., 1988). Whereas we found near
constant gain of about one (independently of frequency), other authors found
much smaller gains, which decreased with increasing frequency. We hypothesize
that the postural control system may switch control mode when external (fore-
ground) motion is detected, which is not caused by self-motion. Such detection
changes the interpretation of the sensed motion from self- to object motion. In
one mode, the system responds to the expansion rate, e(t), in the visual case, or
to relative motion of the center of mass and the touchbar surface in the haptic
case (this is consistent with the model by Schoner, 1991). In the other mode, the
system couples to the perceived external motion, D(t), which does not depend
on the postural state, x and x. Each of the two coupling terms has a coupling
strength (c; for the self-motion strategy and c, for the object motion strategy)
and a degree of activation (w; for self-motion, w, for object motion):

%+ ox + 0'x = —cwe(t) — cowoD(t) ©)

(notation for the visual case). The activation variables range from O (corresponding
mode is “off") to 1 (corresponding mode is “on”). The activation variables are con-
trolled through a dynamical system that expresses the following constraints. For
large input amplitude, an attractor at 1 is stabilized, for small input amplitude an at-
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tractor at O is stabilized, and the two activation variables compete with each other.
A typical dynamics of this type is (cf. Schéner, 1989)

W, =0, W, (l—w,z)—yw,w; (10)

w, =o,w,(1-w) ) - w,w! (11)

where o, and o, determine the competitive advantage of each mode, and 7y repre-
sents the strength competition. How the stimulus amplitude controls the factors o
and o, is another issue, which we gloss over here (a simplest idea is that perceiving
foreground motion leads to large values of o, not perceiving such motion leads to
small values of o,. Such dynamics typically possesses a bistable regime, in which ei-
ther of the two activation variables may win the competition. There are, of course,
many other mathematical formulations of such activation dynamics, including
“neural” ones (our formulation is the simplest in terms of bifurcation theory; cf.
Schéner & Dose, 1992).
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FIGURE 7 Gain of the head versus amplitude of touchbar for two participants.
Errorbars denote standard deviation. These are results of a preliminary experiment to il-
lustrate the transition from sensed motion interpreted as self-motion to sensed motion
interpreted as object motion.
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It is hard to conceive of a control-theoretic model of this state of affairs. The sys-
tem is not minimizing any error in the object motion case. Also, adaptive control
does not provide the right framework because the system is not tuning a parameter
of the postural controller. Instead the activation variables describe the switching
between control modes in stable and smooth fashion (e.g., including hysteresis).

We have performed a preliminary experiment that illustrates that the afore-
mentioned modeling is on the right track. In the light-touch setup (Figure 4) we
had participants touching the moving touchbar. We kept frequency constant at
0.2 Hz but varied amplitude from 3 mm up to 22 mm. The amplitude of 3 mm is at
the 2-point threshold whereas in the 22 mm condition the touchbar can clearly be
sensed as moving independently. The gain of the head movement is illustrated in
Figure 7. For the amplitudes of 3 and 7 mm the gain is around 1 and for larger am-
plitude it falls off. For amplitudes below 10 mm, the touchbar motion is interpreted
as self-motion and above this threshold it is interpreted as object motion.

DISCUSSION

By studying the stabilization of posture by visual and other sensory information, we
have illustrated that an appropriate analysis of this behavior is in terms of coupling of
sensory information into a dynamical system governing postural control. Coupling
involves additional parameter (coupling strength), and the effects of coupling de-
pend on the temporal characteristics of both sensory information and control sys-
tem. It is therefore not sufficient to talk about the specification of information rele-
vant to posture by the sensory array as such specification refers purely to the
computation of the desired state of the postural system. Second, we found that the
perception—action loop is not only an online control system, in which the current
sensory information affects the effector system. The system as a whole adjusts to par-
ticular conditions of stimulation and behavior. Thus, exposing a standing partici-
pant to amoving optic environment leads to a postural control system specific to that
situation. Characterizing the system under those conditions does not yet predict how
the system will behave in another sensory environment. In this respect, the classical
strategy of separately analyzing different sensory channels by perturbing them sepa-
rately cannot be expected to lead to a complete analysis of postural control.

These two points are more dramatically illustrated if we look into “higher” pe:-
ception action behaviors, such as the next few ones listed by Gibson.

The Initiation of Movement

A more complex class of perception—action behaviors involves the initiation of
movement, the activation of a motor behavior, in response to sensory events of
varying complexity. Catching a ball, anticipating impact, soft collision such as
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when stopping at a mark, hitting a mark on the ground while running, and so
forth, are examples of perception—action behaviors in which a movement event
is related to a sensory event (for review, see Lee & Young, 1986; Warren, Young,
& Lee, 1986). Lee and colleagues looked into a class of such behaviors with a
view to identify parameters that can be obtained from the sensory array and that
specify the timing of the action to be initiated. The visual expansion rate divided
by eccentricity, or the reciprocal of this ratio, the tau-parameter, was identified
(Lee, 1976) as a potential parameter of this nature in a wealth of different situa-
tions including gannets that fold their wings in time before diving into water
(Lee & Reddish, 1981), humans anticipating fall by cocontracting appropriate
muscles (Dietz & Noth, 1978), or flies extending their legs to anticipate the im-
pact on landing (Borst, 1986; Wagner, 1982). At constant approximation speed
to a surface, this parameter identifies the time until contact. Empirical evidence
in support of this parameter was obtained when the times at which action was
initiated were constant if scaled to the tau parameter as initial distance or speed
varied. This scaling holds to good precision in cases in which approach velocity is
constant, less so when approach is accelerated.

In line with Gibson’s discourse, this ensemble of results has been theoretically
summarized by saying that action is initiated in response to particular threshold
values of parameters such as T (or 7). These parameters are directly specified from
the sensory array. This manner of initiating action in response to changes in the
sensory array has been referred to as the “gearing of action to perception” (Bootsma
& van Wieringen, 1990; Lee, Young, Reddish, Lough, & Clayton, 1993), implying
an aspect of control. Schéner (1994) showed how the initiation of an action in re-
sponse to changes in the sensory array can be achieved while the underlying con-
trol system is continuously coupled to sensory parameters. In his account, a
dynamical system controlling action has at least two distinct states, one corre-
sponding to the postural state before action is initiated, the other to the postural
state after action is initiated. The sensory parameter controls an instability in
which the first state is rendered unstable and the system switches to the second
state. The structure of the dynamical system that generates such nonlinear behav-
ior then leads to coordination of action with the sensory influx. This account pre-
dicts that continuous corrections of relative timing between the action and the
sensory event occur during the approach. Experimental evidence of this sort had
earlier been obtained by Lee and colleagues (1983) in jumping to hit a ball and by
Bootsma and van Wieringen (1990) in the table tennis stroke (and it was that evi-
dence that motivated the notion of gearing action to perception).

This proposal deals quite naturally also with accelerated approach situations.
The perception—action coupling needs to be of appropriate strength and functional
form to assure stable relative timing of action to the sensory event. This account
thus leads quite naturally to the hypothesis that processes of adaptive adjustment
exist that tune this coupling to the particular sensory situation based on feedback
about the success of the perception—action loop.



342  SCHONER, DIJKSTRA, JEKA

Less Simple Perception Action Patterns:
Obstacle Avoidance, Homing, Spatial Orientation

Very little work has been done on perception—action systems that go beyond these
simplest two cases. If we think of obstacle avoidance as a perception—action pattern,
then it contains a new element compared to posture and the initiation of action that
might best be characterized as a form of decision making. An individual obstacle, for
instance, may be circumnavigated to the left or to the right (in two dimensions). In
the presence of a number of obstacles, movement paths might emerge that pass in
between two obstacles or such paths might be avoided if the obstacles are suffi-
ciently close to each other.

The idea of coupling parameters that are derived directly from the sensory array
into nonlinear dynamical systems that generate action has been demonstrated in
synthesis. Autonomous robot vehicles have been built that avoid obstacles, find a
home position, stop softly, and so forth (Bicho & Schéner, 1997; Neven &
Schéner, 1996; Schéner, Dose, & Engels, 1995; Steinhage & Schéner, 1997).

The work abounds in Gibsonian-style exploitation of the ecology of vision. For
instance, the optic flow can be used to avoid obstacles simply by detecting regions
in which flow increases with eccentricity more than average, suggesting smaller vi-
sual depth. Homing can be based on a computed optic flow between a memorized
image taken at the home position and the current image (Neven & Schéner,
1996). Behavior is generated by enacting the stable states of a dynamical system of
heading direction, into which the sensory information is coupled either attracting
to targets or repelling from obstacles. The approach works quite well even if sen-
sory information at a very low level is used. For instance, Bicho and Schoner
(1997) implemented obstacle avoidance and photo taxis (moving toward light
sources) with only five infrared detectors and two photoresistors. In such cases, one
cannot speak of obstacles as objects detected in the outer world. Instead, every sen-
sor is assumed to specify an obstacle, from which heading direction is repelled. The
strength of this repulsion is tuned, however, with the detected distance so that at
sufficiently large distance the repulsive force is zero.

Decision making emerges from such coupled perception action systems through
instabilities and multistability. For instance, an obstacle detector generating a sin-
gle repulsive contribution to the heading direction dynamics already specifies two
attractors—one to the left and one to the right of the zone of repulsion. Two detec-
tors may lead to a single repellor if the repulsion zones are sufficiently broad. But
they may also generate two separate repellors with an attractor in between when
the repulsion zones are sufficiently narrow. In the first case, the vehicle avoids the
obstacle zone by going around it. In the second case, it may steer a course that cuts
through the zone.

Another conceptually interesting issue is related to specification. In homing, for
instance, the optic flow between memorized image and current image specifies the
direction into which the robot needs to move to minimize that flow and thus to re-
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turn to the home position. This information does not specify the home position
(e.g., in terms of distance to the home position). In a closed-loop control system,
however, homing can still be achieved as a form of visual servoing, in which action
(moving the robot into a particular heading direction with a particular velocity) is
based on the current visual information. A stable stationary state is reached when
the optic flow between the memorized image taken at the home position and the
current image is zero.

For certain behaviors this form of achieving a behavior in the absence of precise
specification is not sufficient. For instance, when different sources of navigational
information such as dead-reckoning and optic landmark information must be fused
or reconciled, a common data format must be found. This leads to the necessity of
representing also the presence or absence of sensory information. For example, al-
though no landmark has been recognized, visual navigational information is not
available (Steinhage & Schéner, 1997). The need for additional concepts in such
cases was recognized by Gibson (see second paragraph of his section IV). Much of
cognitive science is addressing such issues. A task that is not yet satisfactorily
solved consists of understanding how representational concepts are reconciled
with dynamic concepts. First steps in such a direction have been made through dy-
namic field theory (Schéner, Kopecz, & Erlhagen, 1997).

CONCLUSION

Gibson provided in his 1958 atticle a useful behavioral analysis of perception action
systems. Two aspects that we emphasized here were, however, less clearly articu-
lated: (a) The processes of steeting action through sensation is based on coupling,
and (b) the notion of specification, which is sometimes used to describe how desired
behavioral states are determined by the sensory array, is but one aspect of coupling,
that is neither necessary (as coupling can stabilize states that were never explicitly
computed from the sensory array) nor sufficient (as the computation of the desired
state of a control system leaves open the nature and strength of the stabilization pro-
cesses). Adaptive change of the entire control system reflects that such percep-
tion—action coupling is an active processes involving internal representation of pa-
rameters that reflect the current environment,

We have addressed these issues by employing a set of concepts based on the the-
ory of dynamical systems as a language in which perception—action systems can be
analyzed. Employing this formal language offers advantages over the plain English
used by Gibson (incidentally, although Gibson refers to his analysis of locomotory
behaviors as formulae, he abstains from translating them into mathematical equa-
tions. Those of us who try to do just that know that it is far from trivial.) First, the
formalized account leads to quantitative prediction. In particular, quantitative fit
of the parameter values of a dynamical model contributes both to a precise descrip-
tion of the system (useful, for instance, for clinical evaluation), but also uncovers
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weak spots of the model and thus of the account. In our examples, the fact that cer-
tain parameters depended on task and stimulus forced us to interpret the model
differently and led to the hypothesis that adaptive processes are at work. For in-
stance, the eigenfrequency of the postural control system was apparently altered by
exposure to a moving optic sutround. Second, dynamical systems theory provides a
concept for what is the simplest system compatible with a set of observed behav-
iors. Such normal forms of dynamical models are useful, because they express the
necessary properties that any other (e.g., more mechanistic) model must possess.
This method of normal form modeling was used by Schéner (implicit in the 1991
article, explicit in the 1994 article), where more details can be found.

Some important problems of organizing perception—action behaviots have been
largely overlooked by Gibson and apparently continue to be ignored in large part by
the research community. First, the integration of different behaviors into the same
system is a difficult problem. This is well known in autonomous robotics where the
problem arises from the start. In nervous systems this relates to how elementary be-
haviors are activated or deactivated, and how they interact with each other and
how they reconcile contradictory demands. From the theoretical perspective that
we have reviewed, integration can be achieved through nonlinear dynamical sys-
tems that reside at sufficiently abstract levels at which behaviors are generated. Al-
though this program has been largely realized in synthesis now, its role in the
analysis of real nervous systems must still be clarified.

A second issue relates to what in autonomous robotics is sometimes called “nat-
ural environments.” Very little is actually known about the limits of the behavioral
competencies obtained through perception—action couplings. Under which envi-
ronmental conditions do these behaviors break down, and to which conditions can
these behaviors adapt? In light of our findings about the broad adaptation of the
postural control system across different modalities and without a clear hierarchy of
dominance, this question becomes particularly interesting. Why is the postural sys-
tem able to adapt to oscillating optic and tactile environments? Would it likewise
adapt to an irregularly moving environment? Artificially opening the visual feed-
back loop often leads to erratic and unstable behavior (Heisenberg & Wolf, 1988).
Is this informative about the limits of the adaptive capacity of the nervous system,
so that “unnatural” perturbations would not specify adaptive change? The chal-
lenge is now to study behaviors beyond the simplest perception—-action patterns to
reveal both the insights and limitations of Gibson's ideas.
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