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With the increasing size and frequency of mass events, the study of
crowd disasters and the simulation of pedestrian flows have
become important research areas. However, even successful mod-
eling approaches such as those inspired byNewtonian forcemodels
are still not fully consistent with empirical observations and are
sometimes hard to calibrate. Here, a cognitive science approach is
proposed,which is based on behavioral heuristics.We suggest that,
guided by visual information, namely the distance of obstructions
in candidate lines of sight, pedestrians apply two simple cognitive
procedures to adapt their walking speeds and directions. Although
simpler than previous approaches, this model predicts individual
trajectories and collective patterns of motion in good quantitative
agreement with a large variety of empirical and experimental data.
This model predicts the emergence of self-organization phenom-
ena, such as the spontaneous formation of unidirectional lanes or
stop-and-go waves. Moreover, the combination of pedestrian heu-
ristics with body collisions generates crowd turbulence at extreme
densities—a phenomenon that has been observed during recent
crowd disasters. By proposing an integrated treatment of simulta-
neous interactions between multiple individuals, our approach
overcomes limitations of current physics-inspired pair interaction
models. Understanding crowd dynamics through cognitive heuris-
tics is therefore not only crucial for a better preparation of safe
mass events. It also clears the way for a more realistic modeling
of collective social behaviors, in particular of human crowds and
biological swarms. Furthermore, our behavioral heuristics may
serve to improve the navigation of autonomous robots.
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Human crowds display a rich variety of self-organized behav-
iors that support an efficient motion under everyday con-

ditions (1–3). One of the best-known examples is the spontane-
ous formation of unidirectional lanes in bidirectional pedestrian
flows. At high densities, however, smooth pedestrian flows can
break down, giving rise to other collective patterns of motion
such as stop-and-go waves and crowd turbulence (4). The latter
may cause serious trampling accidents during mass events.
Finding a realistic description of collective human motion with
its large degree of complexity is therefore an important issue.
Many models of pedestrian behavior have been proposed to

uncover laws underlying crowd dynamics (5–8). Among these,
physics-based approaches are currently very common. Well-
known examples are fluid-dynamic (9) and social force models
(1, 7, 8, 10), which are inspired by Newtonian mechanics. The
latter describe the motion of pedestrians by a sum of attractive,
repulsive, driving, and fluctuating forces reflecting various external
influences and internal motivations. However, even though phys-
ics-inspired models are able to reproduce some of the observa-
tions quite well, there are still a number of problems. First, it is
becoming increasingly difficult to capture the complete range of
crowd behaviors in one single model. Recent observations have
required extensions of previous interaction functions, which have
led to quite sophisticated mathematical expressions that are

relatively hard to calibrate (10). Second, these models are based
on the superposition of binary interactions. For example, in
a situation where an individual A is facing three other individuals
B, C, and D, the behavior of A is given by an integration of the
interaction effects that the three individuals would separately
have on A in the absence of the others. However, this approach
raises many theoretical issues, such as how to integrate the binary
interactions (e.g., to sum them up, average over them, or com-
bine them nonlinearly), how to determine influential neighbors
(e.g., the closest N individuals or those in a certain radius R), and
how to weight their influence (e.g., when located to the side of or
behind the focal pedestrian) (6, 11, 12).
Here, we propose instead a cognitive science approach based

on behavioral heuristics, which overcomes the above problems.
Heuristics are fast and simple cognitive procedures that are often
used when decisions have to be made under time pressure or
overwhelming information (13, 14). Let us illustrate this by the
example of a player trying to catch a ball, which may be modeled
in at least two ways: either an attraction force can be used to
describe the player’s motion toward the estimated landing point
of the ball or the process can be described by a so-called “gaze
heuristic.” This heuristic consists of visually fixating on the ball
and adjusting the position such that the gazing angle remains
constant. Both methods predict similar behavior, but the heu-
ristic approach is simpler and more plausible.
Heuristics have also successfully explained decision making

in a variety of situations such as the investment behavior at
stock markets or medical diagnosis in emergency situations (13).
Modeling the collective dynamics of a social system with many
interacting individuals through simple heuristics would be a
promising approach. However, is it possible to apply a heuristics
approach to pedestrian motion as well, given the wealth of dif-
ferent crowd dynamics patterns that have been observed?
In this work, we show that two simple heuristics based on vi-

sual information can in fact describe the motion of pedestrians
well and that most properties observed at the crowd level follow
naturally from them. Moreover, the combination of pedestrian
heuristics with body collisions reproduces observed features of
crowd disasters at extreme densities.

Model
The elaboration of a cognitive model of pedestrian behavior
requires two crucial questions to be addressed: (i) What kind of
information is used by the pedestrian? And (ii) how is this in-
formation processed to adapt the walking behavior? With regard to
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the first question, past studies have shown that vision is the main
source of information used by pedestrians to control their mo-
tion (15–17). Accordingly, we start with the representation of the
visual information of pedestrians. To answer the second ques-
tion, we propose two heuristics based on this visual information,
which determine the desired walking directions αdes and desired
walking speeds vdes of pedestrians. Finally, we assume that
pedestrians are continuously adapting their current walking be-
havior to match their desired behavior with a relaxation time τ of
0.5 s (Fig. S1). This assumption has been confirmed under con-
trolled laboratory conditions (10).

Representation of Visual Information. In our model, each pedes-
trian i is characterized by its current position x!i and speed v!i.
For simplicity, we represent the projection of a pedestrian’s body
on the horizontal plane by a circle of radius ri ¼ mi=320, where
mi is the mass of pedestrian i [e.g., uniformly distributed in the
interval (60 kg 100 kg)]. Each pedestrian is additionally charac-
terized by his or her comfortable walking speed v0i and his or her
destination point Oi, namely the place in the environment he or
she wants to reach, such as the exit door of a room or the end of
a corridor. Finally, the vision field of pedestrian i ranges to the
left and to the right by ϕ° with respect to the line of sight H

!
i.

Past studies have shown that walking subjects can estimate the
time to collision with surrounding obstacles by means of spe-
cialized neural mechanisms at the retina and brain levels (18, 19).
Accordingly, we represent the pedestrian’s visual information as
follows: For all possible directions α in [− ϕ, ϕ] (with a reason-
able angular resolution), we compute the distance to the first
collision f(α), if pedestrian i moved in direction α at speed v0i ,
taking into account the other pedestrians’ walking speeds and
body sizes. If no collision is expected to occur in direction α, f(α)
is set to a default maximum value dmax, which represents the
“horizon distance” of pedestrian i (Fig. 1).

Formulation of the Cognitive Heuristics. The first movement heu-
ristic concerns the relative angle αdes of the chosen walking di-
rection compared with the line of sight. Empirical evidence
suggests that pedestrians seek an unobstructed walking direction,
but dislike deviating too much from the direct path to their

destination (16, 17). A trade-off therefore has to be found be-
tween avoiding obstacles and minimizing detours from the most
direct route. Accordingly, our first heuristic is “A pedestrian
chooses the direction αdes that allows the most direct path to des-
tination point Oi , taking into account the presence of obstacles.”
The chosen direction αdes(t) is computed through the minimi-
zation of the distance d(α) to the destination:

dðαÞ ¼ d2max þ f ðαÞ2 − 2dmaxf ðαÞcosðα0 − αÞ:

Here, α0 is the direction of the destination point.
The second heuristic determines the desired walking speed

vdes(t). Because a time period τ is required for the pedestrian to
stop in the case of an unexpected obstacle, pedestrians should
compensate for this delay by keeping a safe distance (20).
Therefore, we formulate the second heuristic as follows: “A pe-
destrian maintains a distance from the first obstacle in the chosen
walking direction that ensures a time to collision of at least τ.” In
other words, the speed vdes(t) is given by vdesðtÞ ¼ minðv0i ; dh=τÞ,
where dh is the distance between pedestrian i and the first ob-
stacle in the desired direction αdes at time t. The vector v!des of
the desired velocity points in direction αdes has the norm
k v!desk ¼ vdes. The change in the actual velocity v!i at time t
under normal walking conditions is given by the acceleration
equation d v!i=dt ¼ ð v!des − v!iÞ=τ.

Effect of Body Collisions. In cases of overcrowding, physical
interactions between bodies may occur, causing unintentional
movements that are not determined by the above heuristics.
Indeed, at extreme densities, it is necessary to distinguish be-
tween the intentional avoidance behavior of pedestrians adapting
their motion according to perceived visual cues and unintentional
movements resulting from interaction forces caused by collision
with other bodies. We have therefore extended the above de-
scription by considering physical contact forces

f
!

ij ¼ kgðri þ rj − dijÞ n!ij;

p1

p2

p4 p3

dmax

O10°
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0

Fig. 1. (A) Illustration of a pedestrian p1 facing three other subjects and trying to reach the destination point O1 marked in red. The blue dashed line
corresponds to the line of sight. (B) Illustration of the same situation, as seen by pedestrian p1. (C) Abstraction of the scene by a black and white visual field.
Here, darker areas represent a shorter collision distance. (D) Graphical representation of the function f(α) reflecting the distance to collision in direction α. The
left-hand side of the vision field is limited by a wall. Pedestrian p4 is hidden by pedestrian p2 and, therefore, not visible. Pedestrian p3 is moving away, so
a collision would occur in position p′3, but only if p1 moved toward the right-hand side.
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where g(x) = 0 if the pedestrians i and j do not touch each other
and otherwise equals the argument x. n!ij is the normalized vec-
tor pointing from pedestrian j to i, and dij is the distance between
the pedestrians’ centers of mass (1). The physical interaction
with a wall W is represented analogously by a contact force
f
!

iW ¼ kgðri − diW Þ n!iW , where diW is the distance to the wall W
and n!iW is the direction perpendicular to it.
The resulting acceleration equation reads d v!i=dt ¼

ð v!des − v!iÞ=τþ
P

j f
!

ij=mi þ
P

W f
!

iW=mi and is solved to-
gether with the usual equation of motion d x!i=dt ¼ v!i, where
x!iðtÞ denotes the location of pedestrian i at time t. In contrast to
social force models, however, the interaction terms f

!
ij and f

!
iW

are nonzero only in extremely crowded situations, but not under
normal walking conditions.

Results
The combination of behavioral heuristics with contact forces
accounts for a large set of complex collective dynamics. In the
following section, we first validate the model at the individual
level and then explore the model predictions in a collective
context for uni- and bidirectional flows.

Individual Trajectories. First, we tested the model in the context of
simple interaction situations involving two pedestrians avoiding
each other. In a series of laboratory experiments, we tracked the
motion of pedestrians in two well-controlled conditions: (i)
passing a pedestrian standing in the middle of a corridor and (ii)
passing another pedestrian moving in the opposite direction
(Materials and Methods) (10). The model predicts individual
avoidance trajectories that agree very well with the experimen-
tally observed trajectories under both conditions (Fig. 2).

Collective Patterns of Motion. Next, we explored the model pre-
dictions in a collective context. For bidirectional traffic in a
street, assuming random initial positions of pedestrians, we find
that flow directions separate spontaneously after a short time, as
empirically observed (Fig. S2). This collective organization re-
flects the well-known lane formation phenomenon (2), which is
a characteristic property of crowd dynamics.
We also investigated the influence of pedestrian density on

unidirectional flows. The velocity–density relation predicted by
the model agrees well with empirical data (21) (Fig. 3A). Fur-
thermore, when the density exceeds critical values, our model

shows transitions from smooth flows to stop-and-go waves and
“crowd turbulence,” as has been observed before crowd disasters
(4). Fig. 3C depicts typical space–time diagrams for simulations
at various density levels, displaying a smooth, laminar flow at low
density (regime 1), but stop-and-go waves at higher densities
(regimes 2 and 3). These waves result from the amplification of
small local perturbations in the flow due to coordination prob-
lems when competing for scarce gaps (22): When the density of
pedestrians is high enough, such perturbations trigger a chain
reaction of braking maneuvers, resulting in backward-moving
waves. This result is illustrated by the significant correlation
between the local speed at positions x1 and x2 ¼ x1 −X after
a certain time lag T (Fig. 3B). In particular, the model allows
us to estimate the backward propagation speed of the wave
(∼0.6 m/s) and the density interval where stop-and-go waves
occur (at occupancy levels between 0.4 and 0.65, i.e., 40–65%
spatial coverage).
At even higher densities, physical interactions start to domi-

nate over the heuristic-based walking behavior (Fig. 3A, Inset).
As the interaction forces in the crowd add up, intentional
movements of pedestrians are replaced by unintentional ones.
Hence, the well-coordinated motion among pedestrians suddenly
breaks down, particularly around bottlenecks (Fig. 4A and Fig.
S4). This breakdown results in largely fluctuating and un-
controllable patterns of motion, called crowd turbulence. A
further analysis of the phenomenon reveals areas of serious body
compression occurring close to the bottleneck (Fig. 4A). The
related, unbalanced pressure distribution results in sudden stress
releases and earthquake-like mass displacements of many pedes-
trians in all possible directions (4) (Fig. 4 B and C). The distribu-
tion of displacements predicted by the model is well approximated
by a power law with exponent 1.95 ± 0.09. This result is in excellent
agreement with detailed evaluations of crowd turbulence during
a crowd disaster that happened to be recorded by a surveillance
camera (4).

Discussion
The greater explanatory power of our heuristics-based modeling,
demonstrated through comparison with different empirical and
experimental data (overview in Fig. S5 and Table S1), suggests
a paradigm shift from physics-inspired binary interaction models
to an integrated treatment of multiple interactions, which are
typical for social interactions in human crowds or animal swarms
(23–28). Without requiring additional assumptions, our approach
overcomes various issues related to the combination of multiple
binary interactions (6, 11). Our model treats a pedestrian’s re-
action to his or her visually perceived environment in an in-
tegrated way rather than reducing it to a superposition of pair
interactions. Instead of being repelled by their neighbors, as was
assumed in previous particle models, individuals actively seek a
free path through the crowd. The combined effect of neighboring
individuals is implicitly included in the representation of a
pedestrian’s visual field. Our model therefore correctly handles
situations in which pedestrians are hidden or outside the field of
view. Finally, high-density and life-threatening situations can be
studied by combining heuristics-based movement resulting from
visual perception of the environment with unintentional dis-
placements due to physical forces resulting from unavoidable
collisions with other bodies. In doing so, the emergence of crowd
turbulence in panic situations can be reproduced as well.
Understanding pedestrian heuristics and the emergence of

complex crowd behavior is a crucial step toward a more reliable
description and prediction of pedestrian flows in real-life sit-
uations. Our heuristics-based model therefore has important
practical applications, such as the improvement of architectures
and exit routes, as well as the organization of mass events. In
addition, the vision-based treatment of the pedestrian heuristics
appears to be particularly suited to the study of evacuation
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Fig. 2. Results of computer simulations for the heuristic pedestrian model
(solid lines) compared with experimental results (shaded lines) during simple
avoidance maneuvers in a corridor of 7.88 m length and 1.75 m width (data
from ref. 10). (A) Average trajectory of a pedestrian passing a static in-
dividual standing in the middle of the corridor (n = 148 replications). (B)
Average trajectory of a pedestrian passing another individual moving in the
opposite direction (n = 123 replications). Dashed shaded lines indicate the SD
of the average trajectory. Pedestrians are moving from left to right. The
computer simulations were conducted in a way that reflected the experi-
mental conditions. The model parameters are τ = 0.5 s, ϕ = 75°, dmax = 10 m,
k = 5 × 103, and v0i = 1.3 m/s.
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conditions with reduced visibility (e.g., escaping from a smoke-
filled room) (2, 29).
In the future, further evidence for our cognitive, heuristics-

based model could be collected by using eye-tracking systems
(30) to determine the visual cues followed by pedestrians. Our
approach also opens perspectives in other research areas. In the
field of autonomous robotics, for example, the model may serve
to improve navigation in complex dynamic environments, which
is particularly relevant for swarms of mobile robots (31). In fact,
navigation and collision-avoidance concepts of multirobot sys-
tems have often been inspired by human behavior (32, 33). The

simplicity of our approach and its visual information input will
support resource-efficient designs. We also expect that our
heuristics-based approach will inspire new models of collective
human behavior such as group decision making (34) and certain
social activity patterns (35, 36), where the occurrence of simul-
taneous interactions between multiple individuals matters.

Materials and Methods
Experimental Setup. The controlled experiments shown in Fig. 2 were con-
ducted in 2006 in Bordeaux (France). The experimental corridor of 7.88 m
length and 1.75 m width was equipped with a 3D tracking system, which
consisted of three digital cameras (SONY DCR-TRV950E) mounted at the
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corners of the corridor. The reconstruction of the positions was made on the
basis of the digital movies encoded at 12 frames/s with the help of software
developed by our team. The trajectories were smoothed over a time window
of 10 frames. A total of 40 participants agreed to participate in the exper-
iment and were naive to its purpose. Pairs of pedestrians were randomly
matched and performed ∼20 replications of the following two conditions: (i)
One subject was instructed to stand still in the middle of the corridor, while
the other one was instructed to walk from one end of the corridor to the
other and had to evade the standing pedestrian; (ii) starting from opposite
ends of the corridor, both subjects were instructed to walk toward the other
end after the starting signal. A total of 148 and 123 trajectories were
reconstructed for conditions i and ii, respectively.

Definition of Local Variables. The simulation results presented in the main text
were analyzed by measuring the local speed, local “pressure,” and local
compression coefficients (4). The local speed V(x,t) at place x and time t (used
in Fig. 3C) was defined as

Vðx; tÞ ¼
P

i k v
!

ikfðdixÞP
i fðdixÞ

;

where dix is the distance between x and pedestrian i. In this definition, f(d) is
a Gaussian distance-dependent weight function defined as:

fðdÞ ¼ 1
πR2 exp

−d2

R2 ;

where R is a measurement parameter. The value R = 0.7 m provides a rea-
sonably precise evaluation of the local speed. The local body compression

coefficient C(x) (used in Fig. 4A) was computed in a way analogous to the
local speed, setting

Cðx; tÞ ¼
P

i CiðtÞfðdixÞP
i fðdixÞ

;

and CðxÞ ¼〈Cðx; tÞ〉t , where the brackets denote an average over time. The
body compression Ci(t) of a pedestrian i is the sum of the contact forces f

!
ij

applied to pedestrian i:

CiðtÞ ¼
X

j

k f
!

ijðt
!"":

Finally, the critical zones identified in Fig. 4B are given by the “crowd
pressure” PðxÞ ¼ ρðxÞVarðVðx; tÞÞ defined in ref. 4; i.e., the pressure corre-
sponds to the average local density ρðxÞ ¼

P
i fðdixÞ times the local speed

variance at place x.
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