
ammonia would react directly with com-

pounds 4a and 4b, and a dissociative path D,

in which ammonia would react with a 14-

electron complex formed after dissociation

of olefin (Scheme 5). The rates of decay of

the pentene complex 4b were measured by
31P NMR spectroscopy with varied amounts

of olefin and ratios of ammonia to olefin

(data and plot are shown in figs. S1 and S2

and table S1). The observable rate constants,

k
obs

, predicted for reaction by associative

path C (Eq. 1) and dissociative path D (Eq.

2), were derived with the steady state

approximation. For path C, the observed rate

constant would be independent of the con-

centration of olefin, but for path D, a plot

of 1/k
obs

versus the ratio of olefin to ammonia

is predicted to be linear with a nonzero

intercept. The reactions were clearly slower

at higher concentrations of olefin, and a plot

of 1/k
obs

versus the ratio of olefin to ammonia

was found to be linear with a positive slope

(0.20 � 10–4 T 0.01 � 10–4 s–1) and a nonzero

y intercept (0.65 � 10–4 T 0.16 � 10–4 s).

These data suggest that olefin dissociation

is the first step in the reaction, and, if so, the

y intercept of this double reciprocal plot

would correspond to the inverse of the rate

constant for dissociation of olefin.

1

k
obs

0
k
j1

k
1
k

2
Eammonia^

þ 1

k
1
Eammonia^

ð1Þ

1

kobs

0
kj1Epentene^

k1k2Eammonia^
þ 1

k1

ð2Þ

Because substitution reaction of square-

planar d8 complexes typically proceed associ-

atively, and because the reactions could occur

by more complex pathways with multiple

equilibria preceding N-H bond cleavage, we

conducted further experiments to test whether

the reaction was initiated by dissociation of

olefin. The pentene in complex 4b is dis-

placed by ethylene to form ethylene complex

4c. If the reactions of 4b occur dissociatively,

then the rate constants for dissociation of

pentene obtained from the reaction of 4b with

ethylene and from the reaction of 4b with

ammonia should be the same.

Consistent with dissociative reactions of

4b, the reaction of 4b with ethylene was

independent of the concentration of ethylene

or 0.03 to 0.3 M added pentene; all reactions

occurred with rate constants within 3% of the

mean value of 1.6 � 10j3. Moreover, this

mean value is well within experimental error

of the value of k
1

(1.5 � 10j3) measured for

the reaction of ammonia with 4b.

The identification of an iridium complex

that undergoes oxidative addition of ammonia

and the elucidation of key thermodynamic

and mechanistic aspects of the reaction

advance our understanding of how to cleave

N-H bonds under mild conditions. We antic-

ipate that this understanding will accelerate

the development of catalytic chemistry that

parallels the existing reactions of hydrogen,

hydrocarbons, silanes, and boranes but begins

with oxidative addition of the N-H bond of

abundant and inexpensive ammonia.
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Efficient Bipedal Robots Based on
Passive-Dynamic Walkers

Steve Collins,1 Andy Ruina,2* Russ Tedrake,3 Martijn Wisse4

Passive-dynamic walkers are simple mechanical devices, composed of solid
parts connected by joints, that walk stably down a slope. They have no
motors or controllers, yet can have remarkably humanlike motions. This
suggests that these machines are useful models of human locomotion;
however, they cannot walk on level ground. Here we present three robots
based on passive-dynamics, with small active power sources substituted for
gravity, which can walk on level ground. These robots use less control and less
energy than other powered robots, yet walk more naturally, further
suggesting the importance of passive-dynamics in human locomotion.

Most researchers study human locomotion

by observing people as they walk, measuring

joint angles and ground reaction forces (1).

Our approach is different: We study human

locomotion by designing and testing walking

machines that we compare to humans in

terms of morphology, gait appearance, ener-

gy use, and control.

Previous bipedal robots with humanlike

forms have demonstrated smooth, versatile

motions (2–5). These impressive robots are

based on the mainstream control paradigm,

namely, precise joint-angle control. For the

study of human walking, this control para-

digm is unsatisfactory, because it requires

actuators with higher precision and frequen-
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cy response than human muscles have (6)

and requires an order of magnitude more

energy. To address these issues, passive-

dynamic walkers (Fig. 1) were proposed as

a new design and control paradigm (7). In

contrast to mainstream robots, which actively

control every joint angle at all times, passive-

dynamic walkers do not control any joint

angle at any time. Although these walkers

have no actuation or control, they can walk

downhill with startlingly humanlike gaits (8).

To demonstrate that the humanlike prop-

erties of passive-dynamic machines are not

dependent on gravitational power, but rather

extend to level-ground walking, we built

three powered walking robots (Fig. 2) at

three institutions, substituting gravitational

power with simple actuation. The Cornell

biped (Fig. 2A) is based on the passive

device in Fig. 1D and is powered by electric

motors with springs that drive ankle push-

off. It has five internal degrees of freedom

(two ankles, two knees, and a hip), each arm

is mechanically linked to the opposite leg,

and the small body is kinematically con-

strained so that its midline bisects the hip

angle. The Delft biped (Fig. 2B) has a sim-

ilar morphology, but it is powered by pneu-

matic hip actuation and has a passive ankle.

The Massachusetts Institute of Technology

(MIT) learning biped (Fig. 2C) is based on

the simpler ramp-walkers in Fig. 1, A and B.

It has six internal degrees of freedom (two

servo motors in each ankle and two passive

hips), each arm is mechanically linked to the

opposite leg, the body hangs passively, and it

uses reinforcement learning to automatically

acquire a control policy. The supporting

online movies show these robots walking

and the supporting online text describes their

construction details (9).

The Cornell biped is specifically de-

signed for minimal energy use. The primary

energy losses for humans and robots walking

at a constant speed are due to dissipation

when a foot hits the ground and to active

braking by the actuators (negative work).

The Cornell design demonstrates that it is

possible to completely avoid this negative

actuator work. The only work done by the

actuators is positive: The left ankle actively

extends when triggered by the right foot

hitting the ground, and vice versa. The hip

joint is not powered, and the knee joints only

have latches. The average mechanical power

(10) of the two ankle joints is about 3 W,

almost identical to the scaled gravitational

power consumed by the passive-dynamic

machine on which it is based (8). Including

electronics, microcontroller, and actuators,

the Cornell biped consumes 11 W (11).

To compare efficiency between humans

and robots of different sizes, it is convenient to

use the dimensionless specific cost of trans-

port, c
t
0 (energy used)/(weight � distance

traveled). In order to isolate the effectiveness

of the mechanical design and controller from

the actuator efficiency, we distinguish be-

tween the specific energetic cost of transport,

c
et

, and the specific mechanical cost of

transport, c
mt

. Whereas c
et

uses the total

energy consumed by the system (11 W for

the Cornell biped), c
mt

only considers the

positive mechanical work of the actuators

(3 W for the Cornell biped). The 13-kg Cor-

nell biped walking at 0.4 m/s has c
et
, 0.2

and c
mt

, 0.055. Humans are similarly

energy effective, walking with c
et
, 0.2, as

estimated by the volume of oxygen they

consume (V
O2

), and c
mt

, 0.05 (12–14).

Measurement of actuator work on the Delft

biped yields c
mt

, 0.08. Based on the small

slopes that it descends when passive, we

estimate the MIT biped to have c
mt

Q 0.02.

Although the MIT and Delft bipeds were

not specifically designed for low-energy use,

both inherit energetic features from the

passive-dynamic walkers on which they

are based. By contrast, we estimate the

state-of-the-art Honda humanoid Asimo to

have c
et

, 3.2 and c
mt

, 1.6 (15). Thus

Asimo, perhaps representative of joint-angle

controlled robots, uses at least 10 times the

energy (scaled) of a typical human.

Control algorithms for state-of-the-art,

level-ground walking robots are typically

complex, requiring substantial real-time

computation. In contrast, the Delft and Cor-

nell bipeds walk with primitive control al-

gorithms. Their only sensors detect ground

contact, and their only motor commands are

on/off signals issued once per step. In addition

to powering the motion, hip actuation in the

Delft biped also improves fore-aft robustness

against large disturbances by swiftly placing

the swing leg in front of the robot before it

has a chance to fall forward (16, 17).

The MIT biped (Fig. 2C) is designed to

test the utility of motor learning on a passive-

dynamic mechanical design. The goal of the

learning is to find a control policy that

1Mechanical Engineering, University of Michigan, Ann
Arbor, MI 48104, USA. 2Theoretical and Applied
Mechanics, Cornell University, Ithaca, NY 14853,
USA. 3Brain and Cognitive Sciences and Center for Bits
and Atoms, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA. 4Mechanical Engineering,
Delft University of Technology, NL-2628 CD Delft,
Netherlands.

*To whom correspondence should be addressed.
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Fig. 1. ‘‘Ramp-walking,’’
‘‘downhill,’’ ‘‘unpowered,’’
or ‘‘passive-dynamic’’
machines. Our powered
bipeds are based on these
passive designs. (A) The
Wilson ‘‘Walkie’’ (27).
(B) MIT’s improved ver-
sion (28). Both (A) and
(B) walk down a slight
ramp with the ‘‘comical,
awkward, waddling gait
of the penguin’’ (27).
(C) Cornell copy (29)
of McGeer’s capstone
design (7). This four-
legged ‘‘biped’’ has two
pairs of legs, an inner
and outer pair, to pre-
vent falling sideways. (D) The Cornell passive biped with arms [photo: H. Morgan]. This walker has
knees and arms and is perhaps the most humanlike passive-dynamic walker to date (8).

B

C DA

Fig. 2. Three level-
ground powered walk-
ing robots based on the
ramp-walking designs
of Fig. 1. (A) The Cor-
nell biped. (B) The Delft
biped. (C) The MIT
learning biped. These
powered robots have
motions close to those
of their ramp-walking
counterparts as seen
in the supporting on-
line movies (movies S1
to S3). Information on
their construction is in
the supporting online
text (9).

A B C
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stabilizes the robot_s trajectory on level terrain

using the passive ramp-walking trajectory as

the target. The robot acquires a feedback

control policy that maps sensors to actions

using a function approximator with 35 param-

eters. With every step that the robot takes, it

makes small, random changes to the parame-

ters and measures the change in walking

performance. This measurement yields a

noisy sample of the relation between the

parameters and the performance, called the

performance gradient, on each step. By means

of an actor-critic reinforcement learning al-

gorithm (18), measurements from previous

steps are combined with the measurement

from the current step to efficiently estimate

the performance gradient on the real robot

despite sensor noise, imperfect actuators, and

uncertainty in the environment. The algorithm

uses this estimate in a real-time gradient de-

scent optimization to improve the stability of

the step-to-step dynamics (Fig. 3). The robot_s
actuators are mounted so that when they are

commanded to their zero position, the robot

imitates its passive counterpart. Starting from

this zero policy, the learning system quickly

and reliably acquires an effective control

policy for walking, using only data taken from

the actual robot (no simulations), typically

converging in 10 min or È600 steps. Figure 3

illustrates that the learned control policy not

only achieves the desired trajectory but is also

robust to disturbances. The robot can start,

stop, steer, and walk forward and backward at

a small range of speeds. This learning system

works quickly enough that the robot is able to

continually adapt to the terrain (e.g., bricks,

wooden tiles, and carpet) as it walks.

Each of the robots here has some design

features that are intended to mimic humans.

The Cornell and Delft bipeds use anthropo-

morphic geometry and mass distributions in

their legs and demonstrate ankle push-off and

powered leg swinging, both present in human

walking (14, 19). They do not use high-power

or high-frequency actuation, which are also

unavailable to humans. These robots walk

with humanlike efficiency and humanlike

motions (Fig. 4 and movies S1 to S3). The

motor learning system on the MIT biped uses

a learning rule that is biologically plausible at

the neural level (20). The learning problem is

formulated as a stochastic optimal feedback

control problem; there is emerging evidence

that this formulation can also describe bio-

logical motor learning (21).

The Cornell and Delft bipeds demonstrate

that walking can be accomplished with ex-

tremely simple control. These robots do not

rely on sophisticated real-time calculations or

on substantial sensory feedback such as from

continuous sensing of torques, angles, or atti-

tudes. This implies that steady-state human

walking might require only simple control as

well; the sequencing of human joint-angles in

time might be determined as much by mor-

phology as by motor control. We note that no

other robots have done particularly better at

generating humanlike gaits even when using

high-performance motors, a plethora of sen-

sors, and sophisticated control.

In theory, pushing off just before heel-

strike requires about one-fourth the energy of

pushing off just after heel-strike (22, 23), so

the Cornell robot was initially designed with

this preemptive push-off strategy. Initial

push-off resulted in both higher torque de-

mands on the motor and a high sensitivity to

push-off timing that our primitive control

system could not reliably stabilize. Humans

seem to solve both of these problems without

a severe energy penalty by using a double

support phase that overlaps push-off and heel-

strike. These issues must also be addressed

in the design of advanced foot prostheses.

The success of the Delft robot at bal-

ancing using ankles that kinematically couple

Fig. 3. Step-to-step
dynamics of the MIT
biped walking in place
on a level surface,
before (q) and after
(x) learning. Shown is
the roll angular veloc-
ity when the right
foot collides with the
ground (q 0 0, q̇ 9 0)
at step n þ 1 versus
step n. Intersections
of the plots with the
solid identity line are
fixed points. The hor-
izontal dashed line is
the theoretical ideal;
the robot would reach
q̇ 0 0.75 sj1 in one
step. This ideal cannot
be achieved due to
limitations in the con-
trollability of the ac-
tuation system. On a level surface, before learning, the robot loses energy on every step (q̇nþ1 G qn),
eventually coming to rest at q̇ 0 0. After learning, the robot quickly converges near q̇ 0 0.75 sj1 for
0 e q̇0 e 1.7 sj1.
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Fig. 4. Two sets of
video stills of the Cor-
nell ankle-powered bi-
ped walking on a level
surface next to a per-
son. A little less than
one step is shown at
7.5 frames/s. Both the
robot and the person
are walking at about
1 step/s. The stick fig-
ure indicates the leg
angles for the corre-
sponding video stills;
the right arm and leg
are darker than the left.
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leaning to steering hints that humans could

similarly use a simple coupling between lean

and lateral foot placement to aid balance.

Furthermore, simulations used in the devel-

opment of the Delft robot showed that the

swift swing-leg motion not only increased

fore-aft stability but also increased lateral

stability. Indeed, the physical robot was not

able to balance laterally without sufficient

fore-aft swing-leg actuation. This highlights

the possible coupling between lateral and

sagittal balance in human walking.

The MIT biped shows that the efficiency

of motor learning can be strongly influenced

by the mechanical design of the walking

system, both in robots and possibly in

humans. Previous attempts at learning control

for bipedal robots have required a prohibi-

tively large number of learning trials in

simulation (24) or a control policy with

predefined motion primitives on the robot

(25). By exploiting the natural stability of

walking trajectories on the passive-dynamic

walker, our robot was able to learn in just a

few minutes without requiring any initial

control knowledge. We also found that it

was possible to estimate the walking perform-

ance gradient by making surprisingly small

changes to the control parameters, allowing

the robot to continue walking naturally as it

learns. This result supports the use of actor-

critic reinforcement learning algorithms as

models for biological motor learning.

The conclusion that natural dynamics may

largely govern locomotion patterns was al-

ready suggested by passive-dynamic machines.

A common misconception has been that

gravity power is essential to passive-dynamic

walking, making it irrelevant to understanding

human walking. The machines presented here

demonstrate that there is nothing special about

gravity as a power source; we achieve success-

ful walking using small amounts of power

added by ankle or hip actuation.

We expect that humanoid robots will be

improved by further developing control of

passive-dynamics–based robots and by

paying closer attention to energy efficiency

and natural dynamics in joint-controlled

robots (26). Whatever the future of human-

oid robots, the success of human mimicry

demonstrated here suggests the importance

of passive-dynamic concepts in understand-

ing human walking.
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Terrestrial Gamma-Ray Flashes
Observed up to 20 MeV
David M. Smith,1* Liliana I. Lopez,2 R. P. Lin,3

Christopher P. Barrington-Leigh4

Terrestrial gamma-ray flashes (TGFs) from Earth’s upper atmosphere have
been detected with the Reuven Ramaty High Energy Solar Spectroscopic
Imager (RHESSI) satellite. The gamma-ray spectra typically extend up to 10
to 20 megaelectron volts (MeV); a simple bremsstrahlung model suggests
that most of the electrons that produce the gamma rays have energies on
the order of 20 to 40 MeV. RHESSI detects 10 to 20 TGFs per month, corre-
sponding to È50 per day globally, perhaps many more if they are beamed.
Both the frequency of occurrence and maximum photon energy are more than
an order of magnitude higher than previously known for these events.

Terrestrial gamma-ray flashes (TGFs) were un-

expectedly detected from Earth_s atmosphere

by the Burst and Transient Source Experiment

(BATSE) on the Compton Gamma-Ray Observ-

atory (CGRO), a NASA satellite in low-Earth

orbit between 1991 and 2000. Each BATSE

TGF (1) lasted between a fraction of a milli-

second and several milliseconds, shorter than

all other transient gamma-ray phenomena ob-

served from space. Since they were first

detected, it has also been noticed that TGFs

had a harder energy spectrum (higher average

energy per photon) than any of these other

phenomena (1).

Fishman et al. (1) immediately interpreted

the TGFs as high-altitude electrical discharges

and found a correlation with thunderstorms.
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