Chapter 13

A Dynamical Model of the Coupling between
Posture and Gait

Bruce A. Kay énd William H. Warren, Jr.

Abstract

Walking requires the coordination of several tasks, including making forward pro-
gress (by producing a gait) and maintaining upright posture. In this chapter we dis-
cuss how a dynamical model of this coordination can be constructed. Experimentally,
subjects walked on a treadmill while viewing large-field visual displays of an oscillat-
ing hallway. In our modeling, we focus on two features of the data, mode-locking be-
tween posture and gait (in which N cycles of postural sway were produced for M
gait cycles) and the amplitude response (as a function of frequency) of the postural
component. We discuss how to characterize dynamically posture and gait and their
coupling, detailing a coupled-oscillator model of these and other coordination fea-
tures. Although the model does not capture several other features of posture-gait co-
ordination, we discuss how such a modeling effort can inform theories of how stable
walking behavior is produced.

13.1 Introduction

Walking is one of the most ubiquitous activities performed by humans. It
is an act that requires the timing and sequencing of many components for
a walker to effectively navigate through the environment. Although there
are many ways to analyze this complex action, a good starting point for
looking at this coordination is to break it down into its component tasks.
First, the walker makes forward progress through the world, or locomotes.
Second, while doing so, the walker must maintain balance using an up-
right posture. Given that a biped's base of support is constantly changing
and the center of mass is never directly above the stance foot, this in-
volves a complex balancing act. Third, the walker must navigate through
the normally cluttered natural environment, steering through openings
such as doors and around obstacles such as parked cars—some of which
may be moving. Finally, actors often perform other activities while walk-
ing (e.g, thinking, talking, gum-chewing), which implies that walking is
a stable act, going along by itself if not greatly perturbed. That is, its
essential components are robustly sequenced and timed.

In our laboratory, we have been looking at how three of the main com-
Ponent tasks of walking—Ilocomoting, maintaining balance, and steering
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—are coordinated. In this chapter, we describe the nature of the c.oordi-
nation between two of these components, posture and locom.otlor}, as
revealed by changes in postural sway and gait when probed }kah v1s'ual
stimulation. We also describe a dynamical systems model of #hls behavior,
going into the details of the modeling endeavor and showing that such
modeling can make definite contributions to a theory of hOYV humans
walk. Our working hypothesis is that each component of walking can.be
understood as a component dynamical system having it own properties,
and that the behavior of the walking system as a whole can be understqod
as the complex interaction—or coupling—of the component dy‘namlcs.
In short, our first goal is to characterize each component’s dynamics, and
the second is to understand how the components’ dynamics interact to
produce the behavior of the entire walking system. Our ovgra}l ,a}im in this
modeling effort is to produce something “sufficiently definite” that can
lead to constructive insights about this task. ‘

Before going on, we should clarify what we mean by dynamical sys-
tems and dynamical models. A dynamical system is a system whose state
at any instant of time can be characterized, at least in principle, by a set f)f
scalar observables (Thompson and Stewart, 1986). The evolutionary his-
tory of the system is given by the time-series of these qbservables. Any
system that evolves in time can be considered a dynamical system. The
importance of a dynamical systems analysis for a theory of how a system
works comes in the detailed specification of the dynamics of th.e system.
The two main questions asked in a dynamical systems analysis are (1)
what is the set of scalar observables that characterize the system, and
(2) what are the dynamical laws that give rise to the patterns seen in the
observables’ time-series? The latter take the form of relationships among
the observables, that is, expressions of how the observables interact.
Having answers to these two questions can take us a long way toward
understanding how a system operates. o

For a simple system, such as a planar pendulum, we can identify the
relevant observables ahead of time, for example, its angular displacement
from the straight-down position and its angular velocity. The dynamical
laws can be written down, based on a physical analysis of the forces pres-
ent in the system, and any structural parameters present (e.g., the length
of the pendulum and the force of gravity). These laws often take the form
of differential equations, because in many situations they can be stated
as functions that relate the rates of change of the various observables.
Dynamical systems theory is used to describe the evolution of the sys-
tem'’s state over time from a variety of starting conditions, both qualita-
tively and quantitatively, given the applicable laws. For a pendulum, the
theory describes how the bob will move given its initial displacement and
velocity (the starting conditions) and the parameterized pendulum equa-
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tion (the law for this situation), in terms of both the qualitative and the
exact time-series behavior of the observables (see, e.g., Thompson and
Stewart, 1986).

In principle, walking can be considered a dynamical system because
there is presumably a set of time-varying observables that can completely
characterize its state. A detailed biomechanical-neural list of all the observ-
ables and the laws expressing their evolution over time could be worked
out, but the sheer complexity of such a list is mind-boggling (e.g., Hatze,
1980). It is conceivable that from such a set of laws specific predictions
could be made about global features such as the coordination of posture
and locomotion, but the road to those predictions appears to us to be
extremely long and arduous. Very little is known about the behavior of
dynamical systems having so many observables (e.g., Guckenheimer and
Holmes, 1983). In any attempt to understand such a system, then, we
must simplify the system and choose a much smaller set of observables to
try to understand. We do not know ahead of time which of the many
possible observables are crucial for understanding the behavior we are in-
terested in, so the choices we make are arbitrary, but we must start some-
where. Having chosen a small subset of the entire observable set, we must
also make hypotheses about what the laws of interaction for the small
subset are, because we can no longer rely on detailed analysis of how the
observables in the full set interact.

Therefore, our approach, which is complementary to a detailed bio-
mechanical-neural one, is to choose for study some simple observables
that reflect global walking behavior, such as the sway associated with a
point on the body or the angle between two leg segments. Recording the
time-series of these observables, we look for patterns in the time-series,
and try to reproduce these patterns with a candidate dynamical model.

Dynamical systems modeling is dynamical systems theory in reverse—
an attempt to determine what kinds of laws relating the chosen observ-
ables could have produced similar behavior. From generic properties of
known dynamical systems, we choose candidate laws relating our observ-
ables, then analyze and simulate these systems to evaluate the parallel be-
tween the candidate model and the observed behavior. If there are close
parallels, such that the model produces time-series similar to the observed
behavior, we say that we have a good model, and proceed to generate
more predictions that can be tested experimentally. We can also say that
the operation of the model—how the observables are functionally related
in the laws—must be similar to the actual system in some manner, and if
we understand the model, we have thereby achieved some understanding
of the system. If there are distinct dissimilarities between the model and
the real data, we keep trying, and hopefully will have learned something,

at least what kind of dynamics our behavior is not. In dynamical system
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modeling, understanding of a complex task like walking is proportional to
how well the dynamical models mimic the observed behavior, and how
well we understand the way the laws in the model produce the mimesis.

Again, our hypothesis is that we can do such modeling at the level of
the components of the walking task, with separate models for the separate
components, and then synthesize the components into a larger model for
walking as a whole, choosing the appropriate dynamical laws that couple
the components. Before proceeding from the components to the aggre-
gate, a component model must pass the test of similarity to its compo-
nent’s real behavior. Let us now try to characterize in dynamical terms the
component systems of posture and gait.

13.2 The Postural System

The task of the postural system during both quiet stance and walking is to
maintain an upright balance. While standing in place, this task is to main-
tain the body’s center of gravity (cg) over the base of support, which
can be thought of as an area on the ground bordered by the feet. The
phase space for posture—the space of all the observables of the postural
state—can be simplified to the fore-aft/left-right coordinates of the cg
with respect to the base of support. For postural stability, only a restricted
region of this space is thus allowed. If at any time the cg is above a point
outside this area, balance will be lost if no corrective measures (e.g., mov-
ing the feet, throwing one’s arms out) are available to the actor. Thus, the
cg must be kept within a restricted region of postural phase space, and if
perturbed away from this region, the postural system’s task is to bring it
back using various effectors, based primarily upon visual and somato-
sensory information.

In the language of dynamical systems theory, this restricted region in
postural space can be described as an attractor, although of a somewhat
peculiar kind. The standard dynamical attractor that is its closest analog is
the point abtractor—that is, a preferred single state (consisting of the posi-
tion, velocity, ... of the system), which is returned to following arbitrary
perturbations (figure 13.1). The postural attractor, on the other hand, is
not a single point in phase space, but a whole set of points in a restricted
region of the phase space. The salient feature of the postural task from
the dynamical systems perspective is that the observables return to a re-
stricted region of phase space following perturbation. Within that subset
of phase space, the motion of the cg over the base of support may be
periodic, chaotic, or stochastic (Chow and Collins, 1995), as long as upright
posture is maintained.

As a first simplification, then, we can try modeling the postural attrac-
tor as a point attractor. A simple dynamical system that exhibits a point
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Fioint-attrat.:tor dynamics on the phase plane (position versus velocity). Following perturba-
tion, all trajectories are attracted back to the point-attractor. The damped mass-spring used in
the model is used here as the example system.

attractor is the following ordinary differential equation, which describes a
damped linear mass-spring system:

mpa’ + bx' +kpx =0. (13.1)

This is an ordinary second-order differential equation that states the law
relating the time-varying behaviors of the system’s observables. The ob-
servables are the displacement x of the mass from its rest or equilibrium
position (i.e, when x = 0, the spring is neither stretched nor compressed)
at any time, and its velocity and acceleration x’ and x” respectively, using
the prime notation to denote differentiation with respect to the final ob-
servable, time. Time is implicitly present in the time-derivatives of dis-
placement, and is the independent variable in the equation, the other
observables being dynamic variables, that is, dependent on time. The
equation has three parameters that do not change over time, the mass mp,
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the amount of damping b, and the stiffness of the spring kp (the subscript
“P” denotes “Posture”).? This equation states that the three observables
are linearly related to each other, and given this relationship, the mass
exhibits point attractor behavior: from any initial starting point (some
definite values of x and x' at some start time), or equivalently, after being
perturbed away from the equilibrium position, the mass will return to the
equilibrium point after some transient motion (figure 13.1).

The behavior of the linear damped mass-spring system is well under-
stood (French, 1971; Thomson, 1981). In particular, it is well known what
will happen if a sinusoidal external force is applied to the mass. This addi-
tional force is added to the right side of equation 13.1:

mpx" + bx' + kpx = F cos(2nfpt) (13.2)

and introduces an explicit relationship between time and the rest of the
system’s observables. In this equation, F is the amplitude and fp is the fre-
quency (in Hz, or cycles per second) of the forcing function (the subscript
“D" denotes Driver). After an initial transient, the mass oscillates at the
same frequency as the external driver, with a fixed amplitude and phase
relationship with respect to the driver. Thus the mass exhibits 1:1 mode-
locking with the driver, that is, one cycle of forcing produces one cycle of
response.? The amplitude and phase of the response, which are functions
of all the parameters of the equation, is termed the frequency response of
the system (Thomson, 1981). If an unknown mass-spring system is forced
with an oscillating driver at various frequencies (fp), the damping and
stiffness coefficients b and kp can be recovered from the observed ampli-
tude-frequency and phase-frequency plots (given a known mass). In par-
ticular, for light damping, a peak occurs in the amplitude response near
the natural frequency of the mass-spring (determined by the ratio of stiff-
ness to mass). The mass-spring is said to “resonate” to the driver at this
frequency, and so this is called a resonance peak (figure 13.2, solid curve).
For heavy damping the amplitude response is a monotically decreasing
function of the driver frequency (figure 13.2, dashed curve). This is termed
“low-pass” behavior, as the mass-spring-damper acts as a filter that allows
only the lower driver frequencies to “pass through” in the mass’s motion
relatively unattenuated (Oppenheim and Schafer, 1975). The amount of
damping is measured relative to the values of the other parameters in
the equation; for higher values of mass or stiffness, higher values of b are
required for the same relative amount of damping to be present.
Applying this methodology to standing posture, several researchers
(e.g.. Andersen and Dyre, 1989; van Asten, Gielen, and van der Gon,
1988; Yoneda and Tokumasu, 1986) have found that when the postural
system is visually driven by a sinusoidally oscillating display over a range
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Figure 13.2
Amplitude response functions for an underdamped (solid line) and critically damped (dashed
line) linear mass-spring system of figure 13.1.

of frequencies, it exhibits low-pass behavior. That is, the body sways at
the same frequency as the visual driver (and so exhibits 1:1 mode-locking
with the visual driver), and the amplitude of its response drops monotoni-
cally and very rapidly as the frequency of the visual driver is increased.
Both of these facts are consistent with the dynamical system of equation
13.2. There is no resonance peak in the amplitude response. function; thus
the damping coefficient must be large compared with the other coefficients.

Whereas the results just presented pertain to standing, the postural re-
sponse to visual oscillation during walking is quite different. In our experi-
ments, participants walked on a treadmill, gazing at a large-screen display
of a simulated 3-D hallway (subtended visual angles 110° x 95°, horizon-
tal x vertical, figure 13.3), which oscillated sinusoidally in the lateral
direction at 14 different frequencies (0.075 Hz to 1.025 Hz, amplitude =
34 cm peak-to-peak) so as to simulate side-to-side translation of the entire
hallway.> This oscillation was superimposed on a basic radial flow com-
ponent simulating forward progression down the hallway. Subjects were
instructed to follow the side-to-side motions of the hallway so as to
remain in the middle of the hallway, using body sway, side-to-side step-
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Figure 13.3
Static depiction of the visual hallway (black/white reversed due to printing limitations). The

scene was presented on a large rear-projection screen 1 m from the subject.

ping, or whatever motion they felt was appropriate to perform the task.
While the subjects walked (during four 40-sec trials at each of the driver
frequencies), we recorded their lateral sway using an infrared motion
analysis system to record the 3D positions of reflective markers on the
side of the neck and the leg (figure 13.4). Four subjects swayed at the
same frequency as the visual driver at all 14 frequencies; the other four
did so only at the lower frequencies (below about 0.3 Hz). We report data
of the former subjects here, although after discussing the model we will
return to the latter subjects’ behavior.

As in standing posture, we observed 1:1 mode-locking between sway
and driver during walking, which is a characteristic of the forced linear
system of equation 13.2 (figure 13.5). As can be seen in figure 13.6, how-
ever, the amplitude response for postural sway during walking not only
has a low-pass characteristic like that for stance, but also a second peak
around 0.8 Hz, which is close to the preferred stride frequency of 0.9 Hz
observed on control trials with no display oscillation. This second peak
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A schematic depiction of the experimental setup, showing the location of the passive reflec-

tive markers, whose 3D positi i i i i
. positions are recorded directly to disk by the Elite motion analysis

cannot be explained by equation 13.2, which predicts at most a single
Peali,hwnl})l re(;liuced hsway amplitudes on either side. Also, the second peak
s rather broad, such that the sway amplitude is affected t
quencies, not just one, F @ renge offre
So, it appears .that gait has some influence on postural sway, particu-
lar.ly.near the subject’s preferred stride frequency. In our dynamical model
this influence takes a particular form of coupling between the two sys-’
tems, Be.fore turning to that issue, however, we must discuss how to
characterize the second task of walking, locomotion, in dynamical terms.

13.3 The Locomotor System

In. order to locomgte over the ground, evolution has provided bipeds
with a gait system in which two legs alternately swing back and forth, so
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A 10-second example time-series of side-to-side sway when visually driven at a frequency of
0.925 Hz (solid line), and a time-shifted version of the sinusoidal driver (the best fit to the
data time-series, dotted line). The displacements of the two time-series have been normalized
to the interval [—1,1] for plotting purposes. The correlation between sway and driver was

0.921 for the entire 40-second trial.

that the feet are placed on the ground at the appropriate times and places.
Dynamically, one of the most salient features of this behavior is the oscil-
latory component of gait. Walkers typically choose a preferred frequency
and amplitude of leg motion, and if interrupted (by having to step over or
around an obstacle, for example), they return to roughly these same two
parameters of walking (Belanger and Patla, 1987). The closest dynamical
analog is the limit-cycle attractor, an oscillation that has stable frequency,
amplitude, and waveform in the face of perturbation. The reason this is
called a limit-cycle can be shown by representing such a stable oscillation
on the phase plane, a plot of the instantaneous position and velocity of
the oscillating element. On the phase plane, there is one path that is stable
for the limit-cycle, and this is a closed orbit. Following an arbitrary initial
condition (again, x and #’ at start time) or any arbitrary perturbation away
from the limit-cycle, the system will evolve back to the limit-cycle during
a transient process (figure 13.7).

The gait system’s behavior is not quite a limit-cycle attractor. There is
not a single closed cycle in any phase space representing the system’s
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Amplit}xﬁe response .of body sway in response to visual oscillation during walking, for our
successful vt'alkers, with standard error bars at each driver frequency. Note the basic low-pass
characteristic plus a broad peak around 0.8 Hz. P

state, but rather a collection of such cycles into a band of attraction (Ka
1988). Not exactly the same amplitude or frequency is used in each strid};
cycle, so the same states are not visited again and again, because gait is
rfxodulated slightly to maintain balance and adapt to environmental cgondi-
tions. For now we will simplify and assume that we can model the salient
oscillatory nature of gait as a limit-cycle attractor, for the same reasons
that we simplified our model of the postural attractor.

A simple dynamical equation that exhibi imi
its a limit-cycl i
van der Pol oscillator: eyl atfractors the

m " 2 / —
Ly +ey' — 1y +ky=0 (13.3)

(Jordan and Smith, 1977, Nayfeh and Mook, 1979; Thompson and
Stewart, 1986). Here, y represents the motion of the oscillating compo-
nent away from the rest position (y = 0) and m; is the component’s mzss
(the fubscript “L” denotes Locomotion). The van der Pol oscillator has a
nonl.mear damping term (the middle term), so the system observables are
nonlinearly related. This nonlinearity allows the presence of a limit-cycle
attractor. Roughly, it causes the oscillator’s energy losses and gains tc? be
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Phgase-plane plots of the behavior of a van der Pol oscillator. A, with nonlinearity (¢) set to

0.5 and B, ¢ set to 2.0. Notice that it takes several cycles for the oscillation to set.tle down to
its limit cycle in A following the start, whereas the settling time is much shorter in .B. On &fe
other hand, the oscillation is much more sinusoidal in A than in B, since the limit cycle is
much more circular in the former.
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exactly balanced on the limit cycle. The size of the parameter ¢ relative to
the other parameters is a measure of how nonlinear it is; with larger ¢'s,
return to the limit-cycle is faster than with smaller values, and the oscil-
lations on the limit-cycle are less sinusoidal (figure 13.7).

We assume that the oscillatory gait component can be estimated by
measuring any of the leg’s motions that oscillate stably over time, such as
the angle of the knee, which also happens to be rather easy to measure
and analyze. In this case, we are not concerned about modeling either the
amplitude of knee oscillation or how it changes over walking frequencies;
in any event, this change is small (Diedrich and Warren, 1995). Because
it is a salient feature of gait, however, we do want to incorporate a pre-
ferred frequency into our model. For fixed parameters, equation 13.3 has a
fixed frequency of oscillation, which is approximately the square root of
(ki/m)/(27) for small &. When not forced by some other term, the van
der Pol will oscillate at this frequency regardless of the initial conditions
or perturbations.

To anticipate, visually induced oscillations in the postural component
appear to have an effect on the limit cycle of the locomotory component.
To model this influence, we might try forcing the van der Pol oscillator
(Nayfeh and Mook, 1979; Thompson and Stewart, 1986):

my" +e(y* ~ 1)y + kry = Fcos(2nfpt). (13.4)

This dynamical system exhibits very complex behavior. Unlike the linear
point attractor dynamic, the forced van der Pol will oscillate at the same
frequency as the external driver only under a restricted set of circum-
stances. The stability of the van der Pol's intrinsic oscillation means that
its observed frequency usually deviates only slightly from its preferred
frequency when forced. Thus, the oscillator (M) does not usually exhibit
1:1 mode-locking with the external driver (N). Either N:M mode-
locking, where N and M are (small) integers, occurs (such as 1:1, 2:3,
1:2, etc), or the two frequencies are unrelated, or chaotic behavior ensues,
all depending on the parameter values used in equation 13.4, especially
the amplitude of forcing F and the frequency of forcing fp (Hayashi,
1964; Jordan and Smith, 1977; Nayfeh and Mook, 1979; Thompson and
Stewart, 1986). Holding F fixed and decreasing fp, one observes a par-
ticular integer mode-locking for an interval of fo values, followed by a
usually larger interval of unrelated behavior between the two oscillations,
followed by a smaller interval of mode-locking, and so forth.

In our experiments we observed both 1:1 and N: M mode-locking be-
tween postural sway and the stride cycle when our walkers were swaying
1:1 with the hallway. Because postural sway oscillated at the same fre-
quency as the display on all trials, we computed the frequency ratio be-
tween the visual driver (N) and the stride cycle (M, as estimated by the
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Percentages of trials that exhibited mode-locking between the visual display and the kn§e
angle motion (out of 28 trials at each frequency), for the walkers who successfully swayed in
synchrony with the visual display. Where no mode-locking occu.rred, the.knees and display
had incommensurate frequencies to the resolution of a trial. For visual clarity, the 1:1 mode-
locks are indicated by solid bars, the others by striped bars.

knee angle), using several measures of inter-oscillator phase to confirm
mode-locking for an entire 40 s trial. Figure 13.8 depicts the pe'rcentagfe of
trials in which integer mode-locking was observed at each visual lexver
frequency. Note that 1:1 mode-locking—in which each cycle of v151.1al
oscillation was accompanied by one cycle of knee motion, over an entire
trial of 40 seconds—occurred for all trials at or near the preferred stride
frequency. The range of driver frequencies for which this mode is sta.ble
extends from 0.725 Hz to 1.025 Hz, the highest driver frequency studied.
Other N: M modes, such as 2:3 (i.e., two cycles of visual oscillation were
accompanied by three cycles of knee motion), 1:2, and 1 :3, occurred .for
lower visual driver frequencies, although less often, with many trials
showing no stable integer mode-locking between posture and locomo-
tion4 The ranges of driver frequencies over which these modes are stable
are much smaller than the range for 1:1 mode-locking. Apparently, the
locomotory component exhibits some of the same qualitative features as
the van der Pol oscillator when sinusoidally forced.
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13.4 Parameterizing the Component Dynamics

We have described two component dynamical systems to serve as candi-
date models for the postural and locomotor tasks. As described so far, we
have a fairly generic form for each of them, with the qualitative properties
of model and task being made to be in good correspondence. We would
like to see if more quantitative properties of our observables can be
mimicked by the models, which means that we would like to pick reason-
able values of the parameters in the candidate laws (equations 13.2 and
13.4). After all, the forms of the models may be correct, but if there are
systematic differences between the models and the data, we want to know
about it and make corrections if possible. Only by choosing specific
values for the parameters can we take this next step. We take each com-
ponent in turn again.

The postural point attractor dynamic of equation 13.2 can be used to
model the low-pass portion of the amplitude response curve we obtained
(figure 13.6), ignoring the broad peak around the stride frequency. For
simplicity, in the remaining we assume the mass of both the postural and
locomotory components to be equal to 1.0 (see note 1). Assuming that
the system is critically damped, that is, there is just enough damping to
eliminate oscillations in any unforced transient and produce a monotonic
amplitude response, the only remaining free parameter is the stiffness kp.
A value of kp = 14.21 closely mimics the shape of the amplitude re-
sponse, which implies a natural frequency of fo = sqrt(kp)/(27) = 0.6 Hz,
and a damping of b = 2mwo = (2)(1)(2nfo) = 7.54. To scale it to the
actual amplitudes (in mm) we observed, the forcing term is F = 312.61.

For the gait component, there are only two parameters to set, stiffness
ky and nonlinearity ¢ (having set the mass to 1.0). We can determine k;
from the preferred stride frequency we observed in our subjects when
they are not being forced by a visual oscillation. The average stride fre-
quency was 0.9 Hz, which corresponds to a k; = 31.98 = (27*0.9)%. We
chose ¢ to be 0.5, as this gives moderately fast return to the limit-cycle
while still producing fairly sinusoidal oscillations, both of which make for
a much simpler analysis and simulation effort.

13.5 Coupling the Postural and Locomotor Systems

We have now identified two separate dynamical models for two com-
ponents of walking: a linear point attractor dynamic for posture, and a
nonlinear limit-cycle attractor dynamic for gait. How do these two com-
ponents interact? We made some initial hypotheses about what the cou-
pling might be like, and then observed the total model’s behavior via
numerical simulation. Validation of the model comes in judging how well
the simulation maps onto the observed behavior of our subjects.
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Schematic depiction of what is coupled to what in our walking situation, as we see it. C; an

C, refer to the coupling terms of equation 13.5.

The first set of hypotheses is about the overall structure of the situation
(figure 13.9). First, suppose that the visual driver has a dirgct inﬂuence on
the postural system as in equation 13.2, such that the driver is coupl.ed
unidirectionally to the postural system, but postural sway does not recip-
rocally influence the visual driver. This was the situation in our experi-
ment because we used open-loop displays, so the perspective in the
display on the screen was not updated on the basis of the observer’s head
position, but this is distinctly not the case in natural situations, where the
view of a hallway, for example, changes with every move of the head.
Second, suppose that some form of coupling is present between posture
and gait. Our data suggest that this coupling is bidirectional, ft?r not only
does gait affect postural sway, but also vice versa. The peak in the pos-
tural amplitude response near the preferred stride frequency indicz.xtes'thgt
posture is affected by gait. Conversely, the mode-locking behavior indi-
cates that the visual driver acts to modulate the frequency of the stride
cycle. Given the assumption that the visual driver is directly influencing
only the postural component, gait must be influenced indirectly by the
visual driver through the postural component.

Now, what is the exact form of these couplings? That is, given the
parameterized system: ‘

1+ 7.54x + 14.21x = 312.61 cos(2nfpt) + C1 (13.5a)

v’ +0.5(y* — 1)y + 31.98y = C,, (13.5b)

what are the coupling functions C; and C;? One of the simplest forms the
coupling functions C; and C; could take is linear functions of the other

component’s observables; for example,
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C1 =aiy + blj (13.63)
Cy = ax + by, (13.6b)

where the as and bs are constants.

Consider first the coupling function C;, from posture to gait. Suppose
coefficient 4, is set to some nonzero value, with all the rest of the co-
efficients set to zero. With these settings, the postural component’s dis-
placement directly affects the motion of the gait component, but gait has
no effect back on posture. In this case, the visual oscillation would drive
the postural component at the driver frequency (but with an amplitude
and phase depending on its frequency response), and the postural compo-
nent would in turn drive the locomotor component sinusoidally. This
would also be the case if coefficient b, were set to a nonzero value, so that
the velocity of the postural component would be coupled to the gait
component (with all other coefficients in equation 13.6 equal to zero).
Either of these coupling functions might mimic the mode-locking be-
havior we observed, since a sinusoidally driven van der Pol exhibits
mode-locking.

The sinusoidally forced van der Pol and similar oscillators exhibit ex-
ceedingly narrow mode-locking regions for the case where N < M, that
is, when the driver frequency (N) is lower than the natural frequency
of the van der Pol (M) (Hayashi, 1964; Nayfeh and Mook, 1979). This
frequency relationship, which is the one we found in our experiment, is
called superharmonic enfrainment, because the response is at a higher fre-
quency than the driver. In the forced van der Pol, much broader mode-
locking regions exist for subharmonic entrainment, where the response is at
a lower frequency than the driver. The superharmonic mode-locking re-
gions for this way of forcing the oscillator are so narrow that it ought to
have been very difficult for us to find them in our experiments. In other
words, no mode-locking occurs at all for nearly any value of 4, with driv-
ing frequencies below the natural frequency of the van der Pol, yet we
observed some form of mode-locking at almost all driving frequencies we
tested (figure 13.8). Putting it another way, this way of forcing the van
der Pol oscillator is structurally unstable for superharmonic mode-locks, in
that very slight variations in parameter values lead to very large changes
in the behavior of the system (Thompson and Stewart, 1986). Con-
sequently, this way of coupling from posture to gait doesn't predict the
observed behavior.

Larger superharmonic mode-locking regions, observable over a wider
range of frequencies, are produced by exciting the van der Pol in a very
different way. Rather than directly forcing the van der Pol's observable
state variables (y, i/, "), the driver varies one of its parameters, stiffness
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kg, which was previously held constant:
V' +0.5( - 1)y + (31.98 + )y = 0. (13.7)

Here, the coefficient of y is the sum of two terms, but can still be con-
sidered as the stiffness of the van der Pol. Thus, its stiffness is now con-
tinuously affected by the velocity ' of the postural component. The
equation can be rewritten algebraically to show that C, = —f*'y, so an-
other way to describe this is that this coupling function introduces a non-
linear relationship among the observables of the two components. This
type of coupling—called parametric excitation (Cartmell, 1990; Nayfeh and
Mook, 1979)—continuously modulates the original relationship among
the van der Pol's observables themselves. In the case where there is no
coupling back to the postural component, ' is a sinusoid and thus excites
the van der Pol's stiffness sinusoidally. That is, the van der Pol's stiffness
is now a function of time: k} = kp + BV cos(2nfpt), where V is the peak
velocity of the postural component, which depends on the driver fre-
quency according to the postural component’s amplitude response.

In addition to the wider frequency ranges that exhibit superharmonic
mode-locking, this type of mode-locking exists for much larger ranges of
values of B (the amount of coupling from the postural component to the
locomotory component) than it did for the linear coupling parameters
and b; in equation 13.6b. The presence of wide regions of stable super-
harmonic mode-locking indicates that such mode-locking is now structur-
ally stable. We have numerically computed these regions of stability in
the two-dimensional parameter space of driver frequency and amplitude
for the parametrically forced van der Pol in equation 13.7, and they ap-
pear in figure 13.10. The tongue-like shape of the stable 1:1 parameter
region is apparent; that is, the range of frequencies that exhibit this mode-
locking increases as the forcing amplitude is increased from the tongue’s
“tip” to its “blade.” In this regard these regions are similar to the Arnold
tongues observed in some closely related dynamical systems (named for
the Russian mathematician V. I. Arnold; Thompson and Stewart, 1986).
Note also that some minimum amount of forcing is required for mode-
locking at any forcing frequency, below which the two oscillations are
unrelated. In rough form, then, we have some idea of how to couple the
postural component to the gait component.

Now consider the reciprocal coupling function C; back from gait to
posture. What we want to account for is an increase in postural sway
around the stride frequency. As it turns out, direct forcing of the postural
state produces this effect, once the parametric excitation from the postural
component to the gait component has been introduced. Specifically, we
set by in equation 13.6a to a nonzero value; the greater its value, the

A Dynamical Model of the Coupling between Posture and Gait 311

70.0 7

52.5

35.0
32.0 1

26.2 4

Excitation amplitude (F)

17.5 -

8.8 4

0-0 T T T
0.0 0.2 0.4 0.6 0.8

Excitation frequency (fs, Hz)

Figure 13.10

Mode-locking regions for the parametrically excited van der Pol oscillator, with the parame-
ter§ of equation 13.7, except that the term by’ is replaced by Fcos(2nfyt), where F is the exci-
tation amp]itu.de and f; is the excitation frequency. Inside the shaded regions of this parameter
space, the variously labeled mode-locks (N : M = #excitation cycles : #observed oscillator
cycles) are stable and easily observed; outside, the relationship between the excitation and the
van der Pol is quasiperiodic (N and M are not rationally related), that is, no mode-lockin

occurs there. This figure summarizes the results of simulations at 630 combinations of thi

two parameters, that is, at seven excitation ampli i
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excitation frequencies (from 0.10 to 1.00 Hz in 001 Hz steps). ) and %0
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stronger the coupling from gait to posture and the larger the resonance

eak.
P Concerning exact values for § and by, we chose § so that the width of
the 1:1 mode-locking regime was equal to what we observed in our data,
that is, from 0.725 Hz to 0.925 Hz, when by was set to zero; f§ turned out
to be 1.0. Then, we increased b; until a large resonance peak appeared
around the gait frequency; somewhat arbitrarily, we settled on by = 10.0.
We note that the 1:1 mode-locking regime maintained the same width, as
did the other modes depicted in figure 13.10, when the C; coupling from
gait to posture was added to the model.

13.6 The Complete Model and Its Successes

We now have a detailed, if preliminary, dynamical model of the inter-
action of posture and gait in our experimental setting:

£+ 7.54% + 14.21x = 312.61 cos(2nfpt) + 10.0y (13.8a)

Y +0.5(y* — 1)y +(31.98 + 1.04')y = 0 (13.8b)

Let us summarize how the terms in these equations correspond to the
two components, and how the model operates. A sinusoidal visual driver
directly forces the postural component, which has a linear point-attractor
dynamic. In turn, the postural component parametrically excites the stiff-
ness of the gait component, which has a nonlinear limit-cycle dynamic;
reciprocally, the gait component directly forces the postural component’s
state. Thus, the two components are coupled bidirectionally but in two
fundamentally different ways, using parametric coupling in one case and
direct coupling in the other. Reflecting the open-loop conditions in our
experiments, the visual display is only unidirectionally coupled to the
walker’s dynamics, although we will soon close the loop in our apparatus
and extend the model to this case. To simulate the system’s response to
different frequency drivers, the only parameter that is changed is the
driver frequency (fy), while the structure of the equations and all the
remaining parameters are held constant.

The model successfully reproduces key features of the behavior we ob-
served in our subjects. The first two features were built into the model,
and so we will review them briefly, but the remaining three features were
discovered after the whole model was constructed.

First, the amplitude response of the postural component is very similar
to that of the neck marker, with a low-pass region below about 0.6 Hz
and a resonance peak around the preferred locomotor frequency (figure
13.11, solid curve). The low-pass feature is due to the intrinsic dynamics
of the model’s postural component (dashed curve), and the resonance peak
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Figure 13.11

Amplitude response of the complete model (solid line) and the amplitude response of the
lforc:ed linear mass-spring without the coupling from the locomotory component (dashed
ine).

is due to the combination of parametric coupling from the postural com-
ponent to the gait component and the direct coupling in the opposite
direction. Without both, no such resonance peak occurs. The model pos-
tural component also locks to the visual driver in the 1:1 mode across
all driver frequencies used in the experiment. Second, there are a number
of regions in the parameter space of the model where observable super-
harmonic mode-locking occurs between its two dynamical components
(figure 13.10), similar to the observed walking behavior. In fact, the
widths of the superharmonic regions decrease for the higher N: M modes,
as does the percentage of mode-locked trials in our data (compare figure
13.8). In the model, the width of the 1:2 region is one-quarter that of the
1:1 region, which compares closely to the relative frequencies of occur-
rence of the two modes in walking. This feature of the model's behavior is
due to the parametric coupling from the postural to the gait component.
Third, and unexpectedly, no stable mode-locks between the visual
driver and the gait component occur in the model much above the loco-
motor frequency (0.9 Hz). That is, the model appears to have very narrow
subharmonic entrainment regions (and so in a sense is the opposite of a
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directly driven system). Nor was the model’s postural component able to
track the visual driver at these frequencies. Similarly, the postural sway
in our subjects failed to lock to any driver faster than about 1.0 Hz. In
the model, the gait component appears to dominate the behavior of the
postural component at the higher frequencies.

Fourth, the model may be able to account for individual differences
among our subjects. Recall that some subjects swayed 1:1 with the driver
at all frequencies, whereas others only tracked the display at frequencies
below about 0.3 Hz. With the preceding parameter settings, the model
mimics the former subjects’ amplitude response and mode-locking be-
havior rather closely. Interestingly, the unsuccessful subjects’ behavior can
be qualitatively mimicked by changing one parameter in the model—the
coupling strength between the visual driver and the postural component,
F. If [ is reduced from 312.61 to 50.0, say, the postural response is domi-
nated by the gait component at a much lower frequency, resulting in a
1:1 mode-locking region that extends out to about 0.3 Hz (figure 13.12).

Finally, when the visual driver is turned off, which corresponds to
F = 0.0 in model, the gait component causes the postural component to
oscillate at the stride frequency, as we observe in control trials that had
no display oscillation.

13.7 The Model's Failures

The model is not a complete success, however: Simulations behave differ-
ently from the observed behavior when we turn from the rather gross
features of mode-locking and amplitude resonance to finer time-series de-
tails. In particular, there are two important differences between the actual
and modeled kinematics of the knee. First, the amplitude of knee oscil-
lation remains rather constant from cycle to cycle in the real walkers, but
does not in the model. For example, in the 1:2 mode the simulated knee
amplitude varies systematically, being large on one cycle, small in the
next, in a strictly alternating pattern (figure 13.13b, middle waveforms).
Amplitude modulation of the model’s “knee” is even more apparent when
mode-locking is absent, whereas there is very little cycle-by-cycle knee
variation in amplitude in the walking data (compare figure 13.13a and b,
bottom waveforms). Second, the timing of the model’s peak displacements
at 1:2 has the same alternating pattern, first a long, then a short cycle in
_time, whereas the observed knee timings do not vary in this systematic
manner. In real walking, it appears that the overall stride frequency has
been altered to match the postural oscillations, but that individual cycles
are not modified in order to do so. In the model, on the other hand, the con-
tinuous modulation of the gait stiffness parameter produces cycle-by-cycle
changes in the oscillator’s frequency. We shall return to this point later.
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Figure 13.12

A) Mean correlation between the visual display and the neck marker motion for successful
(solid line) and unsuccessful (dashed line) subjects. B) Correlation between the visual driver
and the locomotory component of the model for F = 312.61 (solid line) and F = 51.0
(dashed line). For 1:1 mode-locking between the driver and locomotion, the correlation
should be near 1.0.
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A) Walking data
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Figure 13.13 '
Ten-second example time-series of lateral sway motion (solid lines) and knee angle motion
(dashed lines) in A) the walking data and B) numerical simulations of the model. From top to
bottom in each sub-plot the visual driver was at 0.925, 0.425, and 0.650 Hz.
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Besides the preceding kinematic details, the model is unsuccessful in
duplicating an aspect of postural sway behavior we observed in another
experiment, in which we used sum-of-sines displays. An important distin-
guishing feature of nonlinear systems is that they lack linear superposi-
tion, that is, the response to a sum of input sinusoids, for example, is
not equal to the sum of the responses to the sinusoids when input in-
dividually. To test whether the postural component is nonlinear, we
created a set of composite waveforms, each consisting of the sum of four
sinusoids from the same set of fourteen frequencies that were used one
at a time in the single-sine experiment discussed previously. In order to
make the analysis easiér, the four frequencies that were summed in any
one trial were incommensurate to the base sampling rate of a trial. This
produced waveforms with overall patterns that repeated only once every
40 seconds (the duration of a trial), and appeared very random and un-
predictable to the walkers. We then measured the amplitude response of
the neck sway at each of the four frequencies in each trial. Across the set
of composite waveforms we thus had a measure of the response at each
of the fourteen original frequencies, which we then compared to the
response when each frequency was presented individually. In the sum-of-
sines response, we found the same low-pass characteristic and the reso-
nance peak around the preferred locomotor frequency as we obtained for
single-sine displays, but in addition we found a second peak between the
low-pass and locomotor peak, at around 0.5 Hz (figure 13.14, solid curve).
Some type of nonlinearity in visually-induced postural sway is signaled
by this difference.

On the other hand, our model is patently nonlinear, due to the van der
Pol's damping term and the parametric excitation term, so we were hope-
ful that it might produce this result. However, when we forced the model
(equation 13.8) with the same sum-of-sines waveforms as we used in the
experiment (i.e, by replacing the right side of equation 13.8a with the
sums of four cosine terms we used in the experiment), we obtained a fairly
flat low-pass amplitude response (figure 13.14, dashed curve). Although
there is a difference between the single- and sum-of-sines responses of the
model, which reflects its nonlinearity, the form of the difference is not
the same as what we observed in our walkers. One possibility is that the
model’s sum-of-sines response depends upon the precise frequency com-
binations used, and so slightly different frequency combinations may re-
sult in a frequency response that more closely mimics the form of the
observed data. Even if that were true, it would imply that the frequency
response function is not robust in the face of such changes, and so would
not be a good model of this rather consistent finding, which was observed
in a number of subjects.
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Figure 13.14 ' i :
Amplitude response function for walking, when sum-of-sines waveforms were used in eac

trial (solid line), and the corresponding response of the dynamical model to sum-of-sines
drivers (dashed line). Compare with figures 13.5 and 13.9.

13.8 What Have We Learned?

As we have shown, our model of the interaction between posture and gait
is more successful in some respects and less so in others. It Fould l?e
argued that some of the model’s successes are due to our havxr'\g built
them into the model; some of its failures, as a consequence, are things we
did not choose to include. But there are also some fundamental differ-
ences between the observed walking data and the model's behavior at
the level of the cycle-by-cycle time series, and in the fundamental nature
of its nonlinearity as revealed by the sum-of-sines displays. Consequently,
the model must be modified or replaced to capture more accurately the
interaction between posture and gait in walking. '
Nevertheless, both the successes and the failures of the model inform us
about the nature of that interaction, and allow us to draw some general
conclusions.
A. Posture and Gait Are (Probably) Bidirectionally Coupled. This is not so
trivial a point as it may at first appear. When we first looked at the knee

data, we were puzzled to find many trials in which it appeared that the
postural oscillations had no effect on the locomotor motions of the knee.
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In fact, in only about 30% of the low-frequency trials (that is, well away
from the preferred stride frequency) did we observe mode-locking. The
remaining trials showed an independence of the two oscillations. Thus,
our first idea was that at many postural frequencies, the two components
act independently of each other for all intents and purposes. Even with
fixed parameters, however, the model also shows independence at the
level of its observed kinematics. Except in the mode-locking regions,
the two components oscillate relatively independently of one another.
The model’s behavior thus also looks as though the two components are
uncoupled at some driving frequencies, yet the coupling terms are always
present, and the two components are therefore always influencing each
other. The lesson to be learned, then, is that posture and gait may be bi-
directionally coupled at all times, though the coupling may not produce
tightly-coupled behavior in all circumstances.

B. The Coupling Between Posture and Gait Is in Terms Not Only of the Com-
ponents’ Observables but also in terms of the Components’ Parameters. As we
have shown, the observed mode-locking behavior can be modeled using
parametric, and not direct, coupling, from the postural to the locomotor
component. This tells us that the overall system involves not only inter-
actions in observables, but also interactions at the level of parameters.

C. The Interaction of Posture and Gait may be at an Altogether Different Level
of Dynamics than that Described in Our Model. Although the model can
produce superharmonic mode-locking behavior similar to what we ob-
served in our data, we noted above that the details of how that behavior
is produced differ drastically between model and data, with small cycle-
by-cycle variation in both amplitude and timing in the real knee behavior,
but systematic cycle-by-cycle amplitude and timing variations in the
modeled knee.

Apparently, mode-locking in actual walking is accomplished in a very
different manner from how it is accomplished in the model. Parametric
excitation—the basis of the coupling from the postural component to the
locomotor component in the model—is a form of coupling that entails
continuous variations in one component’s parameters (gait stiffness). By
virtue of that modulation, gait stiffness has effectively become another
time-varying observable, evolving in time at the same rate as the other
observables in the model (i.e., it evolves at exactly the same rate as the
velocity of the postural component), rather than being a fixed parameter
(Farmer, 1990; Saltzman and Munhall, 1992). At each moment in time,
then, stiffness takes on a new value, thus changing the observed fre-
quency of the oscillator.

Thus, this continuous variation of gait stiffness in the model says that
this crucial locomotor parameter is adjusted continuously, which does not
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seem to be a reasonable biological solution to the problem. It may make
more sense for a walker to reset the value of his or her locomotor stiffness
to a new value in order to mode-lock with the postural oscillations, and
then stick with that new value for as long as the postural oscillations are
required. This calls for a completely different coupling scheme, in Yvhich
both the postural and locomotory components’ parameters are adjusted
by some other process (Dijkstra et al, 1994), rather than by. virtue of
couplings that are invariant across visual driver frequency, as in the cur-
rent model. This new way of modulating the locomotor component has
the virtue of retaining parameters as parameters, that is, gait stiffness
would be re-set by the other process and left there, and so would be con-
stant in time, not evolving at the same rate as the observables. This would
also produce the observed phenomenon of fixed cycle-by-cycle knee fre-
quency and amplitude. .

The main drawback of the latter approach is that the interaction is taken
to a very different dynamical level. It implies the presence of some other
process that occurs at a time scale very different from that of the evolu-
tion of the two components’ observables. Furthermore, it would no longer
be the case that it is the dynamics of the interaction of these two compo-
nents’ observables that provides the mode-locking phenomena. It is hard
to see how the limited mode-locking regions we observe in both the
present data and model would be generated in such an approach. If the
locomotor frequency could be adjusted to any frequency, we might ex-
pect that some stable form of mode-locking would be present for any
driver frequency, because some small-integer frequency ratio could be
chosen for any arbitrary driver frequency. The interaction between these
two components could not then serve as an explanation of how the pre-
ferred mode-lockings arise. As stated, this approach does not have all the
answers either.

13.9 In Sum

We have outlined a dynamical model of the interaction of posture and
gait when the postural component of walking is required to follow a
visual oscillation. The model has some strong points as well as some
shortcomings. Despite the model’s limitations, we have shown that such a
modeling effort can lead to some interesting and definite questions about
how two important components of a complex task interact. For example,
we have tried to ask (and answer), how do we characterize the individual
components dynamically? And how are they linked? In other task settings,
such as a more natural closed-loop situation in which the subject’s move-
ment influences the visual display, we may be able to answer the question,
how is vision coupled to the rest of the system? Such questions, we think,
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are best answered when definite hypotheses of how the couplings work
can be stated, and our choice is to state those hypotheses in the language
of dynamical systems.
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Notes

1. Because the type of analysis we are pursuing is a solely kinematic one, where motions and
not forces are being analyzed, strictly speaking mass should not be in this equation or the
following ones. In terms of a dynamical analysis, this is of little importance, since mass
plays the role of just another parameter, a linear weight on the acceleration in the present
equation. As we discuss later, we arbitrarily set mass to 1.0, but could be altered for model-
ing purposes if necessary.

2. We have chosen the term “mode-locking” as opposed to frequency- or phase-locking be-
cause of its generality. Both frequency- and phase-locking imply that the two oscillations
are operating at the same frequency, so that the phase between them is constant, Al-
though this does apply to the case of a 1:1 frequency ratio between driver and response
in our experiments, it does not apply to the case of N:M frequency ratios where N and
M are unequal.

3. Thus the amount of oscillation with respect to the retina varied as a function of location in
the scene, with minimal motion at the center of the screen, that is, for “far” portions of
the hallway, and maximal motion at the screen edges, where the hallway was “close” to
the walker. For more details on the experimental apparatus, setup, and data analysis, see
Warren, Kay, and Yilmaz, 1996.

4, Even chaos may be present in our walking data, but it is extremely difficult to demon-
strate in systems as noisy as biological ones, so we will not try here.
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