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Two Coupled Oscillators as a Model for the Coordinated Finger Tapping

by Both Hands

Jun-ichi Yamanishi*, Mitsuo Kawato, and Ryoji Suzuki

Department of Biophysical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka-shi, Osaka, Japan

Abstract. Recently, it was found that rhythmic move-
ments (e.g. locomotion, swimmeret beating) are con-
trolled by mutually coupled endogeneous neural oscil-
lators (Kennedy and Davis, 1977; Pearson and Hes,
1973 Stein, 1974 Shik and Orlovsky, 1976 Grillner
and Zangger, 1979). Meanwhile, it has been found out
that the phase resetting experiment is useful to in-
vestigate the interaction of neural oscillators (Perkel et
al, 1963; Stein, 1974). In the preceding paper
(Yamanishi et al., 1979), we studied the functional
interaction between the neural oscillator which is
assumed to control finger tapping and the neural
nctworks which control some tasks. The tasks were
imposed on the subject as the perturbation of the
phasc resetting experiment. In this paper, we in-
vestigate the control mechanism of the coordinated
inger tapping by both hands. First, the subjects were
instructed to coordinate the finger tapping by both
hands so as to keep the phase difference between two
hands constant. The performance was evaluated by a
Systematic error and a standard deviation of phase
differences. Second, we propose two coupled neural
oscillators as a model for the coordinated finger
lapping. Dynamical behavior of the model system is
inalyzed by using phase transition curves which were
Mcasured on one hand finger tapping in the previous
“speriment (Yamanishi et al., 1979). Prediction by the
model is in good agreement with the results of the
periments. Therefore, it is suggested that the neural
Mechanism which controls the coordinated finger tap-
Ping may be composed of a coupled system of two
"Cural oscillators each of which controls the right and
the left finger tapping respectively.

‘ vPl'csem address : Department of Electrical Engineering, Faculty
L l‘.ngmccring, Toyama University, Takaoka-shi, Toyama, 933
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1. Introduction

Organisms must control temporal and spatial activity
patterns of motor units in order to achieve well
coordinated movement. Some neural networks carry
out these control. Probably, rhythmic movement is
controlled by a certain oscillatory neural network. In
invertebrates it has been found that rhythmic move-
ment (e.g. heart beat, respiration, locomotion or flight)
can be controlled endogenously by neural oscillators
without the sensory feedback from the periphery. A
neural oscillator may consist of one or more pace-
maker cells or bursting cells. Otherwise it may be a
neural network consisting of many neurons. Stein
(1974) has found that the coordinated movement of
swimmerets in the crayfish is controlled by the neural
oscillators interacting with each other. A pair of neural
oscillators in each abdominal ganglion innervates the
corresponding swimmerets. He studied interactions
between neural oscillators by measuring phase re-
Sponse curves. In vertebrates, the notion of endo-
genous neural oscillators has been also developed.
Shik and Orlovsky {1976) and Grillner and Zangger
(1979) indicated that coordinated locomotion of the
cat is controlled by the reciprocal action of the step-
ping centers in the spinal cord.

In the preceding paper (Yamanishi et al, 1979),
assuming that the human finger tapping is controlled
by an oscillatory neural network, we studied the
functional interaction between the finger tapping neu-
ral network and neural networks which control some
psychological tasks imposed on the subject as per-
turbations of the phase resetting experiments. By the
way, there are many coordinated movements which
are performed by both hands in our daily life. Playing a
piano, or typewriting are typical examples for coordi-
nated finger tapping by both hands. What kind of
neural networks are responsible for these coordinated
movements? In the previous paper, we have assumed
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Fig. 1. Experimental system of coordinated tapping by both hands

that the finger tapping by the left hand is controlled by
one oscillatory neural network and the finger tapping
by the right hand by other oscillatory neural network.
By measurement of phase transition curves, we studied
the properties of these two neural networks. Here we
assume that coordinated finger tapping by both hands
is controlled by these two neural networks which
interact with each other.

In this paper, we will examine this assumption by
psychological experiments and by a model study. First,
the performance of both hands finger tapping with a
constant phase difference was studied quantitatively.
The subjects were requested to tap their both hands
with one of 10 various phase differences. We found that
subjects can perform the synchronous rhythm and the
alternate rhythm more easily and accurately than
others. Second, we propose two coupled neural oscil-
lators as a model for these coordinated finger tapping.
Under the assumption that two coupled neural oscil-
lators control the coordinated finger tapping by both
hands, dynamical behavior of the model system is
analyzed by using phase transition curves which were
measured on one hand finger tapping in the previous
experiment (Yamanishi et al., 1979).

2. Experiment
2.1. Method

The experimental system and procedures of learning of

a tapping interval are described in detail in the preced-
ing paper (see Fig. 1). Subjects were instructed to tap
the key in synchrony with pacing signals by the right
or the left hand and requested to learn a tapping
interval. The tapping interval amounted to 1000 ms.
Experiments of finger tapping by both hands were
carried out under the condition that subjects could
continue regular one hand tapping. Two pacing signals
with a constant phase difference were displayed for
duration of 20ms with a 1000ms interval on the
monitorscope periodically. The right signal was pre-
sented for a tap by the right hand and the left signal
was presented for the left hand tap. The delay between
the left signal and the right signal was chosen out of 10

steps such as 0, 100, 200 ...900ms, that is, the phase
difference of the left signal to the right signal was 0.0,
0.1,0.2 ...0.9. We call these phase differences standard
phase differences. Subjects were instructed to learn the
finger tapping by both hands with various phase
differences, synchronizing their tappings with pacing
signals. During training, if the phase difference of the
left hand tap to the right hand tap was fairty different
from the indicated standard phase difference, warning
signal (“Shorter!” or “Longer!”) was displayed on the
monitorscope. Allowable deviation from the standard
phase difference was +0.05. In this way, subjects were
trained to perform the coordinated finger tapping for
various phase differences. After the training was com-
pleted, the pacing signals with the standard phase
difference, which was one of 10 steps, were displayed
on the monitorscope and subjects were instructed to
tap by both hands synchronizing their taps with these
signals. The pacing signals were presented only 10
times but subjects were asked to continue the tapping
without pacing signals (selfpaced both hands finger
tapping) until the stop signal was presented. A series of
selfpaced tapping consisted of 20 tappings. 20 phase
differences of the left hand tap to the right hand during
selfpaced tapping, (i.e., ¢, ¢, ... (), were measured
and processed by a PDP-12 minicomputer. The pacing
signals for each of 10 standard phase differences were
presented four times at random sequence. One set of
the experiment was composed of these 40 trials (10
standard phase differences x 4 times) and the four sets
of experiments were carried out in all. To estimate the
accuracy of selfpaced finger tapping, an average (sys-
tematic error) and a standard deviation of the differ-
ences between measured delay and standard delay
were calculated from 320 data (20 taps x4 times x 4
sets) for each of 10 standard phase differences. Two
groups of subjects were used. The first group was an
unskilled group and composed of 4 students who have
normal motor functions (T.I, Y.O., HN,, and T.M.).
The second group was a skilled group and composed
of 5 students of a piano course in a music college
(KM, T.T, EM, Y.T., and Y.M.). All subjects were
right handed.

2.2. Results

Figure 2 shows systematic €rrors and their standard
deviations during selfpaced finger tapping. The system-
atic error is an average of the difference between
measured delay and standard delay. The abscissa is the
standard phase difference, where phase difference 0.01is
same as phase difference 1.0. As shown in Fig. 2, when
the phase difference is 0.0 and 0.5, the standard
deviation is smaller in both groups of subjects in
comparison to that of other phases. So, the perfor-




ase
0.0,
ard
the
asc
ing
the
et
Hng
the
ard
vere
{or
om-
JHINE
yed
1to
hese
w10
ping
nger
2sof
hase
ring
ured
cing
were
2t of
s (10
sels
2 the
(Sys-
ifer-
{elay
s x4
Two
1S an
have
“M.).
yosed
lege
wCeIe

1dard
stem-
ween
is the
0.01s
when
1dard
st In
erfor-

5D(ms)
40

221

-50L.

1

IR R R N |

0.0 05 1.0 00
Phase

Unskilled subjects
Fig. 2. Systematic error (Av) and their standard deviation (SD)

320 H‘zo -
Av=1/320 ¥ (¢,—¢)., SD= [/1/320 Y (=2
i=1 i=1

¢, is standard phase difference. Left is unskilled subjects (O sub. Y.O., ® sub. T.L., m sub. T.M., A sub. HN.

I
0.5 1.0
Phase

Skilled subjects

). Right is skilled subjects (O sub. E.M.,
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mance of both hands finger tapping is better at the
phase difference 0.0 and 0.5 than that at other phase
differences. Hereafter, we call the finger tapping by
both hands with phase difference 0.0 the synchronous
rhythm pattern and with phase difference 0.5 the
alternate rhythm pattern. The skilled subjects showed
smaller standard deviations than the unskilled ones as
we had expected. Good performance for the synchro-
nous and the alternate thythm patterns is noted also
from the graph of systematic errors. Let us explain this
characteristics on the graph of the unskilled subjects.
For example, when the subject tries to tap by both
hands with the standard phase difference 0.1, that is,
the delay of 100 ms, as the systematic error is — 30 ms,
the phase difference decreases to 70 ms and the tapping
pattern shows a tendency to resemble the synchronous
rhythm pattern. Moreover, when the finger tapping by
both hands with the phase difference 0.9 is performed,
as the systematic error is 40ms, an average of delay
elongates to 940 ms. This tapping pattern also shows a
tendency to resemble the synchronous rhythm pattern.

On the whole, when the subject tries to tap with the

Standard phase differences which are close to 0.0 or 1.0

(ie, 0.1, 0.8, and 0.9), the phase difference shows a

tendency to approach to 0.0. Hence the tapping pat-

tern inclines to the synchronous rhythm pattern.

Similarly, when the finger tapping is done at the
standard phase differences close to 0.5 (ie.,0.3,04, 0.6,
and 0.7), the phase difference shows a tendency to
approach to 0.5. Hence the tapping pattern inclines to
the alternate pattern. These tendencies are found in the
skilled subjects as well.

Mathematically speaking, the phase differences 0.0
and 0.5 are stable steady states because the slope of the
curve of the systematic error is negative at 0.0 and 0.5.
For the unskilled subjects, phase differences 0.2 and
0.75 are also steady states. But these are unstable as the
slope of the curve is positive there. If one carefully
observes the data of the systematic error of each
subject, one may notice a curious distribution of the
data. The data points of four (or five) subjects for phase
0.0 and 0.5 gather around the average. But for several
phase differences (especially 0.2, 0.3, 0.7 for the un-
skilled subjects and 0.2, 0.3, 0.6, 0.7, 0.8, 0.9 for the
skilled subjects), the data points split into two groups.
For example, B, A, A are positive systematic errors and
®, O are negative errors in the case of the phase 0.7 of
the skilled subjects. These distributions of data points
are quite different from the normal distribution. These
are rather bimodal distributions. We suppose that the
bimodal distribution derives from the bistability of the
synchronous and the alternate patterns. That is, there
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Fig. 3. Standard deviation of the interval of tapping with coordi-
nated both hands. Dotted line shows the data which were measured
on right hand tapping

are two possibilities about the both hands tapping
with, for example, 0.7 phase difference. One possibility
is that the phase difference is drawn toward 0.5. In this
case the systematic error is negative (®,0). Another
one is that the phase difference is drawn toward 1.0,
and the systematic error becomes positive (B, 2, A).

Standard deviations of tapping intervals (ca.
1000 ms) during the selfpaced finger tapping for var-
jous standard phase differences are shown in Fig. 3. A
dotted line is the standard deviation which was mea-
sured from the right hand tapping in the previous
experiment (Yamanishi et al,, 1979). Data were aver-
aged among the subjects in each group. For the skilled
subjects there is no difference between the variance of
tapping interval of the both hands tapping and that of
one hand tapping. For the unskilled subjects, however,
tapping interval is reproduced more precisely in the
both hands tapping. In either case, the standard de-
viation of tapping intervals does not depend on the
standard phase difference crucially.

3. A Model of Two Coupled Oscillators

Neural mechanism which controls finger tapping is not
clarified physiologically but we suppose that there is a
neural circuit which produces periodic outputs en-
dogenously. Characteristics of a neural oscillator
which controls one hand finger tapping was investi-
gated by measurement of phase transition curves
(Yamanishi et al., 1979). We examined the degree of
functional interaction between the network which
controls the finger tapping and neural networks which
control three kind of tasks (key-pushing, voicing and
pattern discrimination). As a result of these experi-
ments, it was shown that the neural network which
controls the right hand finger tapping had the same
characteristics as the neural network of the left hand
finger tapping.

Now, we will briefly explain phase response curves
and phase transition curves. The phase of regular
oscillation is advanced or delayed by perturbation. A
phase response curve, 4¢(¢) is the curve where the
phase advance (4¢ >0) and delay (4¢ <0) are plotted

as a function of phase ¢ at which the perturbation is
applied. In the previous resetting experiment for key-
pushing, we presented a signal at various phases of a
regular finger tapping by one hand and made a subject
perform key-pushing by other hand in response to the
signal. Execution of this task is regarded as a per-
turbation of phase resctting experiments. A phase
transition curve, ¢'(¢) is defined as follows from a
phase response curve

()= +4¢(¢).

¢ is the phase which is transited from the phase ¢ by
perturbation. We call ¢’ a new phase (Winfree, 1970,
1977 ; Kawato and Suzuki, 1978).

Is there any relation between the neural network
which controls finger tapping by both hands and the
network which controls one hand finger tapping? We
assume that the neural network which controls both
hands finger tapping is composed of two coupled
neural oscillators, each of which controls the right and
the left hand finger tapping respectively. Based on this
assumption we will analyze the system of two coupled
oscillators by phase transition curves measured on one
hand finger tapping in the previous experiment.
Investigations of interactions between oscillators by
phase response curves or phase transition curves was
developed about twenty years ago. Perkel (1964) pre-
dicted that the firing rate of pacemaker neurons can be
modified by regularly spaced synaptic input by using
phase response curves. By measurement of phase
response curves, Stein (1974) found that the coordi-
nated movements of the swimmerets of the crayfish are
controlled by the interaction of neural oscillators
which are located in the abdominal ganglion. These
are analysis of two coupled oscillators in the case of
unilateral interaction. On the other hand, Daan and
Berde (1978) studied the behavior of two coupled
oscillators in the case of bilateral interaction, simulat-
ing the circadian pacemaker in mammalian activity
rhythms.

In this section, we consider two coupled oscillators

“as a model of the neural network which controls the

coordinated finger tapping by both hands. Especially
the phase entrainment between these two oscillators is
discussed by using of the same method of Daan and
Berde. Consider a neural oscillator R which controls
the right hand finger tapping and a neural oscillator L
which controls the left hand finger tapping. It is
assumed that the coordinated finger tapping by both
hands is performed when both oscillators R and L
oscillate at the same time as shown in Fig. 4
Oscillators R and L oscillate with the same periods.
f(¢) denotes the phase response curve of the oscillator
R to one tap by the left hand which is imposed as a
perturbation. g(¢) denotes that of the oscillator L to




the right hand tap. Bilateral interactions between R
and L change phase relation of two oscillators. We
define ¢, as a phase difference between the left hand
tap and the right hand tap and ¢, as that between the
right and the left (see Fig. 4). ¢, and ¢, change
according to the following recurrence formula.

¢z=1‘f(¢1)—¢1=1-(¢1+f(¢1))=F(¢1), (1)
p1=1 “.‘/(d’z)‘(bz =1-(¢, +g(¢z)):G(¢z)~ (2)

¢} is the phase difference of the next tap. (o, + f(¢,)
and (¢, +g(¢,)) are the phase transition curves of R
and L respectively. In the previous paper, we measured
f(@) or g(¢) for only one tap by other hand. Here, we
use f(¢) or g(¢) to study the synchronization of the
tapping by both hands. In this case, both the right and
the left hands tap the keys many times, so application
of f(¢) and g(¢) is not always valid. We assume that
the state points of both R and L oscillators return to
their limit cycles timmediately from the perturbation by
other oscillator (Kawato and Suzuki, 1978). In order to
verify the assumption experimentally, we must do
something like the two pulse-experiment in drosophila
(Winfree, 1973 Pittendrigh, 1974) although we have
not yet done such experiment.

When the both hands tapping is in steady state,
phase difference is constant, that 18, ¢\ =¢, ¢, =¢,. If
we substitute these relations into (1) and (2), steady
phase difference (#10¢,.) is obtained from the in-
tersection of the following two graphs

$=1—(d, + f(¢,)=F(¢,), (3)
¢, =1 — (¢, +g(¢2)):G(¢2)- 4)

Some of the equilibria are stable and others are
unstable. Stable and unstable equilibria can easily be
distinguished by comparing the slopes of the two
curves at the intersection. The stability criterion is

G(0) F'(py )l <1, (5)

as a result of perturbation analysis applied to ¢, and

2.~ The slopes of the curves in the point (¢, ,, ¢,,) are
F(¢,,) and 1/[G(,,)], respectively. Hence in a stable
equilibrium the curve F(¢,) is closer to horizontal than
G(¢,). This criterion is of course easily detected
graphically.

4. Analysis of Two Coupled Oscillators Model

Figure 5a shows an example of two phase transition
curves measured on the right and the left hand tapping
of one subject. Figure 5b shows graphs of Egs. (3) and
(4) obtained from phase transition curves shown in Fig.
Sa. In this case, there are four equilibrium points, and
the stability of these equilibrium points is decided by
the criterion (5). It can be easily known that both
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hands tapping is stable at phase difference ¢, =045
and 0.95 and unstable at phase difference ¢,=0.32and
0.70. We want to know at what phase difference the
model system has stable steady oscillation and at what
phase it has unstable steady oscillation. In the previous
experiment we measured five phase transition curves
for each subject. Five figures such as Fig. 5b are drawn
by using these five phase transition curves of the right
and the left hand. In order to investigate the distri-
bution of the stable and the unstable equilibrium
points, we measured the value of abscissas of all
equilibrium points by the graphical method described
above. The range of phase difference ¢y, ie, [0,1] is
divided into 10 sections, ie., {0.95,0.05), [0.05,0.15),
[0.15,0.25) ---[0.85,0.95). 10 sections are denoted by
0,1,2,....,9 respectively. For the i-th subject, m(j} and
nyj) are defined as follows. my(j) is the number of stable
equilibrium points whose abscissa ¢, is in the j-th
section, ie., [j/10—0.05,/10 + 0.05) where
J=0,1,2,...,9. nfj) is the number of unstable equili-
brium points whose abscissa is in the J-th section. In
order to average the data among the unskilled subjects
and among the skilled ones respectively, we define the
distribution of the stable and the unstable equilibrium
points for the unskilled group (m,(j), n(j)) and that for
the skilled one (myj), n(j)) as follows

4 4
mO=14 3 mG),  nG)=1/4Y )
i=1 i

mD=1/5 3 m). n()=1/5 3. ng).

These results are shown in Fig. 6. The solid line shows
the distribution of the stable equilibrium points and
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Fig. 7. Comparison of the standard deviation of phase difference
(upper) with the degree of stability (lower)

the broken line shows that of the unstable ones. From
the results of both groups of subjects, it is shown that
there are more stable equilibrium points at phase
differences, 0.0 and 0.5 than at any other phase differ-
ences and there are more unstable equilibrium points
at phase differences, 0.2, 0.3, 0.7, and 0.8 than at any
other phase differences. However, there is a little
difference between the distribution pattern of two
groups. For the skilled subjects, almost all stable
equilibrium points concentrate at phase differences, 0.0
and 0.5. On the contrary, for the unskilled subjects, the
distribution pattern of the stable equilibrium points is
diverse. The distribution pattern of the unstable
equilibrium points for two groups also shows a same
tendency. These results reflect that the symmetry be-
tween the right and the left phase transition curves of
the skilled subjects is better than that of the unskilled
ones. Many stable equilibrium points are observed at
phase differences, 0.0 and 0.5, so it can be considered
that the coordinated finger tapping with such a phase
difference (synchronous rhythm and alternate rhythm)
is easier than that with any other phase differences.
However, these results show only the distribution of
the equilibrium points and they don’t indicate the
degree of stability of the equilibrium points.

We can study the degree of stability and unstability
of an equilibrium point by using an eigen value of

linear approximation of (1) and (2) around the equili-
brium point. If the state point (i.e., ¢,) is perturbed from
the equilibrium point by a small amount of §, that is

¢’1 :¢le+5

then, by the interaction of two oscillators, next ¢, is
obtained as follows

¢, =¢,, G -F)o,

in a linear approximation.

Therefore, |G’ - F'| indicates the amplification factor
of the small perturbation of 3. If |G"- F'| is smaller than
1, the equilibrium point is stable. If it is close to zero,
the degree of stability of the stable equilibrium point 1s
high. On the contrary, if |G'- F'| is larger than 1, the
equilibrium point is unstable. Moreover, if it is very
large, the degree of unstability of the unstable equili-
brium point is high. If |G’ - F'| equals 1, this equilibrium
point is neutrally stable. Taking account of these
results, we define the criterion which indicates the
degree of stability and unstability of the equilibrium
point as follows

¢;=10(G"(¢2)- F(hy N - 1),

where, suffix i indicates the i-th equilibrium point. ¢, is
negative for a stable equilibrium point and is positive
for an unstable equilibrium point. The smaller ¢; is, the
stronger the stability is and the larger it is, the weaker
the stability is.

Furthermore, we define the degree of stability of
phase ¢, C(¢) as

C(P)=1/nY ¢,

i=1
where n is the number of equilibrium points whose
abscissas are in [ ¢ —~0.05, ¢+ 0.05). For example, in the
case of the unskilled subjects, the number of the stable
equilibrium points is 15 and that of the unstable ones is

‘3 at the phase 0.5, so the degree of stability of phase 0.5,

C(0.5) 1s calculated as follows

18
C.5)=1/18 ¥ ¢,

i=1
These results for the unskilled group and the skilled
one are shown in the lower part of Fig. 7. For
comparison, the standard deviations of the systematic
errors of the coordinated finger tapping which was
indicated in Fig. 2 are shown in the upper part of Fig.
7. We assume that the coordinated finger tapping is
controlled by two coupled oscillators. So, we expect
that the finger tapping with the phase difference of high
stability can be performed easier and more accurately
than that with the phase difference of low stability.
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From these results, it is also suggested that the syn-
chronous rhythm pattern and the alternate rhythm
pattern are stable.

5. Discussion

We proposed two coupled oscillator model for the
coordinated finger tapping. One can easily notice from
the data shown in Fig. 7 that the variation of SD
corresponds with the variation of the degree of stabil-
ity in both groups of subjects. Prediction of two
coupled oscillator model is in good agreement with
experimental data. Comparing figures of two groups in
detail one can notice that the maximum value of the
degree of stability of the unskilled group is higher than
that of the skilled group and the minimum value of the
former is lower than that of the latter. In other word, at
almost all of phase, the displacement from the zero line
of the degree of stability of the unskilled group is larger
than that of the skilled one. Because the absolute value
of ¢; is an increasing function of the strength of
interaction between the two oscillators, these results
imply that the interaction between two oscillators of
the unskilled subject is stronger than that of the skilled
subject. In the previous paper (Yamanishi et al., 1979),
it was suggested that the interaction between two
neural networks is weakened by the learning and
according to this change, phase transition curves
change from type 0 to type i. Two coupled oscillator
model also shows this tendency. Thus, from these
results, it may be considered that the coordinated
finger tapping is controlled by two coupled neural
oscillators and the interaction between these neural
oscillators is weakened by the learning. Of course we
must take account of higher motor centers which
control the coupled system of two neural oscillators,
The reason is. that subjects can perform the coordi-
nated finger tapping by both hands for any phase
difference at least 20 times after they are trained over
and over again. If their neural networks which control
both hands finger tapping are composed only of two
oscillators, they cannot tap with any phase difference
other than a few stable phase differences.

6. Conclusion

When the subjects tried to tap by both hands with a
constant phase difference, the performance of synchro-
nous rhythm pattern and of alternate rhythm pattern
were much better than that of others. Two coupled
neural oscillators were proposed as a model of control
mechanism of these coordinated finger tapping by
both hands. The behavior of the model system at
Steady state was analyzed by phase transition curves
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measured on one hand finger tapping. From these
analyses, it was shown that synchronous rhythm and
alternate rhythm were stable rhythm patterns. These
results coincided with the experimental data. It was
suggested, therefore, that the neural mechanism which
controls the coordinated finger tapping might be com-
posed of the coupled system of two neural oscillators,
each of which controls the right and the left finger
tapping respectively.

Acknowledgements. We thank Professor Colin S. Pittendrigh and
Professor Arthur T. Winfree for their advices with this work. One of
the authors (J.Y.) thanks Professor H. Yagi in Toyama University
for his encouragement.

References

Daan, S., Berde, C.: Two coupled oscillators ; simulations of the
circadian pacemaker in mammalian activity rhythms. J. Theor.
Biol. 70, 297-313 (1978)

Grillner, S., Zangger, P.: On the central generation of locomotion in
the low spinal cat. Exp. Brain Res. 34, 241-261 (1979)

Kawato, M., Suzuki, R.: Biological oscillators can be stopped -
topological study of a phase response curve. Biol. Cybernetics
30, 241-248 (1978)

Kennedy, D., Davis, W.J.: Organization of invertebrate motor
systems. In: Handbook of physiology, Vol. 1. Kandel, E.R. (ed.),
pp. 1023-1087. Bethesda, MD: Am. Physiol. Soc. 1977

Pearson, K.G., lles, J.G.: Nervous mechanisms underlying in-
tersegmental coordination of leg movements during walking in
the cockroach. J. Exp. Biol. 58, 725-744 (1973)

Perkel, D.H., Schulman, JLH., Bullock, T.H., Moore, G.P., Segundo,
H.P.: Pacemaker neurons: effects of regularly spaced synaptic
input. Science 145, 61-63 (1964)

Pittendrigh, C.S.: Circadian oscillations in cells and the circadian
organization of multicellular systems. In: The neurosciences;
third study program. Schmitt, FO., Worden, F.G. (eds.), pp-
437-458. Boston: MIT Press 1974

Shik, M.L.,, Orlovsky, G.N.: Neurophysiology of locomotor automa-
tism. Physiol. Rev. 56, 465-501 (1976)

Stein, P.S.G.: Neural control of interappendage phase during loco-
motion. Am. Zool. 14, 1003-1016 (1974)

Winfree, AT.: Integrated view of resetting a circadian clock. J.
Theor. Biol. 28, 327-374 (1970)

Winfree, A.T.: Resetting the amplitude of Drosophila’s circadian
chronometer. J. Comp. Physiol. 85, 105-140 (1973)

Winfree, A.T.: Phase control of neural pacemaker. Science 197,
761-763 (1977)

Yamanishi, J., Kawato, M., Suzuki, R.: Studies on human finger
tapping neural networks by phase transition curves. Biol.

Cybernetics 33, 199-208 (1979)

Received : February 29, 1980

Dr. I. Yamanishi

Department of Electrical Engineering
Facuity of Engineering

Toyama University

Takaoka-shi

Toyama, 933

Japan



