
Figure 3.1 Typical examples of the diversity and regularity of ~tructures in soci~l­
insect nests are the internal nest structure of the stingless bees. Trzgona testacea, wIth 
its funnel-shaped entrance (top), and Melipona interrupta grandis in a hollow branch. 
The anastomosing rods (top) presumably provide resting space for the colony's defense 
force. Self-organization probably plays a role, at least partially, in the building of the 
nests. (Original drawings, courtesy J. M. F. de Camargo, from Michener 1974) 
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Characteristics of Self-Organizing Systems 

Simple and complex systems exhibit. .. the spontaneous 

emergence of order, the occurrence of self-organization. 
-So A. Kauffman, The Origins of Order: 

Self-Organization and Selection in Evolution 

We have defined self-organization and briefly discussed how it works. Now, 
we will describe some of the characteristics of self-organizing systems. What 
general features do these systems possess? 

Self-Organizing Systems Are Dynamic 

The multiplicity of interactions that characterizes self-organizing systems 
emphasizes that such systems are dynamic and require continual interactions 
among lower-level components to produce and maintain structure. This point 
is made more clearly by contrasting a dynamic process of pattern formation 
with an alternative, essentially static process illustrated by the assembly of a 
jigsaw puzzle. A jigsaw puzzle is a global structure with an intricate pattern 
constructed from lower-level subunits, the pieces of the puzzle. The pieces 
are put together in a precise manner to create a pattern. Each piece of the 
puzzle has a particular shape and set of markings that complements the shape 
and markings of the pieces to which it fits. To create the global pattern, one 
carefully matches the pieces together, and once the pieces of the puzzle are fit 
together the action stops. The pattern and structure are locked into place. 

Edelman (1984, p. 120) provides a lovely metaphor for such a static mech­
anism of pattern formation in his discussion of the role of cell-adhesion 
molecules in regulating cell movements and morphogenetic processes during 
embryological development: 

There are two alternative ways patterns might be formed at the cellular 
level without the direct intervention of some kind of "little architect" or 
"construction demon." The first way would require prelabeling all cells 
with molecular markers (presumably proteins), each one spatially com­
plementary to some other marker on a cell to be placed next to it in the 
pattern. This is essentially how parts of the great offshore abbey of Mont­
Saint-Michel were built. Stones were cut and shaped on the mainland, 
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marked by their makers and reassembled on the island according to a plan. 
The Mont-Saint-Michel model is a metaphor for various "chemoaffinity" 
theories of cell adhesion. The major difficulty with such theories is that 
if the pattern to be formed is complex, has much variation in shape or 
has many elements and much local detail (as, for example, in the brain), 
then the number of specific surface markers determining each cell's loca­
tion must be enormous. Inasmuch as such markers are most likely to be 
specific proteins, each encoded by a different gene, the number of genes 
would be correspondingly large .... Moreover, a pattern made this way is 
prefigured and essentially static: once the right markers come together, no 
further dynamism is necessary. 

Several alternative, more dynamic ways of generating patterns have been 
described. Turing (1952), in what has been called "one of the most important 
papers in theoretical biology" (Murray 1988, p. 80), postulated a mechanism 
of generating animal coat patterns based on reacting and diffusing chemicals 
that he called morphogens (see Figure 1.2). The "Brussels school" extended 
these ideas of self-organized pattern formation to a variety of chemical and bio­
chemical systems (Nicolis and Prigogine 1977, 1989). In these open systems, 
in which there is a continual influx of energy or matter, reactions occur far from 
chemical equilibrium, and structures emerge through interactions obeying non­
linear kinetics. Such structures are called dissipative. At about the same time, 
Haken (1978) introduced the concept of synergetics as a unifying approach to 
pattern formation in various disciplines. (See also reviews by Levin and Segel 
1985 and Schoner and Kelso 1988.) Without going into a technical discussion 
of the similarities and differences among these different explanations of self­
organized pattern formation, we again refer to Edelman (1984, p. 120) who 
provides a useful visual metaphor of this process: 

There is an alternative and more dynamic way of generating patterns, 
akin to what might be observed in a mountain stream. In this kinetic, far­
from-equilibrium situation, pattern results from the play of energy as it is 
dissipated into the environment against various constraints. To make the 
simplest case for this mountain-stream example, imagine a stream of wa­
ter running down a mountainside and striking a submerged boulder whose 
temperature is below freezing. At first the flow of water will be influenced 
only slightly by the boulder and the stream will remain a single stream. In 
time, however, as water freezes onto the boulder, the enlarging structure 
may suddenly become a barrier causing the stream to split into two and 
assume a new shape as it runs down the mountain. All subsequent shap­
ings of the stream will be influenced by the effect of the original freezing. 
Rivulets downstream may break into a variety of new and intricate pat­
terns as they meet different constraints at lower levels. Seen from above, 
the entire stream will nonetheless have a definite shape. 
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As described in the next section, this dynamic process of pattern formation 
gives rise to emergent properties, an example of which is the sudden bifurca­
tion of the stream as it courses down the mountain. 

Self-Organizing Systems Exhibit Emergent Properties 

In the first chapter self-organizing systems were shown to possess emergent 
properties. Emergence refers to a process by which a system of interacting 
subunits acquires qualitatively new properties that cannot be understood as 
the simple addition of their individual contributions. Since these system-level 
properties arise unexpectedly from nonlinear interactions among a system's 
components, the term emergent property may suggest to some a mysterious 
property that materializes magically. To dispel this notion, two examples are 
given that illustrate an emergent property of the system. The first is the biolog­
ical phenomenon of clustering by larvae of the bark beetle, Dendroctonus mi­
cans. (We will consider this example in greater detail in Chapter 9.) The second 
is a physical phenomenon-Benard convection-which was mentioned earlier 
(Figure l.3a) but will be discussed again in more detail. 

The eggs of Dendroctonus beetles are laid in batches beneath the bark of 
spruce trees. Larvae hatch from the eggs and feed as a group, side by side, on 
the phloem tissues just inside the tree bark (Deneubourg et al. 1990a). Previous 
studies have shown that the larvae emit an attractive pheromone (Gregoire et al. 
1982). In a series of experiments (described in Chapter 9), the larvae were ran­
domly placed on a circular sheet of filter paper 24 cm in diameter between two 
glass plates separated by 3 mm to allow the larvae free movement. The subse­
quent positions of the larvae were observed over time. The degree of clustering 
exhibited by the larvae was found to depend strongly on the initial larval den­
sity. At low density (0.04 larvae/cm2), a loose cluster appeared, but it did so 
only slowly, in approximately 1 hour, and comprised only 25 percent of the 
population (Figure 9.4). In contrast, at high density (0.17 larva/cm2) a single, 
tight cluster rapidly assembled (Figure 9.3). Within 5 min about 50% of the 
larvae were clustered in the arena's center and after 20 min some 90 percent of 
the larvae joined this cluster. The experiments demonstrated a simple emergent 
property-a cluster-in a group where the individuals initially were homoge­
neously distributed. At a certain density of larvae, the system spontaneously 
organizes itself. I 

An even more dramatic example of spontaneous emergence of pattern is 
the well-known phenomenon of Benard convection cells described in Box 3.1. 
Here an initially homogeneous layer of fluid becomes organized into a regular 
array of hexagonal cells of moving fluid (Figure 1.3a). The striking pattern of 
convection does not appear gradually but arises suddenly. At a certain moment 
determined by the amount of heat applied to the bottom of the fluid layer, the 
initially ~omogeneous regime becomes unstable and changes to a new pattern. 
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In the terminology of dynamic systems, this emergent pattern or property is 
called an attractor of the system. Under a particular set of initial conditions 
and parameter values, an attractor is the state toward which the system con­
verges over time. In the Benard convection system, one attractor (seen under 
conditions of a small temperature gradient) is the random motion of the fluid 
molecules. A different attractor appears when the temperature gradient is in­
creased to a critical value. 

The mere detection of a pattern in nature, however, is inadequate to distin­
guish self-organizing mechanisms from other mechanisms of pattern forma­
tion. Observing a pattern at a moment or even over a period of time does 
not enable one to identify the mechanism of that pattern's formation. One 
must understand the pattern-formation machinery inside the system and be 
able to observe its operation to know whether the pattern is self-organized. 
Most importantly, one needs to devise means of experimentally perturbing the 
pattern-formation system and to obtain evidence that supports models based 
on self-organization as opposed to other models based on greater degrees of 
centralized or external control. 

Compare an aggregation of Dendroctonus larvae to a group of people hud­
dled under a bus stop to get out of the rain. In both cases one observes a cluster 
of individuals, but in the first the cluster arises through a self-organized pro­
cess involving interactions among the individuals, whereas individuals in the 
second case are independently attracted to a preexisting focus of aggregation. 

A striking feature of self-organized systems is the occurrence of a bifur­
cation-a sudden transition from one pattern to another following even a small 
change in a parameter of the system. One speaks of "tuning" a parameter in the 
system to invoke the onset of a different pattern. In the Dendroctonus example, 
one tunable parameter is the initial density of the setup. In the Benard convec­
tion system, a tunable parameter is the amount of heat applied to the lower 
surface of the dish. By making small adjustments in such parameters, one can 
induce large changes in the state of the system, since the system may now be on 
a trajectory that flows to a quite different attractor. Most self-organized systems 
have many tunable parameters. Let us explore this phenomenon of parameter 
tuning more closely. 

Parameter Thning 

A mathematical model popularized by Robert May (1974; 1976) has become 
one of the premier examples in the field of chaos theory, and it is a classic ex­
ample of population growth for a hypothetical organism with nonoverlapping 
generations. (Also refer to the less technical presentations by Crutchfield et al. 
1986; Gleick 1987; Dewdney 1991.) This system is a useful one for gaining 
an intuitive understanding of how a system can undergo dramatic transitions 
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between two ordered states, or from an ordered state to a chaotic state or vice 
versa. 2 

As shown in Box 3.2, we can model the growth of a certain popUlation 
with the logistic difference equation: Nt+ 1 = r Nt (I - Nt). This equation has 
the single variable, Nt, which is the population size in the current generation, 
and varies between 0 and 1, where 0 is extinction and 1 is the population at 
the carrying capacity of the environment. The single parameter, r represents 
the intrinsic reproductive rate of the species. The population size in the next 
generation is given by N t+l. To determine the popUlation size over time, the 
equation is solveu iteratively, starting with an arbitrary population value for Nt 
in the range of 0 to 1. The result of each iteration is the new popUlation value 
Nt+ 1, which is then substituted in the equation as the population size in the 
current generation. The process can be repeated ad infinitum. One finds that if 
r is within a certain range (0 < r < 1), then repeated iterations result in extinc­
tion of the population regardless of the initial population size, Nt. This is to be 
expected for the obvious reason that each individual does not replace itself in 
the next generation. Similarly, if 1 ::::: r < 3, then the population again shows 
simple behavior, approaching a constant size after several generations, as one 
might intuitively expect for a popUlation living under constant environmental 
conditions. Regardless of its initial size the population approaches the same 
final size, an attractor. But if we increase r slightly beyond 3, the population 
suddenly develops a new pattern; it enters a regime where it oscillates between 
two values. If we continue to increase r to more than 3.4, the system under­
goes another abrupt transition where the oscillations between two population 
sizes change to oscillations between four population sizes. The system is now 
behaving in an unanticipated way. If r is raised yet again, beyond 3.57, the pop­
ulation exhibits deterministic chaos, changing erratically between generations 
with no regular pattern. 

The appearance of a qualitative change in behavior when a parameter-value 
- changes quantitatively is called a bifurcation. At the bifurcation between a sin­

gle, stable population and oscillations between two different population values, 
r provides sufficient positive feedback in the system for the population size to 
undergo a cyclic rise and fall. The population size overshoots and then crashes. 

Self-organizing systems, with nonlinear positive feedback interactions char­
acteristically show bifurcations. In the Dendroctonus system, experiments re­
veal a bifurcation at a particular density of larvae; in the Benard convection 
system, a bifurcation occurs as the amount of heat applied to the bottom of the 
fluid layer reaches a certain level. In many real-world systems, especially those 
in biology, it is difficult to control parameter values precisely enough to reveal 
such abrupt bifurcations, but in our hypothetical popUlation we have complete 
control of the system. So in this situation it is easy to demonstrate the sudden 
emergence of novel behavior as one gradually tunes a system parameter. 
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Another type of behavior often exhibited by self-organizing systems is 
multi-stability, in which multiple possible stable states, or attractors may occur. 
This raises the question of what determines which of the various alternatives 
~he system will exhibit. In the case of our hypothetical population, the behav­
IOr of the system is sensitive both to the parameter-value r and to the initial 
value of the population Nt. Figure 3.2 portrays the behavior of the system over 
~he entire range of r, for all initial conditions. When different patterns arise 
ill systems with mUltiple regimes there is usually no way of knowing a priori 
which particular regimes ultimately will be chosen. The final states attained 
by such systems usually depend on the initial conditions and a range of initial 
conditions that act as a basin of attraction for a particular attractor. 

Figure 3.2 The bifurcation diagram above is for the logistic difference equation. Val­
ues along the x-axis are the tuning parameter, r, from 0 to 4. The corresponding 
population values (ranging from 0 to 1) are shown along the y axis. The diagram 
was generated with the program, Bifurcation Diagram, which can be downloaded at 
http://beelab.cas.psu.edu. 

Biological and Physical Parameters 

For the biological systems discussed in this book-what is meant by a "pa­
rameter"? In systems that can be described by a simple mathematical equation, 
we have no difficulty identifying the parameters, such as r in the above pop­
ulation equation. But of course, the situation is more complicated in actual 
living systems. As biologists interested in the behavior of living organisms, 
we may distinguish between two basic types of parameters in self-organized 
systems: those intrinsic to the organisms (the biological parameters) and those 
that arise from the environment or by physical constraints (the physical param­
eters). However, this distinction is irrelevant to the pattern formation process. 
For example, a parameter can affect the rules of thumb that describe the prob­
ability of performing a certain behavior under specified circumstances. The 
execution of a rule of thumb depends on information (about itself and the en­
vironment) that an organism acquires moment by moment, and on genetically 
encoded information that an organism possesses intrinsically. In formulating 
models of pattern formation in the examples in this book, we generally start 
out with a presentation of the behavioral rules of thumb used by the individ­
uals in the system. For example, a rule of thumb for an army ant, "The more 
pheromone detected, the quicker the running speed," might translate to a differ­
ential equation such as d.x / dt = v C, where d.x / dt is the distance moved by the 
ant per unit time (its speed) as a function of the pheromone concentration, C. 
The parameter, v, relates the walking speed to the pheromone concentration. 

Physical parameters also play important roles in biological systems. Con­
sider the example of trail-following by ants. We need to know how the con­
centration of the trail pheromone varies over time, not only as a function of 
the behavior of the ant depositing the pheromone, but also as a function of 
the evaporation rate of the pheromone. The evaporation rate is determined by 
the pheromone's chemical structure and the physical conditions, such as tem­
perature and air flow. Natural selection can influence the evaporation rate by 
determining the chemical structure of the pheromone, but the volatility of a 
particular pheromone compound is governed by the laws of physics. 

Consequences of Emergent Properties in Self-Organization 

The striking phenomenon of tunable emergent properties can have important 
evolutionary consequences for self-organized systems. We have shown how a 
small change in a system parameter can result in a large change in the overall 
behavior of the system. Is it possible that such properties could provide self­
organized systems with adaptive, flexible responses to changing conditions in 
the environment and to changing needs of the system? If so, how might this 
flexibility arise? 

Let us assume that natural selection can tune a particular behavioral parame­
ter to a range of values close to a bifurcation point. Then, small adjustments in 
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the parameter for each individual within a group may induce large changes in 
the collective properties of the group, thereby endowing the group with a wide 
range of responses and the ability to switch from one behavioral response to 
another. 

Flexibility of this type may operate on a day to day basis, or over a longer 
time span, such as throughout the seasons. To take a hypothetical example: in 
the spring honey bee colonies undergo a transition from one mode of behavior 
to another as colonies switch from a nonswarming to a swarming state. The 
colony initially produces only worker bees, but eventually it begins to produce 
a batch of queens. The colony then divides, with approximately half the work­
ers leaving (swarming) with the original queen to establish a new colony and 
the other half remaining at home with one of the new queens to continue the 
original colony. In some cases, however, the colony produces multiple swarms. 
What is responsible for these different swarming responses? 

Rather than assuming that different behavioral rules determine the type of 
swarming outcome, let us suppose that the bees respond with the same set of 
behavioral rules to slightly different circumstances such as the initial colony 
size. In such a system, there may be an economy of behavioral complexity at 
the individual level required to switch from one kind of behavior to another. 
Thus, tunable parameters and bifurcations might provide an efficient mecha­
nism for producing flexibility in biological systems. 

Role of Environmental Factors 

Environmental parameters may playa crucial role in shaping self-organized 
systems. The environment specifies some of the initial conditions, and positive 
feedback results in great sensitivity to these conditions. In particular, positive 
feedback can amplify initial random fluctuations or heterogeneities in the en­
vironment, and as a result the system may exhibit a number of different out­
comes. A clear example is the raiding patterns of army ant colonies, analyzed 
in detail in Chapter 14. Deneubourg et al. (1989) examined models in which 
the same set of behavioral and physiological rules apply to different army ant 
species, but under different environmental conditions. Their striking finding 
was that distinct morphological patterns of army ant raids emerged merely by 
varying the initial distribution of food in the environment. It was not at all 
obvious, a priori, that the system would display multiple stable regimes as a 
function of variation in environmental parameters. 

Biologists are _ accustomed to considering differences between species' be­
havior patterns as the phenotypic expressions of underlying genotypic differ­
ences that evolved over an evolutionary time-scale in response to environmen­
tal conditions. We suggest that certain species-specific patterns may be self­
organized expressions of differences in environmental variables. Not surpris­
ingly, differences in the raiding patterns of Eciton burchelli versus E. rapax 
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may also reflect genetically based differences in pheromones or behaviors. 
Undeniably, such differences in biological parameters probably do exist, but 
a remarkable fact is that models of the raiding patterns demonstrate that differ­
ences between species in raiding patterns could arise simply from differences 
in the spatial distribution of each species' prey. 

Self-Organization Can Promote Stable Patterns 

We have emphasized transitions from one pattern to another as one or more 
of a system's parameters changes value. This may have given the impression 
that self-organizing systems are rather fragile, erratic, and susceptible to pertur­
bations. However, most of the self-organizing systems described in this book 
are extremely robust, by which we mean they are stable over a wide range 
of parameter values. Although we have pointed out that natural selection may 
tune a particular parameter to the vicinity of a bifurcation point, it appears that 
most systems operate in a parameter range far from bifurcation points and, 
therefore, stubbornly resist transition from one pattern to another. The reason 
for this seems clear. Most of the patterns discussed in this book are adaptive 
and in most cases would be highly maladaptive if the behavior of the builders 
did not consistently produce the typical species-specific superstructure or pat­
tern. 

Consider again the example of the bark beetles (Dendroctonus). Although 
experimental situations can be contrived in which the larvae do not aggregate, 
under normal conditions the larvae almost always operate in a parameter range 
where strong aggregation occurs. This makes sense, for if this clustered feeding 
is an important adaptation for countering the tree's defensive production of 
sticky resin, then that clustering is expected to be consistently observed under 
natural conditions. Natural selection is expected to tune the larvae's behavioral 
and physiological parameters so that clustering occurs under the full range of 
conditions that the larvae would be expected to encounter. 

Given that natural selection frequently favors a particular pattern for a sys­
tem, many self-organizing systems are expected to resist perturbations and op­
erate with great stability within a single regime. In such circumstances, the 
pattern exhibits the property of self-repair. In other words, the pattern is an at­
tractor of the system. This phenomenon is discussed further in Chapter 16 with 
analysis of pattern formation on the comb of honey bee colonies. 

Self-Organization and the Evolution of Pattern and Structure 

Intuitively, it would seem easier for natural selection to make adjustments in 
the processes underlying an existing structure than to evolve a fundamentally 
new structure. It seems likely, therefore, that natural selection generates new 
adaptive structures and patterns by tuning system parameters in self-organized 
systems rather than by developing new mechanisms for each new structure. 
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Consider the wide range of different coat patterns of mammals or shell pat­
terns of mollusks. Self-organized pattern formation mechanisms have been 
hypothesized for these systems (Ermentrout et al. 1986; Fowler et al. 1992; 
Lindsay 1977; Murray 1981; Murray 1988). An intriguing feature of this hy­
pothesis is that fundamentally similar mechanisms may account for a wide 
variety of different patterns. In the past most biologists probably would have 
thought that the strikingly different color patterns on different shells or mam­
mals arise through qualitatively different mechanisms. However, the concept 
of self-organization alerts us to the possibility that strikingly different pat­
terns may result from the same mechanism operating in a different parame­
ter range. This underscores the possibility that in evolution important changes 
in the properties of organisms and groups of organisms might result from 
slight changes in the tuning of parameters of the underlying developmental 
systems. 

Simple Rules, Complex Patterns-The Solution to a Paradox 

Biologists have been puzzled by the fact that the amount of information 
stored in the genes is much smaller than the amount of information needed to 
describe the structure of the adult individual. The puzzle now may be solved by 
noticing that the genes are not required to specify all the information regarding 
adult structure, but need only carry a set of rules to generate that information 
(Maruyama 1963, p. 171). 

Most self-organizing systems, like biological systems in general, are highly 
complex and probably use multiple rules. Termites, for example, probably use 
more than a single simple set of rules for constructing their intricate mounds 
(Figures 18.1 and 18.2). Nonetheless, it should be stressed that simple nonlin­
ear interactions between large numbers of individuals can lead to surprisingly 
complex patterns at the group level, patterns that often are unexpected even if 
detailed knowledge exists of the group's members and their interactions. An 
important goal of this book is to explore the question of how much-more to 
the point, how little-complexity must be built into the components of a self­
organized system to generate the observed complexity at the group level. This 
question has important evolutionary implications. 

As Maruyama (1963) points out, we know that it is impossible for each detail 
of an organism to be explicitly coded in the genome. For example, the human 
body can produce antibodies against a nearly unlimited number of foreign sub­
stances, yet the body has only about 100,000 different genes. An individual can 
synthesize more than 100 million distinct antibody proteins at anyone time, so 
each protein obviously cannot be specified by a separate gene. Instead, natural 
selection led to a clever device for economizing on the information that needs 
to be genetically coded for the immune system. The device is a combinatorial 
scheme for generating diversity (Janeway 1993). Antibody genes are not dis-
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tinct units; they are inherited as fragments joined together to form a complete 
gene within i~dividual B lymphocytes, of which the body has about 10 trillion. 
One cannot improve on Fran~ois Jacob's (1982, p. 38) elegant description of 
the process: 

[A] mammal can produce several millions or tens of millions of differ­
ent antibodies, a number far greater than the number of structural genes 
in the mammalian genome. Actually a small number of genetic segments 
is used, but the diversity is generated during the development of the em­
bryo by the cumulative effect of different mechanisms operating at three 
levels. First, at the cell level, every antibody-forming cell produces only 
one type of antibody, the total repertoire of antibodies in the organism be­
ing formed by the whole population of such cells. Second at the protein 
level, every antibody is formed by the association of two types of protein 
chains, heavy and light; each of these chains can be sampled from a pool 
of several thousand and their combinatorial association generates a diver­
sity of several million types. Third, at the gene level, every gene coding 
for an antibody chain, heavy or light, is prepared during embryonic devel­
opment by joining several DNA segments, each one sampled from a pool 
of similar but not identical sequences. This combinatorial systems allows 
a limited amount of genetic information in the germ line to produce an 
enormous number of protein structures with different binding capacities 
in the soma. This process clearly illustrates the way nature operates to 
create diversity: by endlessly combining bits and pieces. 

This example shows that various mechanisms exist for economizing on the 
information that needs to be coded in a system. Self-organization is one type 
of mechanism for creating structure with a minimal amount of genetic coding. 
The antibody combinatorial mechanism is another. Let us now return to the 
original question: How much behavioral information needs to be coded explic­
itly in the genome of a self-organized system? Athough we cannot provide a 
precise answer, we suggest that it is far less information than might have been 
assumed in the past. 

Box 3.1 Benard Convection 

The Benard convection system has become a classic example of a self­
organizing system. It is simple to demonstrate and displays a complex 
emergent pattern (Figure 1.3a). Convection is a process of fluid flow that 
occurs when a liquid or gas is heated (DeAngelis et al. 1986; Velarde 
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and Normand 1980). When a fluid is heated from below, the bottom layer 
expands and becomes less dense. This lighter, warmer layer. tends to r~se 
and the heavier, cooler layer above tends to sink. The result IS convective 
fluid transport. 

At the turn of the last century the French investigator Henri Benard 
studied a convective system that revealed unusual patterns. The system 
comprised a thin layer of spermaceti oil heated uniformly fr?m below 
while its upper surface was kept relatively cool by contact WIth the at­
mosphere. As long as the vertical temperature gradient in the fluid ,,:,as 
sufficiently small, no special pattern appeared; but when a gradual m­
crease occurred in a system parameter-the amount of heat applied to 
the lower surface-the previously uniform surface of the fluid suddenly 
became a tesselated mosaic of polygons. The critical value of the tuning 
parameter depended on the fluid's viscosity, surface tension, dep~h, and 
other factors. Indeed, any of these factors can be taken as the tunmg pa­
rameter, although it is most convenient to adjust the amount of heat. The 
following description of the Benard convection system provides a good 
explanation of the phenomenon (Velarde and Normand 1980, p. 94-95): 

Consider a small parcel of fluid near the bottom of the layer. Because 
of the elevated temperature at the bottom, the parcel has a density 
that is less than the average density of the entire layer. As long as 
the parcel remains in place, however, it is surrounded by fluid of the 
same density, and so has neutral buoyancy. All the forces acting on 
it are in balance, and it neither rises nor sinks. 

Suppose now that through some random perturbation the par­
cel of fluid is given a slight upward motion. What effect does the 
displacement have on the balances of forces? The parcel now is sur­
rounded by cooler and denser fluid. As a result it has positive buoy­
ancy, so it tends to rise. The net upward force is proportional to the 
density difference and to the volume of the parcel. Thus an init~al 
upward displacement of the warm fluid is amplified by the denSIty 
gradient, and the amplification gives rise to forces that cause fu~her 
upward movement. A similar analysis could be made for a sbght 
downward displacement of a parcel of cool, dense fluid near the top 
of the layer. On moving downward the parcel would enter an envi­
ronment of lower average density, and so the parcel would become 
heavier than its surroundings. It would therefore tend to sink, ampli­
fying the initial perturbation. Natural convection is the result of these 
combined upward and downward flows, and it tends to overturn the 
entire layer of fluid. 
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The next description of the onset of instability is expressed in the termi­
nology of self-organization and dynamic systems (Prigogine and Stengers 
1984, p. 142): 

The "Benard instability" is another striking example of the instabil­
ity of a stationary state giving rise to a phenomenon of spontaneous 
self-organization. The instability is due to a vertical temperature gra­
dient set up in a horizontal liquid layer. The lower surface of the 
latter is heatej to a given temperature, which is higher than that of 
the upper surface. As a result of these boundary conditions, a per­
manent heat flux is set up, moving from the bottom to the top. When 
the imposed gradient reaches a threshold value, the fluid's state of 
rest-the stationary state in which heat is conveyed by conduction 
alone, without convection-becomes unstable .... The Benard insta­
bility is a spectacular phenomenon. The convection motion produced 
actually consists of the complex spatial organization of the system. 
Millions of molecules move coherently, forming hexagonal convec­
tion cells of a characteristic size. 

The development of hexagonal cells in the Benard convection system 
may be comparable to the development of clustering in the Dendroctonus 
beetle system. In Benard convection, random motion of the molecules 
(in which heat transfer is by conduction) competes with coherent motion 
of the molecules (when convection occurs). With the beetle larvae, ran­
dom motion of the larvae occurs in the absence of any chemical cues, but 
motion becomes oriented when a pheromonal gradient is established by 
the larvae themselves. In both cases, the system exhibits a spontaneous 
transition to a more ordered state as a particular parameter is gradually 
increased beyond its bifurcation point. 

It is easy to demonstrate Benard convection in the classroom. Benard 
used spermaceti (sperm whale) oil, and Velarde and Normand (1980) 
used silicone oil to which flakes of aluminum were added to make the 
flow visible. We can use ordinary vegetable oil to which we add very 
fine aluminum powder (called bronzing powder, available at art supply 
stores). A pinch of powder in a cup of oil is sufficient. We place a layer of 
this oil about 1 cm thick in a 1 O-cm-diameter glass petri dish. Rather than 
use an apparatus with which we could gradually and uniformly increase 
the temperature at the bottom of the dish, we simply place the dish briefly 
on a laboratory hot plate, then carefully remove the dish and place it on 
a table top. If the bottom of the dish is heated sufficiently, the charac-
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teristic pattern will suddenly appear, and remain for several minutes. It 
is a temporarily stable, swirling pattern of polygonal Benard convection 
cells. 

Box 3.2 Thning the Growth Rate Parameter in the Logistic 
Difference Equation 

In many species of insect, such as certain butterflies, generations are 
nonoverlapping. Such species have eggs that hatch in the spring after 
overwintering. The adults live through the summer and then die after lay­
ing eggs in the fall. To describe the growth of such a population, one can 
use the so-called logistic difference equation: 

We can think of this equation as describing the population size in the next 
generation (Nt+d as a function of the current population size (Nt) and a 
parameter, r. Population size is scaled to vary between 0 (no individuals) 
and 1 (the maximum number of individuals). Here the subscripts, t and 
t + 1, refer respectively to the current time and the time of the next 
generation. This equation tells us that the population reached in the next 
generation (Nt+ 1) depends on the number of individuals in the current 
generation (Nt), which makes sense since the current individuals are 
those that will be laying the eggs for the next generation. The parameter, 
r, corresponds to an intrinsic reproductive rate indicating the average 
fecundity (number of offspring surviving to adulthood) of an individual. 
The equation supposes that, in the absence of a limiting factor such as 
overcrowding, the population in the next generation will be r Nt. Greater 
values of r result in greater numbers of individuals in the next generation. 
The parameter r specifies the strength of the positive feedback in the 
system. The factor (1 - Nt) plays an important role in the system: it 
provides the negative feedback. It also makes the equation nonlinear, 
giving it many of its unusual properties. In this model the population is 
scaled between the limits of zero (extinct) and one (the maximum carry­
ing capacity ~f the popUlation). Thus the factor (1 - Nt) limits population 
growth as it nears its carrying capacity, because as Nt approaches 1, the 
factor (1 - Nt) approaches zero. Expanding the right hand side of the 
equation yields r Nt - r N?, which is the equation of a parabolic curve. 
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Without the factor (1 - Nt), the right hand side of the equation is simply 
r Nt, the equation of a line with slope r. 

In exploring this simple model of population growth, we wish to 
demonstrate how a system can suddenly go from one state to another 
through the gradual tuning of a parameter.2 As described in the main text, 
the final population size reached after several iterations of the equation 
depends on the value of the reproductive parameter, r. Over certain ranges 
of r the population size reaches a single value, but as the parameter 
is increased the population size oscillates first between two values 
(so-called "penod two behavior"), then four values, eight values and 
so on. In the terminology of nonlinear dynamics, the system exhibits a 
sequence of period-doubling bifurcations. 

Another feature of nonlinear systems that can be explored with this 
equation is the transition to chaos. As r is increased beyond 3.57, the 
system not only fails to reach a stable value but also does not oscillate 
among a number of fixed values. Instead, no pattern occurs in the se­
quence of population levels from generation to generation. The system is 
said to be chaotic. Prior to Robert May's work, it is likely that such un­
predictable behavior in an insect population would have been attributed 
to random external influences or noise in the measurements of population 
size. But in our hypothetical population governed by this simple deter­
ministic equation, noise is not provided by the environment, the model, 
or by random errors in data collection that so often plague field studies. 
The chaotic behavior is called deterministic chaos. Here, the term chaos 
has a precise mathematical meaning that should not be confused with ran­
domness or noise. Deterministic chaos is the unpredictable behavior of a 
nonlinear system within a certain parameter range. Deterministic means 
that subsequent popUlation values are determined precisely by its equa­
tion. What is so unexpected, however, is that a deterministic equation can 
yield unpredictable results. 

Chaos is not a topic emphasized in this book, largely because the sys­
tems dealt with here do not normally exhibit chaotic behavior. No doubt 
this is because natural selection tunes the parameters of living systems to 
avoid chaos. In most situations, it would probably be grossly maladaptive 
for a living system to exhibit chaotic, disorganized patterns. 

Even a simple nonlinear equation can exhibit complex behavior, and 
so researchers have developed a graphical method for showing in a single 
figure the behavior of the system over a range of parameter values. This 
is called a bifurcation diagram (Figure 3.2). For the logistic difference 
equation, the diagram displays values of r on the x axis. The correspond-
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ing population sizes appear on the y axis. For each value of r, many ini­
tial values of the popUlation size, Nt, are iterated one by one, and after 
a large number of iterations, the population size for each Nt is plotted 
on the graph. We see that for certain values of r, a single steady state is 
reached regardless of the initial population size. Other regions show pe­
riod two behavior and the transition to chaos, as well as parameter zones 
within the chaotic region where the population level suddenly switches to 
fixed popUlation sizes. 

Box 3.3 Toppling Dominoes: A Mechanical Example of TIming 
a Parameter 

The example of clustering by Dendroctonus beetle larvae illustrated 
how the initial density of the larvae was a parameter that could be tuned 
to generate sufficient positive feedback to initiate clustering. A simple 
mechanical analog of this system uses dominoes. Instead of tuning the 
initial density of larvae to affect a clustering process, the density of domi­
noes can be changed to affect a chain reaction of toppling. 

Consider an arena of fixed size, say 1 m2, seeded with a variable num­
ber of dominoes, each standing on its narrow end. If the density of domi­
noes is sufficiently low they will be sufficiently separated so that toppling 
a single one results in few, if any, subsequent topples. As the density of 
dominoes is gradually increased a density is eventually reached at which 
the fall of a single domino triggers a chain reaction of topples through­
out the system. Experiments can be performed in which one counts the 
number of topples initiated by knocking over a single randomly chosen 
domino. If the experiment is repeated many times with different domino­
densities, one can plot the average number of topples per experiment as 
a function of the domino density. The plot would be nonlinear, with a 
low number of topples up to a certain domino density, and then a rapidly 
rising portion of the curve at higher domino densities where the fall of a 
single domino results in a chain reaction of many topples. 

Domino density is not the only parameter that can be tuned. The prob­
ability that a chain reaction propagates through the system is also a func­
tion of the height of a domino and the area of its base. The taller a domino, 
the more likely it will hit another domino when it falls. The smaller the 
area on which a domino stands, the more likely it will topple when hit 
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by another domino. Thus a parameter equal to (density x height)/area 
of base also can be tuned to specify the probability that a chain reaction 
propagates throughout the system. 

In Chapter 6, this domino system is shown to be a mechanical analog of 
a cellular-automaton simulation of an epidemic. The spread of disease in 
a population resembles the propagation of topples in the domino system. 


